Priority-based Scheduling Policy for OpenFlow Control Plane

Piyawad Kasabai

A Thesis Submitted in Partial Fulfillment of Requirements for
degree of Doctor of Philosophy in Computer Science
Academic Year 2017
Copyright of Mahasarakham University

v 9o

) o w) [J
UIU‘U’Iﬂﬂ’ﬁﬂﬂﬂ']ﬂ“ﬂﬂ15¢l1ﬂﬁ1ﬂﬂﬂ')’l“ﬁ’lﬂﬂlﬁ']ﬂiﬂlwQUﬂQUﬂNIﬂLWUI‘V‘I’J

9

H1INGINIADNNUADS

msdnm 2560

4
a a

a I a @
AUAVANT UVOINHIINGIBIUHIAITATN

Priority-based Scheduling Policy for OpenFlow Control Plane

y (Computer Science)
Academic Year 2017

Copyright of Mahasarakham University

The examining committee has unanimously approved this Thesis,
submitted by Mr. Piyawad Kasabai , as a partial fulfillment of the requirements for the
Doctor of Philosophy Computer Science at Mahasarakham University

Examining Committee

__ Chairman
(Asst. Prof. Kornchawal Chaipah
Ph.D.)
__ Advisor
('Somnuk Puangpronpitag , Ph.D.)
__ Committee
(Asst. Prof. Chatklaw Jareanpon ,
Ph.D.)
Committee

(Asst. Prof. Suchart Khummanee ,
Ph.D.)

Mahasarakham University has granted approval to accept this Thesis as a
partial fulfillment of the requirements for the Doctor of Philosophy Computer Science

(Asst. Prof. Sujin Butdisuwan , Ph.D.) (Asst. Prof. Krit Chaimoon , Ph.D.)
Dean of the Faculty of The Faculty of Dean of Graduate School

Informatics Day

TITLE Priority-based Scheduling Policy for OpenFlow Control Plane
AUTHOR Piyawad Kasabai
ADVISORS Somnuk Puangpronpitag , Ph.D.
DEGREE Doctor of Philosophy MAJOR Computer Science
UNIVERSITY - Mahasarakham YEAR 2017
University
ABSTRACT

Software Defined Networking (SDN) is a new network paradigm, allowing
administrators to manage networks through central controllers by separating a control
plane from a data plane. So, one or more controllers must locate outside switches.
However, this separation may cause delay problems between controllers and switches.
In this thesis, we therefore propose a Priority-based Scheduling policy for OpenFlow
(PSO). The purpose of PSO is to give a higher priority for OpenFlow control messages
in the in-band control network. Furthermore, PSO provides different priorities for
OpenFlow control messages, based on contents/services (data traffic types) and/or
customers for both in-band and out-of-band control network. The PSO is based on
packet prioritization mechanisms in both OpenFlow switches and controllers. In
addition, we have prototyped and experimented on PSO using a network simulator (ns-
3). From the experimental results, the PSO can help the data flow with high priority
acquire forwarding rules with lower delay under network congestion in control
links (Normalized Load > 0.8), comparing to traditional OpenFlow.

Keyword : Software Defined Networking, OpenFlow, Switch-Controller Delay

ACKNOWLEDGEMENTS

The PhD thesis would not have been accomplished if without the help from
several people. First of all, I would like to thank Dr. Somnuk Puangpronpitag for
providing invaluable support throughout my Ph.D. program. | also thank to my colleagues
in the Information Security and Advanced Network (ISAN) laboratory for a sharp
discussion. | was very fortunate to have many friends both within and outside the Faculty
of Informatics during my doctoral life. | thank them all for their being very supportive. |
would also grateful to a few members of Distributed Systems & Services (DSS) research
group (Leeds University, UK) for their comments and discussions. This thesis is partly
supported by the Newton Mobility Grant (No: NI160138) from the UK’s Official
Development Assistance together with Office of Higher Education Commission (OHEC)
Thailand, University of Leeds (UK), and Mahasarakham University (Thailand). | am also
grateful to Prof. Karim Djemame for all of his supports, during six-month collaboration
in Leeds (UK).

Piyawad Kasabai

TABLE OF CONTENTS

Page

F N S 2 ¥ N G I S SRS D
ACKNOWLEDGEMENTS ...ttt ettt a st e e e snae e nnneeens E
TABLE OF CONTENTS. ..ottt nnne e e e ane e e annee e e F
LIST OF TABLES ...ttt e nee e e e |
LIST OF FIGURESot ettt s e et e e nee e J
Chapter 1 INEFOAUCTIONcviiiiiiieie i 1
1.1 RESEArCN MOTIVALION......c.eiiiiiiieie ittt e te e sreebesneenne s 1
1.2 ODJECTIVES ...ttt ittt e e dr bbbttt 2
1.3 KeY CONTIIDULIONSoouviiecitecee sttt 2
T4 SCOPB ittt ettt n e 2
1.5 TeIrMINOIOQYccuiiiieiieie ettt ettt ke bbbt 3
Chapter 2 Background and Related WOrK ... 4
2.1 Limitation of Traditional Networks.............ceiiiiiiiiiiii e, 4
2.2 Software-Defined Networking (SDN).........cccoiiiiiiiiniiisiiis e, 5
2.3 Communication between Control and Data Planes.........cccccoireniniiencnieieennnn, 7
2.4 OPenFIOW SWITCH ..ciiiiiiii i i et 8
2.5 Evolution of OpenFlow SPecifiCatiONSc......cciuiiiiireeaiieiaiine e 11
2.6 Open Source OPenFIOW Controllersc......cooiii i eesiie et ennee i 13
2.7 Role Of SDN CONrOHEISciuiiiaiieraie e caesine e sasitianneseeseeesieeneesseeseeeneesseessians 14
2.8 SDN inthe Real WOrld.....ciioe it ra i s s nn e 16
2.8.1 COrNEll UNIVEISITY iiiiire i iie sttt saesii e snesne e 17

2.8.2 REANZZ NeW Zealand...........c.cveeviiiimisienineeeeeese e 17

2.8.3 G001 Ba......ooeee e 17

2.8.4 SDIN PrOUUCTSecuveiieiceee ettt ens 17

2.9 Differentiated Service Code Point (DSCP) of the DS fieldc.ccccoverveneen. 17

2.10 Previous SOITUTIONSccviiiiiiiiicieee e 18
Chapter 3 Research Methodologyccoveieieieiiieiieese e 20
3.1 Overview of Research Methodologycccociiiiiiiiiii e, 20
3.2 Implementation and Performance Evaluation Techniques.............cc.ccocvvvenenne. 21
3.2.1 Analytical IMOGELoiiiiiie et 21

3.2.2 Network Simulation and EMUlation ...t 21

3.2.3 Measurement TeStDEM.ot 21

3.3 Performance Metrics & Parameters............cccoviriiineiiiieedient e 22
3.3.1 DElay INSDINooiiiiiit et 22

3.3.2 PACKET LLOSS.....ccuvieeeee i sbisiissee ettt b nn ettt 23

3.3.3 TRFOUGNPUL ... b 23

3.3.4 0verhead Of PMT ...t et s 24

3.4 RESUIT ANAIYSIS ...tk bbb 24
3.5 Testing and Validationcc.oouoiieiiinieiie et 25
CRAPLET 4 DBSIGN......cviiiiiiieieeee bbb b e et e bbb et b e bbbttt et nne s 26
4.1 Problems and SOIULION DESIGNc.coveieiiiriiteieiceieeeees i e 26
4.2 Design of Priority-based Service Scheduling Policy for OpenFlow (PSO)......27
4.2.1 PSO MOUUIES.........comimimmimmimmismmain et siesieseeies s enns e s eneenes 27

4.2, 2 Traffic ClaSSITIENciiive it e 30

4.2.3 Queue and Packet SChedUlero i 34

4.2.4 Configuration of Policy Map Table.........ccc.coviiiiii 34
Chapter 5 Performance EVAIUALION ..ot v sibissins e esiiibe s snnne i 35
5.1-Network STmMUIALION SCENATTOS . .iiuiiureereiiiite e esriittaneseeseeeesresre et siesseeeendanes 35

5.1.1 Experiment 1: a PMT for an out-of-band control network to give a

Priority fOr a SPECITIC SEIVICE ...iiiiueiiiieeice it sbe e e eesisa e sraanee e e eneeenes 36

5.1.2 Experiment 2: a PMT for an out-of-band control network to give a
priority for a SPECITIC USEI/CUSIOMENccoverreeriireeese s 36
5.2 SIMUIALION RESUITS....c.veivieieieie et 36

5.2.1 Experiment-1: a PMT for an out-of-band control network to give a
priority Tor a SPECITIC SEIVICE.......cvviiieieie e 36

5.2.2 Experiment-2: a PMT for an out-of-band control network to give a

priority for a Specific USEr/CUSTOMENcovvererie e 38

5.3 Discussion of In-band Control Network.............ccooeiiiiniinieniencee e 39
5.4 Analysis Of PMT OVErNEA ..ccc..vv ittt 40
Chapter 6 Conclusions and FUture WorkK...............cocciii i 41
6.1 SUMMArY and DISCUSSIONcitimriiieieieiiiesie sttt batbeenb et 41
6.2 TheSIS ACRIEVEMENToiiiiiie i et nnes 42
6.3 FULUIE WOTKottt ettt enes 42
6.3.1 Implementation and Complex Simulation Scenarioscccocvevvreennn. 42

6.3.2 Prototyping and Measurement on Testhedccvivrieerenieieeniesiienenn 43
REFERENGES ...ttt s e ne e e e e e e te e e e s e e annes 44

BIOGRAPHY ot et 49

LIST OF TABLES

Page
I o] L R =T 4 01T T] [0 SR 3
Table 2 OpenFIOW MESSAJE tYPES. .. .cireeiueirieiieiesiese e sarie e sras e ste e sreesreeneesreesne e, 9
Table 3 Summary of OpenFlow SPeCIfiCatioNS............cccvveveeiieeiiaie e 13
Table 4 List of Open Source OpenFlow Controllerscccooeieie e, 14
Table 5 Commonly used DSCP and IP precedence values...........coceoveveeieieeiieeiiennnn, 18
Table 6 Metrics/Parameters of IETF IPPM RFCSccccoeiiiniieinecse e 22

Table 7 TraffIC LYPES ..ocvve it ere s 31

LIST OF FIGURES

Page
Figure 1 Traditional VS. SDIN GEVICESc...cviiveeiieciiiine s eeeesiasseesieseesraeseesseesseesseseessens 4
Figure 2 OVEIVIEW OF SDINooiiiiie ittt e a b s ta e e e eesneenneas 6
Figure 3 OpenFlow switch main COMPONENLScccoveiieiiiiiieie e 8
Figure 4 OPeNFIOW NBAUETcccui ettt b et ae e nre s 8
Figure 5 OpenFlow packet-in message formatcccoeoeiieeiieiic e 8
Figure 6 OpenFlow packet-out message format...........c.cccevviieiiieie e 10
Figure 7 OpenFlow flow-mod message formatc.ccceevivimniieic s 11
Figure 8 OpenFlow over Internet Protocolcccovvieiieieiiiesieie e 11
Figure 9 Match fields of a flow table entry in OpenFlow 1.0.......ccccccooovviiiiicinenne 12
Figure 10 Match fields of a flow table entry in OpenFlow 1.1.......ccccccoveiiiiieinenenne. 12
Figure 11 Example of OpenFlow protocol (Host 1 sends a message to host 3)........... 16
Figure 12 Example of OpenFlow protocol (Host 3 responses to host 1)..................... 16
Figure 13 Overview of Research Methodology.......c..cceeveiiiiiiiiieeccecc e 20
Figure 14 Delay MEaSUIEIMENT iuuiueiueereiseeeseesssiieeereesreesresseessessesstessnesseesseessesseesseessesnns 23
Figure 15 Three components of network simulation toolccceoeiieiiiccineee, 24
Figure 16 Overview of centralized control iNSDNcccooiieiiiiccecce e 26
Figure 17 SDN-enabled Ethernet SWItChc......cooviici it 27
Figure 18 Traditional OpenFlow Switch vs. OpenFlow switch with PSO................. 28
FIgUIre 19 SDIN INTEITACES. . i viitiiiete it eni st ieiaa i b e esii s e easi s iaa e e eneesteeaesneesseenseeras 29
Figure 20 The components of PSO MOAUIESccoueiiiiiiic it 30
Figure 21 Policy Map Table (PMT)......ooiee it st asita e s 30
Figure 22 NEtWOrK SCENAIIOc.iieiue ettt esssiteaneanaesee e seeseeseessessesreeseeseenens 35

Figure 23 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)

PaCKEt 10SS, D) DIAYc..oviiiieiitii e 36

Figure 24 Impact on a high priority data traffic: (a) Throughput, (b) Delay 37

Figure 25 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)
PaCKet 10SS, D) DEIAYcveiviiieieieiieieieee et 38

Figure 26 Impact on a high priority ¢
Figure 27 TCAM processi

CHAPTER 1
INTRODUCTION

1.1 Research Motivation

Traditional IP networks are complex and very hard to manage [1]. Classical
switching and routing devices on the traditional IP networks are inflexible to optimize.
These devices integrate both data plane and control plane on the same hardware device.
So, the Software-Defined Networking architecture (SDN) [2] has been proposed to
separate and operate between data plane and control plane. This architecture is designed
to provide various perspectives in the programmable networks, such as manageability,
scalability, and flexibility. So far, there have been several SDN-based solutions, such
as SoftRouter [3], ForCES [4], and OpenFlow [5].

SDN defines some abstraction layers in computer networking. These abstraction
layers separate a control plane from a data plane. The data plane locates in switch
hardware, whereas the control plane is software running on one or more servers, called
‘controller’. The data plane provides the simplest function of switches, i.e., forwarding
packet according to a set of rules. The rules in the switch are managed by software at
the controller. In general, several switches are controlled by a controller using an SDN
protocol, such as OpenFlow.

OpenFlow has been widely deployed in various network products, and attracts
several network industries [6]. The OpenFlow protocol defines control messages to
handle a switch. The control messages may be sent on a separated network from the
data traffic (called out-of-band control network), or may be sent on a shared network
infrastructure with the data traffic (called in-band control network). Most of the
scalability in OpenFlow network relates to the decoupling of the control and data
planes. In particular, the first packet of a new flow is sent by a switch to the controller
to acquire a forwarding rule. This may increase network load, and make the control
plane a potential bottleneck [7]. In addition, since the flow tables of switches are
configured in real-time by an external device, there is also the extra delay, introduced
by the flow rule request process. Since SDN networks grow in scale and complexity,
the control traffic may suffer from a delay, resulting in inefficient network as studied
in [8].

Several solutions [8-12] have also been proposed to reduce the delay of the
control traffic. However, some solutions support only a specific communication
between the control and data planes (in-band or out-of-band control networks). The
solution in [8] has proposed an initial design to fix this problem, but with a rather high
overhead for traffic tagging.

Hence, this thesis proposes a Priority-based Scheduling policy for OpenFlow
(PSO) to fix the aforementioned problems. The purpose of PSO design is twofold: 1)
to overcome the bandwidth competition between data traffic and control traffic for the

in-band control network, 2) to provide high-priority OpenFlow packet-in messages of
a specific traffic (such as real-time services) or a specific user for both in-band and out-
of-band control networks.

1.2 Objectives

1)
2)

3)

To analyze delay of acquiring forwarding rules in Software-Defined
Networking (SDN)

To design solutions to help an OpenFlow message with shorter delay in
acquiring forwarding rules in SDN

To evaluate the proposed solutions in terms of throughput and delay of a
specific traffic by using network simulator

1.3 Key Contributions

This thesis presents delay problems in SDN, and proposes an enhanced design of
the OpenFlow switch. Our design offers the following properties:

1)
2)
3)

in-band and out-of-band support,
low delay for targeted traffic even under unstable situations,
scalability and feasibility to implement.

1.4 Scope

1)
2)

3)

4)

5)

6)

Among several SDN protocols, this work is based on OpenFlow protocol,
which is the most widely used SDN protocols.

For communication between control and data planes, out-of-band control
network will be evaluated in this work.

Distributed and centralized controllers are two SDN architecture types. This
work mainly focuses on centralized controller. This centralized controller
allows several switches to connect a single controller.

The performance evaluation of this work uses simulation techniques. ns-3
[13] will be used in this work.

Differentiated Service Code Point (DSCP) of IP header is originally
deployed for Quality of Service (Qo0S) issues. However, this work takes the
DSCP .into the design mainly to mitigate the delay of higher priority traffic
only, not covering all QoS parameters.

For network deployment, this work will mainly focus on managed networks,
not covering public networks.

1.5 Terminology

This study uses terminology described in [8, 14, 15]. Table 1 gives the description
of each term.

Table 1 Terminology

Term Definition

Asynchronous message A message sent by a switch to a controller
without request

Control plane A plane related to software application that
places in a controller to control a data plane

Control traffic Traffic related to OpenFlow messages such as
Packet-in messages

Data plane A plane related to data traffic that locates in
hardware and is responsible for forwarding
packets

Data traffic Traffic related to data packets, such as ARP
packets, TCP packets, UDP packets and so on.

Flow-mod message A message sent from a controller to a switch
to modify flow entry

OpenFlow message OpenFlow protocol unit or packet unit, sent
over OpenFlow connection

Packer-in message A message sent to a controller in the event of
table-miss

Packet-out message A messages sent from a controller for a switch
to specific output port or action

Software-Defined Networking A modern network architecture that separates

(SDN) data and control planes to allow
administrators to program network
functionalities via a controller connected with
network devices

Synchronous message A message sent by a switch to a controller
with request

CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Limitation of Traditional Networks

The Internet has been expanded to serve millions of users. So, it has become more
and more complex. Manageability of network devices IS a major issue of this
complexity. To serve several applications, these network devices must be managed in
different levels of services. However, almost all current network devices are inflexible
and closed systems. A traditional network device (e.g. router/switch) provides a unified
stack of functions [16]. From Figure 1a, there are three main traditional router/switch
functions as follows. First, a specialized packet-forwarding function is responsible to
accept data packets, and then forward to the next hop according to the configurations
of the router or switch. Second, an operating system, provided by the router/switch’s
vendor, is responsible to control the device as a whole. This operating system can be
proprietarily optimized by each vendor for each underlying hardware platform. Third,
network applications (such as network protocols) provide rules, used in operating
system and the packet-forwarding hardware. There are several standards underlying
router/switch (approximately 6000 RFCs) to provide layer 2&3 network functions. It is
rather complicated and inflexible to optimize network behaviors on these traditional
routers/switches due to vendor-dependency.

4 N\ ' 3

________________ N?P!QEII(,PF_V_'EE_______________, [Application Plane]
! Control Plane i Data Plane i

] 1
erwrr——— ! 3 3
.[Build information (routing] :. : .
! tocols, MAC | ing, ARP)4 iali . 1 O
- Wikt caming, ARP) t Specialized ;?acket] Control Plane E Management Plane
! . R forwarding : :
! Store information [y ! :
i [(L2,13 forwarding tables)] :: : [P DT Jt ----------- oo t ----------- |
|) | \ || 5 :
i ' i i Forwarding Plane d Operational Plane !
‘ Operating System] o | : 1
S —— ——— | Network Device !

\ J L /
a) Traditional Device b) SDN Device

Figure 1 Traditional vs. SDN devices

A possible solution to this problem is the implementation of data handling rules
as software rather than embedding them in hardware [17]. Routing Control Platform
(RCP) [18] is one of the solutions, proposed by Caesar et al. RCP is a centralized
platform, separating from data plane, to collect information about external destinations,
and to select the BGP routes for each router. Recently, SDN is one of the most well-
known solutions.

2.2 Software-Defined Networking (SDN)

Internet technologies have been developed to enable programmability. Active
networks [19] were proposed to allow their users to inject customized programs into
the network devices. The network devices extract and execute programs from injected
data packets. In this solution, a new routing mechanisms and network services can be
implemented without the modification of the network hardware. However, security and
performance issues can be problems due to injection malicious programs into packets
from attacker and executing injected-malicious programs [20]. So, this solution has not
convinced.

Programmable networks [21] were developed to provide programmability in the
network by allowing programs to execute network devices similar to active networks.
However, the programs are not injected in data packets as with active networks. So,
security issues on the programmable networks can be achieved.

Both active networks and programmable networks introduce a new network
paradigm (named Software-Defined Networking: SDN). SDN has emerged from a
research wark, initially performed in 2004 as a part of researching a new network
management paradigm [16]. This initial work was built in 2008 by two different groups.
A company, named Nicira Networks, has created a network operating system, named
NOX [22]. At the same time, an OpenFlow switch has also been created by the
cooperation between Nicira Networks and a research team from Stanford University.
OpenFlow is then widely supported by network industries [6]. Now, OpenFlow is
managed by Open Networking Foundation (ONF) [6].

SDN is a new approach for network administrators to manage network
functionality and provision. It provides software to program network devices
dynamically. SDN focuses on roles of software in running networks through an
abstraction of a data plane, and separating it from a control plane. This separation
allows faster innovation cycles at both planes [14]. Several ideas and concepts are
applicable to research and development in SDN standardization [23]. The Software-
Defined Networking Research Group (SDNRG) [24] was chartered by Internet
Research Task Force (IRTF) to investigate SDN from various perspectives with the
goal to identify the approaches that can be defined, deployed and used in the near term
as well as to identify future research challenges [14].

RFC 7426 [14] has described the layers and architecture of SDN. As shown in
Figure 1b, SDN architecture consists of multiple planes, including Forwarding Plane
(FP), Operational Plane (OP), Control Plane (CP), Management Plane (MP), and
Application Plane (AP).

FP is widely referred to the "data plane” or the "data path". The FP is responsible
for handling packets in the data path, based on the instructions received from the CP.
The FP takes action from the instructions, such as forwarding, dropping, and changing
packets. OP is responsible for managing operational states of the network device such
as device active/inactive, port status, and port available. The OP relates to network

device resources (e.g. ports, memory), and it is usually the termination point for MP
and AP. CP is responsible for making instructions sent to FP on how packets should be
dropped or forwarded by one or more network devices. The CP may be related in OP
information e.g., current port status or its capabilities. MP is responsible for monitoring,
configuring, and maintaining network devices. The MP makes decision regarding the
states of network devices, and may be used to configure the FP. For instance, the MP
may set up all or parts of the forwarding rules at the first time. AP is a part of
applications and services that define network behaviors.

The communication between FP and CP is provided by southbound APIs.
OpenFlow protocol and OF-Config are used these APIs. Northbound APIs are used to
establish CP and AP. These APIs enable innovative applications. REST are the most
used northbound APIs and most of the controllers implement it.

(Application Plane h
— — —
q Network Apps Analytics units Other service)
(‘Control Plane (SDN controllers))
Y Master S\Iave Slave)
T ™\
Data Plane -n
o ‘e
. SDNsuwitch .
* *
oI AR
o .0 .’. 0
SDN switch 0..‘ SDN switch ..0 SDN switch
i g
. /
(" User N
Host 1 Host 2 Host3 ... HostN
A J

s mnnnData path sess==Control path

Figure 2 Overview of SDN

In general, SDN decouples control plane and data plane (as illustrated in Figure
2). The control plane is actually RFC 7426’s CP together with MP, while the data plane
is RFC 7426’s FP together with OP. In addition, the controller may collect any
information from analytic engine at the application layer or application plane (optional).
The lower layer is the control plane, also called the network infrastructure layer. It

consists of forwarding network devices. The responsibilities of this plane are mainly
data forwarding, monitoring and gathering statistics.

2.3 Communication between Control and Data Planes

To communicate between control and data planes, there are two alternatives,
namely in-band control network and out-of-band control network. In the out-of-band
control network, control traffic (an OpenFlow control message) is sent on a separate
network from data traffic, whereas the control and data traffic share the same network
link for the in-band control network. From the literature, the out-of-band control
network has been focused by several studies [25]. It is also used by B4 (Google
Software Defined WAN) [26]. Its advantages are as follows: 1) high security can be
provided for control messages; 2) high availability can be provided even if there are
failures in the data plane. However, this out-of-band control network is expensive to
build due to the separation of network link. Sharma et al. [9, 10] have argued that the
in-band control network would be more widely deployed since it is suitable for all types
of topologies.

Centralized and distributed controllers are two alternatives for the SDN controller
placement. For the distributed controllers, inter-connection links among controllers
[27] must be built. Russ and Shawn [28] have suggested that the distributed controllers
are rather complex and require heavy configuration to deploy, design, and manage. On
the other hand, the centralized controller is much simpler. So, the centralized controller
is more widely deployed comparing to the distributed controllers. However, SDN can
grow in scale, and the number of the switches under the same centralized controller
could be increased. This issue inevitably causes a network congestion problem [8].

In general, both centralized and distributed controllers can cause delay problems,
namely inbound and outbound delays. The inbound delay (or inbound latency) happens
when a switch generates packet-in messages and sends them to a controller. The
outbound delay (or outbound latency) happens when a controller generates packet-out
messages and sends them to a switch in order to install, modify, delete, and forward
rules. He et al. [11] have found that both delays could result in the inefficiencies of the
link between the switch and the controller.

For the above reasons, network inefficiencies may occur in SDN, and the delay
of data traffic is then increased. For the in-band control network, this problem can be
even more severe since the control traffic may be dropped, resulting in the failure of
data traffic forwarding. In addition, there is still no explanation how the switch and the
controller can prioritize different traffic types (data and control packets). Some previous
studies [8-10, 12] are proposed to figure out and solve this problem, but all of them still
have some drawbacks that will be further discussed in Section 2.10.

2.4 OpenFlow Switch

) s - ~
Controller OpenFlow switch
""" Control Plane | | Open Channel (sw) i Data Path(hw) |
L | : i :
' | Build information i e) i: () !
[} q 1 1
+ | (Programmatic) | ! ! n)
| 1 I n :
L \ : w| Forwarding |
' |Store information| | : API 1 Path E
i | (Policy, Topology)| 1 i | (OpenFlow) I3 (Flow Tables) | |
P ——— | { i !
N Y [I :
[} o I 1 n
i Forwarding i OpenFlow | 1 i
E decision E message i . / ii \. / E
| e | b o [
\ y

Figure 3 OpenFlow switch main components

An OpenFlow switch forwards data packets according to a set of rules in flow
tables. These rules are managed by a software-based controller at the control plane
outside the switch (as shown in Figure 3). The OpenFlow switch consists of secure
channel (open channel), flow table and OpenFlow protocol. The secure channel is a
software APl to connect with the controller, allowing commands and packets to
communicate between the controller and the switch. The flow table is built in the switch
hardware using Ternary Content Addressable Memory (TCAM). It contains a list of
flow entries, which define the rules for forwarding/dropping packets. Each flow entry
consists of match fields, counters and instructions. For each incoming packet, the
packet header is compared to the match fields of each entry. If matched, the packet is
processed according to the instructions. The counters are used to collect statistics about
the packets. The OpenFlow protocol provides a standard for communication between
controllers and switches by defining control traffic between them. Each control traffic
has the following header structure (shown in Figure 4)

version (8bits) type (8bits) length (16bits)
xid (32bits)

Figure 4 OpenFlow header

buffer_id (32bits)
total_len (16bits) | reason (8bits) | table_id (8bits)
cookie (64bits)

match (TLVs)
pad | data |

Figure 5 OpenFlow packet-in message format

The structure of the OpenFlow header is described in Figure 4, consisting of four
fields, namely version, type, length, and xid. version specifies the version number of
the OpenFlow protocol. There are several categories of OpenFlow messages (as shown
in Table 2), such as symmetric messages, switch configuration messages, asynchronous
messages, and controller command messages. Each category contains different types.
For example, OFPT_PACKET_IN is a type of asynchronous messages, describing
packet-in messages (as shown in Figure 5). The length field indicates the total length
of the message. The xid indicates transaction ID, associated with the packet. The types
can have the following values, as shown in Table 2.

Table 2 OpenFlow message types

Type | Value
Symmetric messages

OFPT HELLO 0
OFPT_ERROR 1
OFPT_ECHO_REQUEST 2
OFPT_ECHO_REPLY 3
OFPT_EXPERIMENTER 4
Switch configuration messages
OFPT_FEATURES REQUEST 5
OFPT_FEATURES REPLY 6
OFPT_GET_CONFIG_REQUEST 7
OFPT_GET CONFIG REPLY 8
OFPT_SET_CONFIG 9
Asynchronous messages

OFPT_PACKET IN 10
OFPT_FLOW_REMOVED 11
OFPT PORT STATUS 12
Controller command messages
OFPT_PACKET OUT 13
OFPT_FLOW_MOD 14
OFPT_GROUP_MOD 15
OFPT PORT_MOD 16
OFPT TABLE MOD 17
Multipart messages

OFPT MULTIPART REQUEST 18
OFPT MULTIPART REPLY 19
Barrier messages

OFPT_BARRIER _REQUEST 20
OFPT_BARRIER_REPLY 21
Controller role change request messages
OFPT_ROLE REQUEST 24
OFPT_ROLE REPLY 25
Asynchronous message configuration
OFPT_GET_ASYNC REQUEST | 26

10

Type (cont.) Value (cont.)
OFPT_GET _ASYNC REPLY 27
OFPT_SET_ASYNC 28
Meters and rate limiters configuration messages
OFPT_METER_MOD | 29
Controller role change event messages
OFPT_ROLE_STATUS 30
Asynchronous messages
OFPT_TABLE_STATUS | 31
Request forwarding by the switch
OFPT_REQUESTFORWARD 32
OFPT_BUNDLE CONTROL 33
OFPT_BUNDLE_ADD_ MESSAGE 34
Controller status asynchronous message
OFPT_CONTROLLER_STATUS | 35

When data packets are received at a switch, the switch uses an
OFPT_PACKET _IN message (as shown in Figure 5) to manage these data packets.
This message includes OpenFlow header, containing eight fields, namely buffer_id,
total_len, reason, table id, cookie, match, pad, and data. The buffer_id is used to
identify a buffered packet, associated with the previous packet-in message. The
total_len is the full length of the packet. The reason field indicates the context of the
packet-in message. This filed can also contain other messages, such as output to a
controller in apply-actions, invalid TTL. The table_id is ID of the flow table for looking
up. The cookie field contains the cookie of the flow entry, caused the OpenFlow
message to be sent to the controller. The match field is a set of OpenFlow Extensible
Match (OXM) Type Length Values, containing data packet’s header (pipeline) fields
associated with the packet. The pad field is additional padding. This pad is set even if
the data field is empty. The data field is a part of data packet that associates with a
packet-in message such as Ethernet frame.

buffer_id (32bits) |
actions_len (16bits) \
pad (64bits)

actions (TLVSs)

Figure 6 OpenFlow packet-out message format

The OpenFlow packet-out message (OFPT_PACKET_QUT) is illustrated in
Figure 6. The buffer_id and pad fields are the same given in the packet-in message. The
actions_len is the size of action array in bytes. The actions field contains an action list
defining how the packet should be processed by the switch. The field may include an
output port, packet modification, group processing.

The OFPT_FLOW_MOD message (as shown in Figure 7) is used to modify flow
entry in the flow tables. The command field is used to specify the context of this
message i.e., new flow, modify all matching flows, modify entry, delete all matching
flows, delete entry. The idle_timeout and hard_timeout fields indicate how quickly flow

11

entries expire. The priority indicates priority within the specified flow table. The
out_port and out_group are optional fields (more details can be found in OpenFlow
specification [20]).

buffer_id (32bits)

cookie (64bits)

cookie_mask (64bits)

table_id (8bits) | command (8bits) | idle_timeout (16bits)
hard_timeout (16bits) priority (16bits)
buffer_id (32bits)

out_port (32bits)

out_group (32bits)

flags (16bits) | importance (16bits)
match (TLVs)

Figure 7 OpenFlow flow-mod message format

For the IP network, each OpenFlow message is encapsulated and sent over TCP
at the default port no. 6653. It is usually encrypted using Transport Layer Security
(TLS) (as shown in Figure 8).

OpenFlow
TLS

IP
Ethernet

Figure 8 OpenFlow over Internet Protocol

The flow tables of the OpenFlow switch are deployed to operate the incoming
data packets. For example, when data packets arrive at the switch, the switch then
inspects each packet’s header and tries to match it with a flow entry in the flow tables.
If matched, the switch then takes the action of instructions in that flow entry. If the
header of the packet is not matched with any flow entry, this case is called table-miss
event. The packet is then encapsulated into an OpenFlow packet-in message. After that,
the switch sends the packet-in message to the controller to request an action or a new
flow entry that will be stored in the flow tables. The controller responds by sending an
OpenFlow packet-out message and maybe an OpenFlow flow-mod message back to the
switch. Since the controller is software-based, so it can be dynamically programed to
provide manageability.

2.5 Evolution of OpenFlow Specifications

Different versions of OpenFlow specifications are available. The first version was
the OpenFlow version 0.2.0, released in 2008. The most widely deployed specification
is the version 1.0 [20]. This version has used 12 header fields of the Ethernet frame and
IP packets (as shown in Figure 9) coming into the switch. A packet can be matched to
a flow entry in the flow tables by using one or more header fields of the packet. After

12

that, in the OpenFlow 1.1 specification, the OpenFlow switch has contained metadata
and Multiprotocol Label Switching (as shown in Figure 10). This version has supported
several flow tables and a group table. A packet can be changed by one or more flow
tables (pipeline processing). OpenFlow specification 1.1 has also introduced a new
action (called instructions). Previously, an action can be: 1) forwarding the packet, or
2) dropping the packet. However, the instructions, from version 1.1, include also
modifying a packet, and updating an action set. In OpenFlow specification version 1.2,
IPv6 addressing has been added. The OpenFlow specification version 1.3 has then been
released since 2012. This version can control some QoS by adding meter tables. It is
possible to handle the rate of packets through per-flow meters. The major extension for
OpenFlow specification version 1.4 has supported a new set of port properties to add
optical ports to OpenFlow switch. Finally, OpenFlow specification version 1.5 has
introduced egress tables. This tables enable processing to be done in the context of the
output port, instead of the input port as the previous version. Table 3 shows the
summary of OpenFlow specifications.

Ingress port
Ethernet src
Ethernet dst
Ethernet type
VLAN id
VLAN priority
IP src
IP dst
IP proto
IP ToS bits
TCP/UDP src port
TCP/UDP dst port

Figure 9 Match fields of a flow table entry in OpenFlow 1.0

Ingress port
Metadata
Ethernet src
Ethernet dst
Ethernet type
VLAN id
VLAN priority
MPLS label, MPLS EXP traffic class
IP-src
IP dst
IP proto
IP ToS bits
TCP/UDP src port
TCP/UDP dst port

Figure 10 Match fields of a flow table entry in OpenFlow 1.1

13

Table 3 Summary of OpenFlow specifications

Feature OF | OF | OF | OF
10 (11 (12 |13
X

=0
SN
=0
o T

Ethernet: src,dst,type

IPv4: src,dst,proto, ToS

TCP/UDP: src_port, dst_port

Per table, flow, port, queue statistics
MPLS: label, traffic class
OpenFlow Extensible Match (OXM)
IPv6: src,dst,flow label

Per-flow meter & meter band
Optical ports

Egress table

XXX XX

XXX XX [X

XX XX XXX X

XXX XXX XXX [

XXX XXX X[X

2.6 Open Source OpenFlow Controllers

As shown in Table 4, there are various open source OpenFlow controllers, such
as NOX [22], POX [29], Beacon [30], Floodlight [31], OpenDaylight [32], ONOS [33],
Ryu [34], and so on. NOX has been developed by researchers at Stanford University
and Nicira Networks. NOX provides a programming platform for controlling one or
more OpenFlow switches. POX has been extended from NOX, and rewritten in python
to support various platforms. Beacon has been developed in Java by researchers at
Stanford University. Floodlight is an extension from Beacon by Big Switch Networks.
It has been developed in Java to deploy software applications by using REST APIs.
OpenDaylight has been developed in Java by the Linux Foundation (sponsored by
several network industries, such as Cisco, NEC, IBM and so on). Itis an open platform
for customizing and automating scalable networks by focusing on network
programmability. ONOS has been developed as a next-generation SDN solution for
service providers, with a focus on scalability and performance. ONOS has also hosted
by Linux Foundation, and written in Java. The software of this controller has been
implemented as an Apache Karaf OSGi container, allowing interaction through Java
APIs and REST APIs. This controller provides several features and standard protocols,
such as OpenFlow, NETCONF [35], YANG model [36]. Ryu is a component-based
SDN framework, written in" python. Ryu provides various standard protocols for
managing network devices, such as OpenFlow, NETCONF, OF-configand so on.

14

Table 4 List of Open Source OpenFlow Controllers

=4 © °
= =% |z |22 |5 |32 |Ze
= 2 on oq
S g2 £ s £ |0 £ < £ 3
g - 0 3 S
NOX C++ GPL OF1.0 Python, | OF1.0 REST
QTP4 API
POX Python Apache | OF1.0 Python, | OF1.0 REST
QT4 API
Beacon Java BSD OF1.0 Web OF1.0 REST
based API
Floodlight Java Apache | OF1.0, | Web OF1.0,1.3 | REST
1.3 based API
OpenDaylight | Java EPL OF1.0- | Web OF1.0,1.4, |REST
14 based NETCONF, | API
YANG,OF-
Config
ONOS Java Apache | OF1.0- | Web OF1.0, REST
1.5 based | OFL.3, API
NETCONF,
YANG
Ryu Python Apache | OF 1.0- | Ryu OF1.0-1.3, | REST
15 GUI NETCONF, | API
OF-config

2.7 Role of SDN Controllers

As previous mentioned, SDN is a new network paradigm, allowing manageability
and flexibility that traditional networks suffer from. In SDN, intermediate network
devices (switches/routers) is just a forwarding device or a dump-device. The brains of
the network are controllers. Applications at controller act as a strategic control point in
the network. They manage the flow control of several switches/routers.in the network
from the centralized controllers. So, SDN allows any business logics to be intelligently
deployed in the network without depending on or limiting to the vendors of network
devices.

According to the Internet-draft report [37], the goal properties of SDN controllers
are scalability, reliability, programmability, intercommunity, security, and
manageability. An SDN controller interacts with network devices through southbound
interfaces. Several models are interacted, including topology management, route
management, host management, flow-tables management, interface management,
database management, and so on. Topology management is calculated by using the

15

information (e.g., Link Layer Discovery Protocol (LLDP), BGP Link State [38], and so
on), which is reported from the network devices. At the controller, route management
is calculated from the abilities of network devices, such as link cost, bandwidth, and
network information. Host management is a management of all hosts in the network,
which takes functions of MAC and ARP learning. Flow-tables management is
responsible for the basic functions of forwarding/routing storage. Interface
management is a configuration of all ports in the network devices, including dynamic
and static interface configuration. Database management involves in a management of
all tables in the network devices with data synchronization.

From Figure 11 and Figure 12, two hosts (host-1 and host-3) want to
communicate with each other. The controller in the figures has been implemented with
the “learning switch application” for the following tasks:

1) When a data packet (SYN port 80) arrives at the switch, the switch
Inspects the packet’s header, and tries to match it with a flow entry in the
flow tables.

2) If the header of the packet is not matched with any flow entry. The switch
generates OpenFlow packet-in message, including buffer-id (Buffer
ID=100) and other fields. The packet is then encapsulated into the
OpenFlow packet-in message.

3) The switch sends the OpenFlow packet-in message to the controller to
request an action or a new flow.

4) The controller checks OXM fields of the OpenFlow packet-in message
(i.e. data packet SYN port 80), and takes a destination MAC address. It
then looks up a stored information of a MAC-address-switch-port map to
find the destination switch-port, where the destination (host-3) is
connected. The controller then generates an OpenFlow packet-out
message and set its action to deliver the packet to the destination switch-
port.

5) If the destination MAC address cannot be found from the MAC-address-
switch-port map, the controller sets the action of the OpenFlow packet-
out message to flood all ports of the switch.

6) The OpenFlow packet-out message is then sent from the controller back
to the switch.

7). The controller may also send an OpenFlow flow-mod message with the
same action of the packet-out message if it wants to store the action into
the rule table.

16

Controller @N

Packet-IN 1 Packet-OUT Flow-Mod
Buffer ID = 100 1 SWZ4 Buffer ID = 100 Match
W : M utter Buffer ID = 100
SYNﬁSO) i SYN(port 80) Idle Timeout =5

p 1) Hard Timeout=0
1 Action = Forward port 3 Action = Forward port 3
1 Priority=100

OpenFIow
N SW|tch Flow-Entry (h1>h3:80, port 3)

h1 N
SYN(port 80) o eth2| eth3 > ‘
SYN(port 80)

fgf'iN * 5

Host 1 Host 2 Host 3

Figure 11 Example of OpenFlow protocol (Host 1 sends a message to host 3)

Controller ?N

Flow-Mod Packet-OUT . Packet-IN
Match - 1 ffer ID =
L — W Buffer ID = 101 ! W Buffer ID = 101
Idle Timeout =5 SYN ACK 1 N\
Hard Timeout=0 : SYN ACK
Action = Forward port 1 Action = Forward port 1 1
Priority=1000 1
OpenFlow | plow-E h1>h3:80 3
Flow-Entry (h3>h1, port 1) i ow-Entry (h1> , port 3)
N\ ethl
} 4 eth2| eth3 WA

SYN ACK SYN ACK

gN

Host 1 Host 2 Host 3

Figure 12 Example of OpenFlow protocol (Host 3 responses to host 1)

2.8 SDN in the Real World

The SDN revolution was initiated by the development of OpenFlow during 2008-
2009. A lot of developments occur among a group of engineers at Stanford University.
Now (as of July 2018 while writing this report), OpenFlow version 1.5.1 is the latest
version, released in 2015 by Open Network Foundation (ONF)[6].

Many large networking companies have embedded OpenFlow technology into
their products, such as Google and AT&T. In addition, these companies are parts of
ONF and participate in designing OpenFlow. An OpenFlow has been deployed in
many networking companies such as Google, Cornell University, REANZZ, and so on.

17

2.8.1 Cornell University

Cornell University has been running OpenFlow and OpenDaylight in production
since 2014. Director of Computing and Information Science at Cornell’s College of
Engineering, says that [39] “we did not know exactly what the applications of the future
would be, so we decided that we wanted to go with an OpenFlow network so we would
have lots of flexibility.”, and “SDN technology gives the network better performance
and flexibility by allowing traffic flows to be redirected dynamically”.

2.8.2 REANZZ New Zealand

REANNZ is the New Zealand’s own National Research and Education Network
(NREN), providing researchers and scientists with the ultra-fast network. This network
allows researchers to store and share data and collaborate with other researchers in New
Zealand and around the world in real-time. REANNZ’s networks run on an OpenFlow-
based switching, with the goal of providing an open networking environment [40].

2.8.3 Google B4

Google manages one of the largest enterprise networks and cloud deployments in
the world. Engineers with direct experience have point out that OpenFlow is a key
element of the Google architecture. OpenFlow has been used in both inside the Google
data center, and to interconnect data centers, as a Wide Area Network (WAN)
application [26, 41].

2.8.4 SDN Products

A lot of network industries have produced OpenFlow products to provide SDN
deployment such as Cisco, ECI Telecom, Ericsson, Extreme Networks, Fujitsu, H3C,
Hewlett Packard Enterprise, Huawei, Juniper Networks, NEC, Nokia (Alcatel-Lucent),
and so on [6].

2.9 Differentiated Service Code Point (DSCP) of the DS field

In the Internet Protocol (IP), differentiated Services (DiffServ) [42] is a traffic
control architecture, relying on the 8-bit DS field (in place of the outdated Type of
Service (ToS) field [43]) in the IP header. DS field consists of the first six bits for the
Differentiated Services Code Point (DSCP) and the other two bits for Explicit
Congestion Notification (ECN). Due to its six-bit length, DSCP can support up to 64
different classes of traffic. DiffServ routers then decide on per-hop basis how to forward
packets based on their class. First three bits of DSCP indicates IP precedence. These
bits are called Class Selector (CS), prioritizing traffic types by class (CS0 — CS7, lowest
to highest priorities respectively). For our design, DSCP value can be used to classify
different traffic types (as shown in Table 5)

18

Table 5 Commonly used DSCP and IP precedence values

DSCP [41] IP precedence [42]
Value Name Value Description

000 000 (0) | €SO (default) | 000 (0) | Routine, Best Effort
001000 (8) |CS1 001 (1) | Priority
010 000 (16) | CS2 010 (2) Immediate
011000 (24) | CS3 011 (3) Flash (voice or video signaling)
100 000 (32) | CS4 100 (4) | Flash Override
101 000 (40) | CS5 101 (5) Critical (voice streams)
110 000 (48) | CS6 110 (6) Internetwork Control
111 000 (56) | CS7 111 (7) Network Control

2.10 Previous Solutions

According to the OpenFlow specification [15], an OpenFlow switch provides
limited Quality of Service (QoS) through a simple queuing mechanism to manage data
packets. A matched packet can be treated by output queue 1D. Packet scheduling using
queues is not defined by the latest specification (protocol version 0x06), and is switch
dependent. First-In-First-Out (FIFO) queue is commonly used in the OpenFlow switch.
In in-band control network, an OpenFlow message may compete with data packets. In
out-of-band control network, the OpenFlow control messages of delay-sensitive traffic
cannot gain low delay in competing with the OpenFlow control messages of delay-
tolerant traffic. Without considering different prioritization, an OpenFlow messages
may wait, or may be dropped in queue resulting in the increase of transmission delay
of data traffic in acquiring forwarding rule.

Skoldstrom [44] have evaluated resource allocation in OpenFlow-based wide
area networks in both in-band and out-of-band control networks. Their experimental
results have shown that OpenFlow messages may compete with data traffic for network
resources (e.g. bandwidth). This competition could finally cause the controller been
disconnected after suffering from significant latency due to the increase of data traffic.

He et al. [12] have proposed SDN-based control suitably responsive for critical
management applications, named Mazu: taming latency in software-defined networks.
The first technique in Mazu is to avoid CPU processing events due to data plane packet
arrivals by redirecting packets to a fast proxy. This process is tasked with generating
the necessary messages for the controller. The first technique can overcome the inbound
latency. Second, a technique to reduce the outbound latency is as follows: 1) flow
engineering is used to compute paths such that the latency of installing forwarding state
at any switch is minimized; 2) rule offloading is used to compute strategies for
opportunistically offloading portions of forwarding state to be installed at a switch to
other switches downstream. The Mazu techniques have been proposed to bypass the
slow embedded switch CPU by redirecting unmatched packets to a proxy. However,
the proxy in SDN may suffer network congestion itself. In case of a large number of
switches are connected to the same proxy, this situation can cause latency to be

19

increased dramatically. This situation is not mentioned in the approach. In addition,
Russ et al. [28] have pointed that a scale and speed are major problems of single point
connection (like a proxy). Therefore, adding proxy to solve the latency problem may
become unmanageable and unavailable.

In [9], the authors have proposed Quality of Service (QoS) framework using the
SDN technologies and test the framework in failure-conditions. This study shows that
an effectively high QoS can be achieved by prioritization different traffic. In [10], the
authors have proposed queuing and failure recovery functionalities for OpenFlow in in-
band control network. The results of the queuing functionality show that control traffic
can be served with the highest priority and hence, data traffic cannot affect the
communication between the controller and a switch. This study proposes to separate a
queue for control and data traffic, serving the control traffic queue before the data traffic
queue. The queues are provided by OF-Config (OpenFlow Configuration and
Management Protocol) and OVSDB (Open vSwitch Database Management Protocol).
The queues are controlled by Linux traffic control commands (e.g., Reference,
Trafficlabl.1, and Trafficlabl.3 switches). Yet, the proposed solutions in [9, 10] have
not designed to prioritize different types of control messages. The mechanism of this
work also needs vendor specific options to handle queue priority. Moreover, this work
is only designed for the in-band control network, and cannot be deployed for the out-
of-band control network.

Traffic prioritization for OpenFlow has also been standardizing in [8]. This work
is proposed to optimize OpenFlow protocol by appending a priority tag to the
OpenFlow packet-in message and adding the Priority-based Flow Rule Request
Message Processing Mechanism (PFRRMPM) at the switches and controllers. The
PERMPM defines two modules, namely flow rule request sending module and flow
rule request receiving module. Each module contains a service-type-based priority
table to classify packet priorities. For instance, timely services (such as, the video
streaming) possess a higher priority, compared to the background traffic. This solution
can help the data flow with delay sensitivity to acquire the forwarding rule with shorter
waiting delay, when there are excess flow rule request messages in the SDN. However,
by adding priority tag to the OpenFlow packet-in messages, this work would
significantly cause an overheard to the size of the control messages. In contrast, our
work does not have such an overhead since it uses the existing DS field in the standard
IP header of the control messages for priority marking. In comparison to ours, this
work aims to support both in-band and out-of-band control networks as same as our
work. Yet, this work has no detail of how to classify different traffic priorities in their
design. Itis only an initial design, with no prototype. There has been no experiment and
performance evaluation to test their design. Our work has proposed more details for
prioritizing different traffic, and different types of OpenFlow messages. We have also
implemented the prototype of our design. Furthermore, experiments and performance
evaluations have been done to demonstrate the success of our design in the out-of-band
control network. We also expect positive results in the in-band control network.

CHAPTER 3
RESEARCH METHODOLOGY

3.1 Overview of Research Methodology

This thesis aims to propose and evaluate a new design (called a Priority-based
Service Scheduling Policy for OpenFlow) to mitigate the delay problem for high-
priority OpenFlow packet-in messages, based on packet contents or a specific user.

Problem Definition

=t

Review Theories and
Previous solutions

.

Solution Design

<>

Implementation and
Evaluation (Metrics and
Parameters)

AN

Figure 13 Overview of Research Methodology

Figure 13 shows the overview of research methods. For problem definition, delay
in OpenFlow network is focused in this thesis. we will further describe delay problems
and our solution in Chapter 4. Previous solutions are discussed in Chapter 2. In
summary, some solutions support only in-band control network, whereas some
solutions support only out-of-band control network. Although the solution in [8] has
proposed an initial design to fix this problem in both in-band and out-of-band control
networks, but with a rather high overhead for traffic tagging. For implementation and
evaluation, there are three performance evaluation techniques (i.e., analytical model,
network simulation and measurement testbed). We implement a prototype on network
simulation and describe the reasons for choosing it in Section 3.2. The objective of this
thesis is to design a solution for helping an OpenFlow message with shorter delay in
acquiring forwarding rules in SDN. So, we describe delay in SDN and other parameters
that will be used for performance metrics in Section 3.3.

21

3.2 Implementation and Performance Evaluation Techniques

For implementation, we implement a prototype on the ns-3 [13], based on the
OpenFlow module version 1.3 for ns-3 [45]. For performance evaluation,
Puangpronpitag [46] has investigated various of evaluation techniques including
analytical model, network simulation and measurement testbed.

3.2.1 Analytical Model

An analytical model uses a mathematical modeling to evaluate proposed
technique. An effectiveness of this model involves in the estimation and classification
patterns of data. The results are commonly reported in terms of the estimated means
and variances. This model may not be applied to evaluate our proposed method.

3.2.2 Network Simulation and Emulation

Simulation is a widely used tools to evaluate studies, both in academic research
and industrial. It can provide the dynamic behavior of complex networks. There are
several simulation tools (e.g., OMNeT [47], OPNET [48], ns-2 [49], ns-3 [13] and so
on) to provide various of network environment. In general, these tools are based on an
event-based stochastic technique. This technique is a set of full events and time to
compute a network scenario. Each event (called sequence) contains specific time to
process. Network emulation using virtualization technologies to provide realistic
physical links, and analyze network behaviors in a discrete situation.

According to ns-3 website [12], ns-3 is a discrete-event network simulator for
Internet systems, targeted primarily for research and educational usage. The ns-3
project is designed, following to the popular ns-2 simulator. ns-3 is also free software,
licensed under the GNU GPLv2, and is publicly available for research, and
development. The goal of the ns-3 project is to develop a preferred open simulation
environment for networking research. ns-3 supports research on both IP and non-IP
networks. In ns-2, simulation scripts are written-in OTcl script, but simulation scripts
in ns-3 are written in C++. ns-3 provides better support than in ns-2 for the following
items:

Modularity of components,

Scalability of simulations,

Integration of externally developed code and software utilities,
Emulation,

Tracing and statistics,

Validation.

3.2.3 Measurement Testhed

A testbed network consists of specific hardware and software to evaluate an
approach. To make a testbed, the combination of hardware and software is required to
run the experiments. This testbed may be difficult to perform due to unmanageability
and high cost. Puangpronpitag [46] has argued that several parameters in the testbed

22

may be disturbed by unpredictable parameters. So, the experimental results may be
misled.

3.3 Performance Metrics & Parameters

In the standardization, IETF published several RFCs to provide performance
metrics for IP networks (presented in Table 6).

Table 6 Metrics/Parameters of IETF IPPM RFCs

Category IETF IPPM RFCs [50]
Framework 2330
Sampling 2330
3432
Loss 2680
Delay 2679(0One-way)
2681(Round-trip)
3391 (Delay Variation)
Availability 2678

According to Hanemann et al. [51], the authors have summarized from [50],
including the set of elementary metrics to indicate network performance. There are four
main elementary metrics, namely availability, loss & error, delay and throughput.

The availability is considered that how robust the network (i.e., percentage of
time to run without any problem). The loss & error indicate the network congestion
conditions or transmission error, such as radio signal problem. The delay also indicates
the network congestion. The delay is measured either one-way delay (time to transmit
from source until receiving at destination), or round-trip delay (one-way delay from
source to destination plus one-way delay of destination sent acknowledgement back).
There are several delays in computer networks (i.e., processing delay, queuing delay,
transmission delay, propagation delay). In SDN, delay measurements are quite different
from traditional networks. The throughput indicates amount of data that a user can
transfer through network in time unit. Hence, we will use the following performance
metrics to evaluate our approach:

3.3.1 Delay in SDN

Delay is a crucial index of the operation efficiency of SDN networks, especially
for real-time applications (such as Voice over IP). For the event of table-miss in
OpenFlow switches, a data packet will be encapsulated into an OpenFlow packet-in
message. The message is then sent to a controller to acquire forwarding rule. In case of
network congestions, this OpenFlow packet-in message can cause an increase of the
delay. Moreover, in an in-band control network, OpenFlow control messages may wait
in queue and may be dropped due to the competition with data packets. There have been
several studies on the delay in SDN, such as Long et al.[8], Hsiao and Chang [52]. The

23

delay measurement of this work is based on these previous studies. The details are

described as follows.

Controller
£
bof

5!
T,
Q_

! A o
SR AR
POy VS ; S
O) i)
3] ‘% -%
Source |6T1%|]GD1%L|6T2%| %DHU’TEA Receiver
Node ---------» “i---see--» oo » Node

OFswitch OFswitch
S1 S2
Figure 14 Delay measurement

As shown in Figure 14, delay of a data packet can be measured as the summation
of transmission time (T1, T2, T3), and delay in each switch or each hop delay (D1, D2).
T is a transmission time, counting the time from a source node to a switch S1. Dy is
the hop delay, counting the time from switch S1 sending a packet-in message to the
controller until switch S1 receiving a packet-out message (i.e. acquiring forwarding
rules). This time includes processing time at both switch S1 and the controller, queuing
delay at both switch S1 and the controller, and transmission time of the packet-in and
packet-out messages. For the next hop, T2 is a transmission time from switch S1 to
switch S2. The controller can look at the network end-to-end while making instruction
for the switches because it has a full physical and logical view of the network topology.
So, flow rules of switch S2 are known. These rules can be installed automatically [53].
So, the time to acquire forwarding rules will be excluded from D>. For this reason, D>
is obtained by the summation of processing delay in the flow-tables (TCAM packet
matching delay) and queuing delay in switch S2. Experimental results of this work will
be evaluated in term of this delay.

3.3.2 Packet Loss

Packet loss is defined as fraction of the total transmitted packets that have not
been received at the receiver. In this work, packet loss is described as the percentage of
packets lost with respect to packets sent. Packet loss is generally caused by network
congestion. In SDN, packet loss in control links directly affects data traffic. Packet loss
can be obtained as follows:

Number of packet lost
Packet loss = x 100
Number of packet sent

3.3.3 Throughput

Throughput is defined as the rate of successful packets delivered over a
communication channel. Throughput is usually measured in bits per second (bps). In

24

SDN, network congestion in control links can reduce the throughput of both control
and data traffic. Throughput can be obtained as follows:

The number of delivered (bits)
Time taken

Throughput =

3.3.4 Overhead of PMT

According to TCAM operations, the OpenFlow module in ns-3 [45] considers the
concept of virtual TCAM to estimate the average searching time of flow tables. To
provide a more realistic delay, this module uses sophisticated search algorithms for
packet matching such as binary search trees.

The following equation is used to estimate the processing time of flow tables:
Processing time of flow tables = K X log,(n)

where K is the processing time for a single TCAM operation; n is the number of
entries on pipeline flow tables. For our design of PMT, a binary search tree is used for
packet matching in the PMT. So, the following equation is used to estimate the
processing time of PMT:

PMT processing time = K X log,(m)

where K is previously mentioned; m is the number of rules in PMT. Due to the same
processing time of single TCAM operation between flow tables and PMT, the
following equation can be used to estimate the processing time of flow tables after
adding the delay of the PMT:

The processing time flow tables and PMT = K X log,(n x m)

PMT adds some overhead in a switch. So, this overhead will be evaluated in Chapter
5.

3.4 Result Analysis

According to Wang and Xia [54], there are three main components (network
topology, -traffic model and performance metrics) to get the results from network
simulators as shown in Figure 15.

Results

|
| | |

Network Traffic Model Performance
Topology Metrics

Figure 15 Three components of network simulation tool

25

For network topology, a parking-lot topology is used to evaluate our proposed
design. This topology is suitable to evaluate the situation in network unsuitable, such
as the competition among control traffic in an out-of-band control network (further
described in Chapter 5). For traffic model, we define several traffic models to
experiment (further described in Chapter 4). Finally, the performance metrics have
previously been described in Section 3.3.

If an experiment is simulated/measured repeatedly, the result will be different
each time. In Statistics, a confidence interval is a type of estimation, statistically
computed several results. In this work, each simulation will be run 50 times using a
different Random Number Generator (RNG) seeds to get the averaged results, quoted
with error bars with respect to confidence intervals of 95%.

3.5 Testing and Validation

Ns-3 [13] provides tools to allow for both model validation and testing scripts.
These scripts perform self-validation that contains a specific set of input with known
outputs. The simulated results of these scripts can notify the user whether pass or fail.
So, our proposed design will be validated by using these scripts.

CHAPTER 4
DESIGN

4.1 Problems and Solution Design

Applications

App App App' ;\pp APP« App
.:-.,':_‘::'::_.'
SDN Controllers
Master Slave Slave
~‘°"Z i,
SDN Devices
ey | D
(%) (%)

Figure 16 Overview of centralized control in SDN

In the centralized controller environment, there may be several switches under
the same controller, resulting in the bandwidth competition among OpenFlow control
messages in the out-of-band control network (as show in Figure 16). This competition
could increase the transmission delay of data traffic. Without considering different data
traffic types and prioritizing their control traffic properly, some delay sensitive services
may finally fail. Network inefficiencies may then occur in SDN. Hsiao et al. [52] has
previously pointed out that SDN suffers from the transmission delay, and this
transmission delay is a significant issue of transmission quality for network operators.

Furthermore, the situation in the in-band control network would be even worse
than the out-of-band control network. There is an extra competition between OpenFlow
control messages and data packets. Without giving higher priority, the OpenFlow
control messages may be dropped. This should cause the failure of forwarding data
traffic at the end.

Moreover, different customers of a network provider may be under different
Service Level Agreements (SLA). Up to the agreement between the provider and their
customers, different customers may be treated differently in terms of transmission
delay. In this regard, it is necessary to be able to prioritize the control messages of some
specific customers differently according to their SLA.

27

Hence, this thesis proposes a Priority-based Service Scheduling Policy for
OpenFlow (PSO). The purpose of PSO is to give a higher priority for control traffic in
the in-band control network. Furthermore, PSO provides different priorities for
OpenFlow control messages, based on contents/services (data traffic types) and/or
customers (according to their SLA) for both in-band and out-of-band control networks.

4.2 Design of Priority-based Service Scheduling Policy for OpenFlow (PSO)

SDN Control Logic

P ’| SDN Forwarding Rules |<- ————— SDN Protocol
’ T T
g | | .

'1] | !]
| Match ! H | |
: v
SDN Interface

i3

To central control logic

1
Outgoing
Port D

A
Ethernet
Packets \

To destination

1
Outgoing
Port C

Incoming Outgoing
Port Port B

VLAN

VLAN

STP

STP

STP
\ VLAN

Unmatched
Config

Figure 17 SDN-enabled Ethernet switch
Source: [55]

According to the SDN-enable Ethernet switch (as shown in Figure 17), Benjamin
et al. [55] have proposed to separate between outgoing ports and controller ports (SDN
interfaces). Unmatched packets are sent from the switch to the controller via the SDN
interface, while matched packets are forwarded to the outgoing ports according to the
action, specified in the flow tables. We propose a design for the in-band control network
as follows. For any OpenFlow switches, which are not connected to the controller, they
will be connected to the next switch via an SDN interface. So, the unmatched packets
will be forwarded to the next hop’s SDN interface until reaching the controller. For our
design, this interface will be used to manage both OpenFlow messages and data packets.

In general, there is no queuing functionality, proposed in the OpenFlow protocol
[15]. All messages are served equally. So, we propose Priority-based Scheduling Policy
for OpenFlow (PSO) to provide a queuing mechanism. This queuing mechanism
automatically prioritizes OpenFlow messages serving in queues before data traffic.

4.2.1 PSO Modules

Figure 18a) shows the architecture of traditional OpenFlow switches. Generally,
an OpenFlow switch looks up all incoming packets from an IN_PORT queue to match
with its flow tables. The incoming packets are then served at an OUT_PORT queue, by
taking actions according to the rule in the matched flow entry. In general, queue
management is FIFO (First In First Out) with a drop-tailed algorithm. All packets are
treated equally. According to our PSO design (illustrated in Figure 18b), PSO modules
are embedded into both OpenFlow switches (PSO switch module) and controllers (PSO

28

controller module) respectively. These modules provide a special queuing mechanism
to automatically prioritize OpenFlow messages and data traffic.

Data
Flow
-->

Data
Flow
S

OpenFlow Controller

OF messages

A

OF messages
Y

p
OpenFlow Switch

Switch's CPU

Unmatched Flow

A

Y

Flow Rule

IN_PORT}

- >

Flow Table ->»

OUT_QUEUE

OUT_PORT

a) Traditional OpenFlow Switch

OpenFlow Controller

PSO Controller Module

OF messagesi T OF messages

s
OpenFlow Switch

Switch's CPU

L.
>

Unmatched Flow

A

Y

Flow Rule

PSO Switch
Module

SDN Interface

IN_PORT}

Flow Table |->»

OUT_QUEUE

OUT_PORT

~

b) OpenFlow Switch with PSO

Figure 18 Traditional OpenFlow Switch vs. OpenFlow switch with PSO

29

Controller

Source oA TTTTTommmmmmemmemees Receiver

Node Node

O 20

OF-switch 1 OF-switch2 OF-switch 3

a) out-of-band control network

Controller

Source ' Receiver
Node Node

O et 10

OF-switch 1 OF-switch 2 OF-switch 3

b) in-band control network

Figure 19 SDN interfaces

Instead of FIFO queue (as mentioned in Chapter 2), a PSO switch module
provides special queue management on SDN interfaces of the OpenFlow switch. For
the out-of-band control network, the SDN interface (or an SDN port) of an OpenFlow
switch is a specific port of that switch, directly connecting to the OpenFlow controller
[55]. As shown in Figure 19a, port-1 of the OF-switch 1, port-1 of the OF-switch 2, and
port-1 of OF-switch 3 are SDN interfaces. For the in-band control network, some
specific ports on each switch are deployed to pass OpenFlow control messages to the
controller. We also call them SDN interfaces. Some of these SDN interfaces may
directly connect to the controller, for example, port-1 of the OF-switch 1 (as shown in
Figure 19b). Otherwise, some SDN interfaces on the in-band control network may
indirectly connect to the controller via the other switches. For example, port-2 of the
OF-switch 1, port-2 and 3 of the OF-switch 2, and port-2 of OF-switch 3 are SDN
interfaces (as shown in Figure 19b). As previously mentioned, these SDN interfaces in
the in-band network could suffer the delay due to the competition between OpenFlow
control messages and data packets transmitting over the same interface. Our PSO switch
module will mitigate this problem by providing special queue management on these
interfaces to prioritize OpenFlow messages over data packets.

At the controller, a PSO controller module will provide special queue
management for all interfaces to prioritize OpenFlow messages.

30

PSO Module A

Traffic Classfier Multiple Queues Packet
Scheduler

InternalQueue_0
[: S
Data Flow IntenalQueue_1 l i Data Flow
— Policy Map : (EF EE—
Table .
InternalQueue_n

Figure 20 The components of PSO modules

Y

Both PSO modules consist of a traffic classifier, multiple queues, and a packet
scheduler (as illustrated in Figure 20). The traffic classifier differentiates packets by
using a Policy Map Table (PMT). The multiple queues are internal queues for different
priority traffic. The packet scheduler is a packet prioritization scheduling mechanism.
The details of the prioritization will be further discussed in next section. The PSO
controller module is designed to follow the prioritization set by the PSO switch module.
It has a queuing mechanism corresponding to the PSO switch module.

4.2.2 Traffic Classifier

For any traffic arriving at an SDN interface, a traffic classifier will differentiate
traffic according to a set of predefined rules in a Policy Map Table (PMT). The rules
must be set by a network administrator at the controller. Otherwise, the traffic will be
treated equally. The PMT will then be copied to all OpenFlow switches in the network
using OFPT_SET_CONFIG, which is an OpenFlow control message for switch
configuration. Each rule contains traffic type, match fields, and action (as shown in
Figure 21. The traffic classifier will match the arriving traffic with traffic type and
match fields, then follows the action of the matched record.

Traffic type Match fields Action

Figure 21 Policy Map Table (PMT)

31

Table 7 Traffic types

Traffic type no. Traffic type description

1 OpenFlow configuration messages, and OpenFlow
symmetric messages

2 OpenFlow packet-in message, OpenFlow packet-out
messages, and other OpenFlow control command
messages

3 Other OpenFlow messages

4 data packets

traffic type is a field to specify different types of traffic, as shown in

32

Table 7. In this work, we predefine four traffic types that should be treated with
different priorities accordingly. The first type includes OpenFlow configuration
messages (e.g., OFPT_SET_CONFIG) and OpenFlow symmetric messages (e.g.,
OFPT_ECHO_REQUEST, OFPT_ECHQO_REPLY). The second type includes
OFPT_PACKET_IN, OFPT_PACKET_OUT messages and other control command
messages. The third type includes other OpenFlow control messages, such as
OFPT_TABLE_STATUS. Finally, the forth type includes data packets. In the in-band
control network, the data packets may share the same link with OpenFlow control
messages. So, we give OpenFlow control messages higher priorities than data packets.
Among the OpenFlow control messages, we give three different priorities as shown in
the

33

Table 7. OpenFlow configuration messages are given the highest priority to
ensure that any configurations by network administrators work out on time. Packet-in
messages (OFPT_PACKET_IN), packet-out messages (OFPT_PACKET_OUT) and
other control command messages are given a higher priority than other OpenFlow
control messages since they carry important instructions between the controller and the
OpenFlow switches. For the details of the types of OpenFlow control messages, they
can be found from [15]. These predefined traffic types and priorities are also flexible,
and may be specified differently by network administrators for different organizations.

match fields is exactly the same as match fields of flow tables, which details are
given in the OpenFlow specification [20]. They contain several header fields to match
against the header of data packets. The match fields can help specify application
services (for example, protocol=TCP port=80 is specified “http” service). These match
fields may also help specify the customers (such as, by looking at a specific source or
destination IP addresses).

action contains an action defining how the traffic should be treated by the packet
scheduler. action may be “setting DSCP values”, or “setting output queue ID”.

34

Example-1: In an out-of-band control network, a PMT is defined as follows:

Rule #1: traffic_type=1, action=dscp:CS7
Rule #2: traffic_type=2, ip_proto=17, udp_dst=20000, action=dscp:CS6
Rule #3: traffic_type=2, action=dscp:CS5
Rule #4: traffic_type=3, action=dscp:CS4

From example-1,a PMT contains four rules. Rule #1 sets DSCP header of packets
to CS7 for all OpenFlow configuration and OpenFlow symmetric messages. This is to
ensure that any configuration commands by network administrators should get the
highest priority. Rule #2 gives the second priority to OpenFlow packet-in/packet-out
messages of real-time services (UDP port 20000) by setting their DSCP header to CS6.
Rule #3 gives the third priority to OpenFlow packet-in/packet-out message of other
services by setting their DSCP header to CS5. The last rule (Rule #4) gives the lowest
priority to other OpenFlow messages. In summary, example-1 differentiates traffic by
looking at its traffic types, and its services (using match-fields), and then marks its
priority by setting DSCP header. These DSCP values will be later considered by a
packet scheduler to handle the traffic according to its priority (such as using Weighted
Fair Queue (WFQ)).

Example-2: In an out-of-band control network, a PMT is defined as follows:

Rule #1: traffic_type=1, action=queue_id:0
Rule #2: traffic_type=2, ipv4_dst=202.28.34.1/26, action=queue_id:1
Rule #3: traffic_type=2, ipv4_src=202.28.34.1/26, action=queue_id:1
Rule #4: traffic_type=2, action=queue id:2
Rule #5: traffic_type=3, action=queue_id:3

From example-2, a PMT contains five rules as follows. Rule #1 is to set
queue_id=0 (the highest priority queue) for all OpenFlow configuration and symmetric
messages. This is to give the highest priority to configuration commands from network
administrators. Rule #2 and Rule #3 are to set queue_id=1 (the second highest priority
queue) for OpenFlow packet-in/packet-out messages of a specific customer (source or
destination IP address=202.28.34.1) since this customer may have a special agreement
with the network provider. Rule #4 is to set queue_id=2 (the third highest priority
queue) for OpenFlow packet-in/packet-out messages of all other customers. Rule #5 is
to put all other OpenFlow messages into queue ' id=3 (the lowest priority queue). The
packet scheduler of this case manages output queue using Priority Queue.

Example-3: In an.in-band control network, a PMT is defined as follows.

Rule #1: traffic_type=1, action=dscp:CS7
Rule #2: traffic_type=2, action=dscp:CS6
Rule #3: traffic_type=3, action=dscp:CS5
Rule #4: traffic_type=4, action=dscp:copy

In this example, there are both OpenFlow control messages and data packets,
competing on the same connection due to an in-band control network. Rule #1 will set
DSCP header of packets to CS7 for all OpenFlow configuration and symmetric
messages. This is to give the highest priority to configuration commands by network

35

administrators. Rule #2 gives the second priority to OpenFlow packet-in/packet-out
messages, and other OpenFlow control command messages, by setting their DSCP
headers to CS6. Rule#3 gives the third priority to other OpenFlow messages, by setting
their DSCP headers to CS5. Finally, Rule#4 gives the lowest priority to data packets,
and set their DSCP headers to be equal to the DSCP value inside the data packets. In
this case, DSCP of the data packets may be previously set to give different priorities.
These DSCP values of data packets should be defined less than CS5. In the other case,
DSCP of the data packets may not be set; thus, all data packets are treated equally.
These DSCP: values of OpenFlow control messages and data packets will be then
considered by a packet scheduler to schedule the traffic according to their priorities
(such as using WFQ).

Example-4: In an in-band control network, a PMT is defined as follows.

Rule #1: traffic_type=1, action=dscp:CS7
Rule #2: traffic_type=2, ip_proto=17, udp_dst=20000, action=dscp:CS6
Rule #3: traffic_type=2, action=dscp:CS5
Rule #4: traffic_type=3, action=dscp:CS4
Rule #5: traffic_type=4, action=dscp:copy

From example-4, a PMT contains five rules in an in-band control network. Rule
#1 is the same as the one given in the example-3. Rule #2 gives the second priority to
OpenFlow packet-in/packet-out messages of real-time services (UDP port 20000) by
setting their DSCP header to CS6. Rule #3 gives the third priority to OpenFlow packet-
in/packet-out message of other services by setting their DSCP header to CS5. Rule #4
gives a lower priority (DSCP=CS4) than Rule #3 to other OpenFlow messages. The last
rule (Rule #5) gives the lowest priority to data packets, and set their DSCP headers to
be equal to the DSCP value inside the data packets. In this case, DSCP of the data
packets may be previously set to give different priorities. These DSCP values of data
packets should be defined less than CS4. In the other case, DSCP of the data packets
may not be set; thus, all data packets are treated equally. These DSCP values of
OpenFlow control messages and data packets will be then considered by a packet
scheduler to schedule the traffic according to their priorities (such as using WFQ).

Example-5: In an in-band control network, a PMT is defined as follows.

Rule #1: traffic_type=1, action=queue_id:0
Rule #2: traffic_type=2, ip_proto=6, ipv4_dst=202.28.34.1/26, action=queue_id:1
Rule #3: traffic_type=2, ip_proto=6, ipv4_src=202.28.34.1/26, action=queue_id:1
Rule #4: traffic_type=2, action=queue_id:2
Rule #5: traffic_type=3, action=queue_id:3
Rule #6: traffic_type=4, action=queue_id:4

From example-5, a PMT contains six rules-in an in-band control network. Rule
#1 is to set queue_id=0 (the highest priority queue) for all OpenFlow configuration and
symmetric messages. Rule #2 and Rule #3 give the second priority to OpenFlow packet-
in/packet-out messages to a specific customer (source or destination IP
address=202.28.34.1). This rule allows a specific customer to have a special agreement
with the network provider. Rule #4 is to set queue_id=2 (the third priority queue) for
OpenFlow packet-in/packet-out messages of all other customers. Rule #5 is to set

36

queue_id=3 (the fourth priority queue) to all other OpenFlow messages. The last rule
(Rule #6) is to put all data packets into queue_id=4 (the lowest priority queue). The
packet scheduler of this case should manage output queue using Priority Queue.

4.2.3 Queue and Packet Scheduler

Multiple queues and a packet scheduler are last two components of PSO modules.
Instead of FIFO drop-tail queuing, PSO modules provide a queuing mechanism that can
prioritize different traffic. Weighted Fair Queue (WFQ) or Priority Queues (PQ) or min
rate [15] or other suitable queues can be deployed for this purpose. The multiple queues
are one or more internal queues, attached to a specific port (an SDN interface). These
internal queues are used to schedule out packets from the SDN interface.

After passing through the traffic classifier, packets will be differentiated
according to the rules in PMT. After that, the DSCP values of the packets may be set
(marked), or a queue ID may be specified. For the first case, the packet scheduler will
schedule the packets according to the DSCP values and scheduling mechanisms
(defined by the network administrator). For the second case, the packet scheduler will
map the specified queue ID directly to a specific internal queue.

For example, the traffic classifier may specify traffic priorities by marking DSCP
values of the IP header. These DSCP values can provide up to 64 traffic categories
without an extra-overhead. The traffic scheduler can then use WFQ to handle different
traffic priorities. In the other way, the traffic classifier may specify queue ID, and the
packet scheduler then uses PQ or min rate for different traffic types.

4.2.4 Configuration of Policy Map Table

In general, a controller can set or query configuration parameters in an OpenFlow
switch using the OpenFlow configuration messages. In this work, our PMT is defined
by a network administrator at the controller, and distributed to OpenFlow switches
using configuration messages or suitable configuration protocol (i.e., OF-Config),
during the connection setup.. The controller and switches then have the same PMT. The
configuration steps are as follows:

1) The administrator configures the controller paths for all switches.

2) The administrator creates rules in PMT according to the organization
policy at the controller.

3) The controller sends and updates PMT to all switches by using set
configuration messages.

4) The administrator can' check the PMT of any switch by using get
configuration messages.

CHAPTER 5
PERFORMANCE EVALUATION

5.1 Network Simulation Scenarios

- == Control link (100 Mpbs)
| — Data link (200 Mbps)

oGl
Source CL-17 Sink '
Node !

\
OF—1[OF 2

Receiver
Node

Cross Traffic
Source

Figure 22 Network Scenario

The performance study will be conducted using the ns-3 [12]. The OpenFlow
module version 1.3 for ns-3 is based on [45]. All nodes (source and receiver nodes,
cross traffic nodes) implement first-in-first-out scheduling and drop-tail queuing.
Network simulation scenario is shown in Figure 22. Out-of-band network will be
evaluated. Each link of data traffic has a capacity of 200 Mbps. Each link of control
traffic has a capacity of 100 Mbps. A specific data traffic is set to 1000 Kbps, sent from
a source node to a receiver node. To make the competition among OpenFlow messages,
switch OF-1 has cross traffic. Cross-traffic nodes generate several data flows and send
them via switch OF-1 to the sink node. In this case, switch OF-1 will generate
OpenFlow packet-in messages (associated with the data flows), which increase a load
on CL-1.

Since the cross-traffic has increased, several OpenFlow packet-in messages are
sent to the controller.-In this case, a load on a control link (CL-1) (as shown in Figure
22) is then increased. So, we define this load on CL-1as Normalized Load (NL), and
NL can be obtained as follows:

Data rate (bps
VL (bps)

" Link capacity (bps)

38

5.1.1 Experiment 1: a PMT for an out-of-band control network to give a priority for a
specific service

For experiment 1, a PMT is defined as shown in the Example-1 (as described in
Chapter 4). This PMT is to provide highest priority to OpenFlow messages of a specific
data traffic. In this experiment, a PMT contains four rules. This is to give that any
configuration commands by network administrators and OpenFlow packet-in/packet-
out messages of real-time services (UDP port 20000) should get the higher priority than
other traffic. The objective of this experiment is to test how the increase in load on a
control link (CL-1) impacts to data traffic, and to test the PSO in terms of throughput
and delay of a specific data traffic (high priority traffic)

5.1.2 Experiment 2: a PMT for an out-of-band control network to give a priority for a
specific user/customer

For experiment 2, a PMT is defined as shown in the Example-2 (as described in
Chapter 4). This PMT is to provide highest priority to OpenFlow messages of a specific
user/customer. The objective of this experiment is to test how the increase in load on a
control link (CL-1) impacts to data traffic, and to test the PSQ in terms of throughput
and delay of a specific user/customer traffic.

5.2 Simulation Results

To report the results, each simulation will be run 50 times to get the average
results, quoted with error bars with respect to confidence intervals of 95%.

5.2.1 Experiment-1: a PMT for an out-of-band control network to give a priority for a
specific service

6
5 4 OpenFlow
TF OpenFlow with PSO

4
3
2
1
o

Loss (%)

B L A3 LA 00—

0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
Normalized Load (NL) on CL-1
a)

& OpenFlow
T+ OpenFlow with PSO

B DN RO
=R-N-N-R-N-]

Delay (ms)
=}

oW
ER-R=]

0 A= B 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Load (NL) on CL-1
b)

Figure 23 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)
Packet loss, b) Delay

39

An average of 1000 Kbps high-priority & OpenFlow
traffic sent from source to destination i+ OpenFlow with PSO

800

600 The dropped high-priority traffic
400

200

Throughput (Kbps)

0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Normalized Load (NL) on CL-1
a)

100 4 OpenFlow
©+ OpenFlow with PSO

Delay (ms)

An increasing delay of high-priority traffic

A
0
0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Load (NL) on CL-1
b)

Figure 24 Impact on a high priority data traffic: (a) Throughput, (b) Delay

Figure 23 a) shows packet loss of OpenFlow packet-in messages and OpenFlow
packet-out messages of high priority data traffic, comparing between OpenFlow with
PSO and traditional OpenFlow. Figure 23 b) shows the hop delay in switch OF-1 of
high priority data traffic, comparing between OpenFlow with PSO and traditional
OpenFlow.

Under a low and medium NL (NL < 0.8) over CL-1, the results have shown low
OpenFlow packet loss (0%) and low delay (2.2 £ 0.6 ms) of both OpenFlow with PSO
and traditional OpenFlow. However, at a high load (NL > 0.8), the congestion cause a
significantly high packet loss (5 £ 1.4 %) in traditional OpenFlow. In this case, as the
load increases, a switch drops more OpenFlow packet-in messages. After dropping, a
switch has to retransmit these messages after their timeouts. This finally increases hop
delay in switch OF-1 (83 + 2.7 ms). Yet, even with a high load (NL > 0.8), OpenFlow
with PSO provides a lower OpenFlow packet loss, and a lower hop delay (22 + 2 ms)
of switch OF-1, as shown in Figure 23 b).

Figure 24 shows throughput and delay of a high priority data traffic by comparing
between OpenFlow with PSO and traditional OpenFlow. In traditional OpenFlow, at a
high load (NL-> 0.8), some buffered high priority packets are then dropped after their
timeouts because the OpenFlow control messages at CL-1 are dropped. So, the
throughput is reduced to 887 £ 52 Kbps, and the delay of a high priority data traffic is
increased to 103 + 5 ms. However, in.the OpenFlow with PSO even at a high load (NL
> 0.8), a higher throughput (992 + 6 Kbps) of the specific data traffic can be provided.
The PSO can also provide a low delay (27.6 = 2.8 ms) in comparison to the traditional
OpenFlow.

So, our PSO can help the data flow with high priority to acquire forwarding rules
with lower delay under network congestion at the control link. In case of the congestion

40

at the control link, traditional OpenFlow would cause a severe problem to the delay
sensitive services such as for VVoice over IP.

5.2.2 Experiment-2: a PMT for an out-of-band control network to give a priority for a
specific user/customer

‘ -4 OpenFlow
‘ T OpenFlow with PSO

O

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Load (NL) on CL-1
a)

Loss (%)

6
5
4
3
2
1
0

80 4 OpenFlow
70 || o OpenFlow with PSO

Delay (ms)
8

01 0.2 0.3 0.4 0.5 0.6 Q.7 0.8 0.9 1
Normalized Load (NL) on CL-1
b)

Figure 25 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)
Packet loss, b) Delay

Figure 25 a) shows packet loss of OpenFlow packet-in messages and OpenFlow
packet-out messages of high priority data traffic, comparing between our design
OpenFlow and traditional OpenFlow. Figure 25 b) shows the hop delay in switch OF-
1 of high priority data traffic, comparing between our design OpenFlow and traditional
OpenFlow.

Under a low and medium load (NL < 0.8) over CL-1, the results have shown low
OpenFlow packet loss (0%) and low delay (4.2 + 0.8 ms) of both our design and
traditional OpenFlow. However, at a high load (NL > 0.8), the congestion causes a
significantly high packet loss rate (2.6 £ 1 %) in traditional OpenFlow. In this case, as
the load increases, a switch drops more OpenFlow packet-in messages. After dropping,
a switch has to retransmit these messages after their timeouts. This finally increases hop
delay in switch OF-1 (98 £ 3.2 ms), as shown in Figure 25 a). Yet, even with a high
load (NL > 0.8), our design provides a lower OpenFlow packet loss, and a lower hop
delay (27 + 2.3 ms)-of switch OF-1, as shown in-Figure 25 b).

41

An average of 1000 Kbps high-priority 4 OpenFlow
traffic sent from source to destination T OpenFlow with PSO
~
1000 & O— D— U_‘*ﬁ
800 e
600 The dropped high-priority traffic of

a specific customer
400 P

Throughput (Kbps)

200

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Load (NL) on CL-1

a)
100 # OpenFlow
1+ OpenFlow with PSO

80

&0 An increasing delay of high-priority traffic of

a specific customer

Delay (ms)

40

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Load (NL) on CL-1
b)

Figure 26 Impact on a high priority data traffic: a) Throughput, b) Delay

Figure 26 a) shows throughput and delay of data traffic of a specific customer by
comparing between our design and traditional OpenFlow. In traditional OpenFlow, at
a high load (NL > 0.8), some buffered high priority packets are then dropped after their
timeouts because the OpenFlow control messages at CL-1 are dropped. So, the
throughput is reduced to 874 + 47 Kbps, and the delay of a high priority data traffic is
increased to 108 + 4 ms. However, in our design even at a high load (NL > 0.8), a higher
throughput (1000 Kbps) of the specific customer traffic can be provided. Our design
can also provide a low delay (33 + 2 ms) in comparison to the traditional OpenFlow (as
shown in Figure 26 b).

So, our design can help the data flow with high priority to acquire forwarding
rules with lower delay under network congestion at the control link. In case of the
congestion at the control link, traditional OpenFlow would cause a severe problem to
some privilege user/customer.

5.3 Discussion of In-band Control Network

For the in-band control network, we have designed PSO to prioritize OpenFlow
messages over data traffic. So, this mechanism would give positive results. However,
OpenFlow mechanisms for in-band control network are still at their early stage. There
are quite a few open-research issues to complete the design, such as bootstrapping
mechanisms (to establish a communication path between switches and a controller),
topology discovery mechanisms (to find the most suitable path from a switch to the
controller), control path recovery mechanisms (to recover from the control path failure).
Some studies (such as [56-58]) have initially investigated on the issues but still
unsolved. The previous experiments over the in-band control networks, are only
specific to each design. Therefore, we have not yet experimented on our PSO over the

42

in-band control network. The future work would be proposing several mechanisms,
required for in-band networks. However, it is not in the scope of this thesis.

5.4 Analysis of PMT Overhead

For our PSO, the PMT adds some overhead in a switch. However, this overhead
is applicable for all situations (in examples 1-5 Chapter 4). For example, the maximum
rule of these examples is six rules (m=6). According to Chavas [45], K is to set 20 ps.
If flow tables have the minimum rule (n=1), the overhead of the flow tables plus PMT
could be obtained: 20 X log,(1 x 6) =~ 52 us. Figure 27 shows the values of TCAM
delay for more rules in PMT (including 64 rules), and more flow entries in the flow
tables. Summarily, the overall TCAM-delay overhead is acceptable (less than 0.3 ms).

O Without PMT 4 PMT 5 rules ~~ PMT 6 rules
1+ PMT 64 rules (maximum)

TCAM delay (ms)

1 50 100 150 200 250 300 350 400 450 500

Number of flow entries

Figure 27 TCAM processing time

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Summary and Discussion

Internet technologies have been deployed to enable programmability. Therefore,
active networks and programmable ‘networks were proposed to allow their users to
program the intermediate network devices. Recently, SDN is a new network paradigm
that has been introduced for both active and programmable networks. SDN has been
designed to separate control plane from data plane. Controllers are located in the control
plane, whereas network devices (such as switch/router) are located in the data plane.
OpenFlow has been deployed as a SDN protocol to communicate between both planes.
The decoupling of the control and data planes is related to the manageability in the
network. In particular, when the first data packet of a new flow arrives at a switch, the
switch then inspects each packet’s header and tries to match it with a flow entry in the
flow tables. If the header of the packet is not matched with any flow entry, the switch
generates an OpenFlow packet-in message and sent it to the controller to acquire a
forwarding rule. This may increase network load, and make the control plane a potential
bottleneck. In addition, since the flow tables of switches are configured in real time by
an external device, there is the extra delay introduced by its flow setup process.

In this thesis, we have investigated into the aforementioned delay problem and
proposed a design of Priority-based Scheduling policy for OpenFlow (PSO) as the
solution. PSO modules are designed to be embedded in both OpenFlow switches and
controllers. The purposes of PSO are: 1) to give the priority to control traffic in
competing with data traffic for the in-band control network, 2) to provide high-priority
OpenFlow packet-in messages of a specific traffic (such as real-time delay-sensitive
audio/video) or specific users (such as users with special Service Level Agreement) for
both in-band and out-of-band control networks. According to our design, PSO can be
controlled by network administrators by putting the priority policies into the Policy
Mapped Table (PMT). Our design has also proposed several PMT samples to prioritize
different traffic, users, control messages. To mark different traffic priority, our traffic
classifier module uses DS field [39] without adding any extra overhead to the traffic.

To experiment and evaluate our solution, this thesis has selected network
simulation as a research method. The prototype of PSO modules have been
implemented into the simulator by extending OpenFlow module version 1.3 for ns-3
[53]. Our experimental results in out-of-band control networks have shown that our
PSO can help the delay-sensitive get forward in time even under network congestion in
control links (with normalized load > 0.8), while the traditional OpenFlow switch fails
in the same situation. In comparison with other previous solutions, our solution have
less overhead, and support both in-band and out-of-band networks.

44

For in-band control networks, we also expect the same results. Yet, the design of
several mechanisms in-band control network are still an open-research issue. So, it is
put as a future.

6.2 Thesis Achievement

This work has evaluated the OpenFlow protocol, and proposed a new design of
OpenFlow protocol successfully. The major contribution of this work can describe as
follows:

1) This work has established a set of key performance evaluation criteria and
performance metrics/parameters to evaluate the proposed solution.

2) A performance study by network simulation (ns-3) of traditional OpenFlow
have been successfully completed. At a high load on control links,
traditional OpenFlow causes delay problems to delay sensitive services and
privilege user/customer.

3) The ideas learnt from the performance study of traditional OpenFlow have
been deployed to propose a novel design of an innovative OpenFlow to
differentiate traffic priorities.

4) A performance comparison between our new design and traditional
OpenFlow has been done, and demonstrated a few advantages of our
design. Under network congestion on control link, high priority traffic can
be served in time by Priority Queue together with our mechanisms.

6.3 Future Work

Although several achievements have been claimed in this thesis, there would be
also some weaknesses. Several ideas have occurred during work on this thesis. The
following aspects discuss some restrictions of this thesis and the issues that would be
investigated as future work.

6.3.1 Implementation and Complex Simulation Scenarios

In this work, network simulation scenarios are rather simple. However, these
simple scenarios are useful to evaluate the situation in network congestion in SDN.
There is no current simulation technology that can simulate networks of real size. Even
if the'model could be scaled, suitable tools to reach effectively the results are still
difficult to find. So, the issues of simulation scale are remaining one of the simulation
iSsues.

Module of OpenFlow version 1.3 for ns-3 has been implemented by Chaven et
al. [45]. This module allows ns-3 to simulate OpenFlow networks, considering main
features of this version. Some features are not yet support:

1) OpenFlow channel encryption: Switches and controllers may communicate
through TLS connections. Since there is no TLS support on ns-3, the
OpenFlow channel is implemented over TCP connection.

45

2) In-band control network: For in-band control network, controllers can
manage switches remotely over a shared network link. However, due to the
limitation of ns-3 modules and the uncompleted design of in-band
mechanisms, this thesis has not yet experimented to evaluate in the in-band
control environment. So, one of the future direction could be proposing the
mechanisms for the in-band networks on the open-research issues, and
experimenting on them.

6.3.2 Prototyping and Measurement on Testbed

The performance evaluation ‘in this thesis has relied only on the network
simulation. The network simulation is accepted by the research community and
industries. The network simulation should be correctly taken as the real world. Building
and prototyping a testbed are complex and expensive. However, after simulation,
prototyping and testing on the real test-bed would be a good idea. So, the next step
could be implementing and evaluating PSO on the real test-bed using a tool, such as
GENI testbed [59].

REFERENCES

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

REFERENCES

B. Theophilus and A. Aditya, "Unraveling the Complexity of Network
Management,” in USENIX Symposium on Networked Systems Design and
Implementation, pp. 335-348.

A. Lara, A. Kolasani, and B. Ramamurthy, "Network Innovation using
OpenFlow: A Survey," IEEE Communications Surveys Tutorials, vol. 16, pp.
493-512, First Quarter 2014.

T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, "The
SoftRouter Architecture,” in ACM SIGCOMM Workshop on HOTNETS, 2004.
A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, et al.,
"Forwarding and Control Element Separation (ForCES) Protocol
Specification,” IETF RFC-5810, March 2010.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, et al., "OpenFlow: Enabling Innovation in Campus Networks,"
SIGCOMM Compututer Communication Review, vol. 38, pp. 69—74, March
2008.

ONF. (July 2017). ONF: Open Networking Foundation. Available:
https://www.opennetworking.org

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, "Software-Defined Networking: A
Comprehensive Survey," Proceedings of the IEEE, vol. 103, pp. 14-76,
January 2015.

X. Long, W. Wang, X. Gong, X. Que, and Q. Qi, "Priority based Flow Rule
Request Message Processing Mechanism in the OpenFlow Switch," IETF
Internet-Draft, October 2016.

S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves, R. Figueiredo, et
al., "Implementing Quality of Service for the Software Defined Networking
Enabled Future Internet," in Third European Workshop on Software Defined
Networks, Budapest, 2014, pp. 49-54.

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, "In-band
control, queuing, and failure recovery functionalities for openflow,” IEEE
Network, vol. 30, pp. 106-112, February 2016.

K. He, J. Khalid, S. Das, A. Gember-Jacobson, C. Prakash, A. Akella, et al.,
"Latency in Software Defined Networks: Measurements and Mitigation
Techniques,"™ ACM SIGMETRICS Performance Evaluation Review, vol. 43,
pp. 435-436, June 2015.

K. He, J. Khalid, S. Das, A. Akella, L. Li, and M. Thottan, "Mazu: Taming
Latency in Software Defined Networks," University of Wisconsin-Madison
Technical Report, 2014.

nsnam.org. (July 2017). ns-3. Available: https://www.nsnam.org

E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O.
Koufopavlou, "Software-Defined Networking (SDN): Layer and Architecture
Terminology,” IETF RFC-7426, January 2015.

Open Networking Foundation. (March 2015). OpenFlow Switch Specification
version 1.5.1 (Protocol version 0x06). Available:

http://www.opennetworking.org/
http://www.nsnam.org/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

48

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.1.pdf

A. Morreale and M. Anderson, Software Defined Networking: Design and
Deployment: CRC Press, 2014.

F. Hu, Q. Hao, and K. Bao, "A Survey on Software-Defined Network and
OpenFlow: From Concept to Implementation,” IEEE Communications Surveys
Tutorials, vol. 16, pp. 2181-2206, Fourth Quarter 2014.

M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. Merwe,
"Design and implementation of a routing control platform," in Conference on
Networked Systems Design & Implementation, 2005, pp. 15-28.

D. L. Tennenhouse and D. J. Wetherall, "Towards an active network
architecture,” in DARPA Active Networks Conference and Exposition, New
York, NY, USA, 2002, pp. 2-15.

W. Braun and M. Menth, "Software-Defined Networking Using OpenFlow:
Protocols, Applications and Architectural Design Choices," Future Internet,
vol. 6, pp. 302-336, 2014.

A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, and
D. Villela, "A Survey of Programmable Networks," SIGCOMM Computer
Communication Review, vol. 29, pp. 7-23, April 1999.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, et al.,
"NOX: towards an operating system for networks,” SIGCOMM Computer
Communication Review, vol. 38, pp. 105-110, 2008.

N. Feamster, J. Rexford, and E. Zegura, "The road to SDN: an intellectual
history of programmable networks," SIGCOMM Computer Communication
Review, vol. 44, pp. 87-98, April 2014.

IRTF. (March 2017). Software-Defined Networking Research Group
(SDNRG). Available: https://datatracker.ietf.org/rg/sdnrg

R. Ahmed and R. Boutaba, "Design considerations for managing wide area
software defined networks," IEEE Communications Magazine, vol. 52, pp.
116-123, July 2014.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, et al., "B4:
Experience with a Globally-deployed Software Defined Wan," in ACM
SIGCOMM, 2013, pp. 3-14.

L. Schiff, S. Schmid, and P. Kuznetsov, "In-Band Synchronization for
Distributed SDN Control Planes,” SIGCOMM Computer Communication
Review, vol. 46, pp. 37-43, 2016.

W. Russ and Z. Shawn, "Cloudy-Eyed: Complexity and Reality with
Software-Defined Networks," The Internet Protocol Journal, vol. 19, pp. 33-
44, November 2016.

POX project team, (July.2017). POX. Available:
https://github.com/noxrepo/pox

D. Erickson, "The Beacon Openflow Controller,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, New York, NY,
USA, 2013, pp. 13-18.

R. Izard. (July 2017). Project Floodlight. Available:
http://www.projectfloodlight.org

http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://www.projectfloodlight.org/

[32]

[33]
[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]
[46]
[47]
[48]

[49]

[50]

49

Linux Foundation. (July 2017). OpenDaylight. Available:
https://www.opendaylight.org

ONF. (March 2017). ONOS. Available: https://onosproject.org

RYU project team. (July 2017). Ryu SDN Framework. Available:
https://osrg.github.io/ryu

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, "Network
Configuration Protocol (NETCONF)," IETF RFC-6241, June 2011.

M. Bjorklund, "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)," IETF RFC-6020, June 2011.

R. Gu and J. Wang, "SDN Controller Requirement,” IETF Internet-Draft, July
2016.

H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, "North-Bound
Distribution of Link-State and Traffic Engineering (TE) Information Using
BGP," IETF RFC-7752, March 2016.

Open Networking Foundation. (July 2017). Special Report: OpenFlow and
SDN State of the Union. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-
Union-B.pdf

S. Cotter. (July 2017). Reannz Deploys New Zealand's First Qrganisation-
Wide SDN Switch. Available: https://reannz.co.nz/news/reannz-deploys-new-
zealands-first-organisation-wide-sdn-switch

R. Ahmed and R. Boutaba, "Design considerations for managing wide area
software defined networks," IEEE Communications Magazine, vol. 52, pp.
116-123, July 2014.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An
Architecture for Differentiated Services,” IETF RFC-2475, December 1998.
P. Almquist, "Type of Service in the Internet Protocol Suite," IETF RFC-
1349, 1992-07.

P. Skoldstrom and K. Yedavalli, "Network virtualization and resource
allocation in OpenFlow-based wide area networks," in IEEE International
Conference on Communications (ICC), Ottawa, 2012, pp. 6622-6626.

J. Chaves, C. Garcia, and R. Madeira, "OFSwitch13: Enhancing Ns-3 with
OpenFlow 1.3 Support,™ in The workshop on Ns-3, New York, USA, 2016, pp.
33-40.

S. Puangpronpitag, "Design and Performance Evaluation of Multicast
Congestion Control for the Internet,” PhD thesis, University of Leeds, School
of Computing, 2003.

OpenSim Ltd. (July 2017). OMNeT++. Available: https://www.omnetpp.org
OPNET Technologies. (July 2017). OPNET. Available:
http://opnetprojects.com

ISl.edu. (July 2017). The Network Simulator - ns-2. Available:
https://www.isi.edu/nsnam/ns

IETF. (March 2017). IP Performance Metrics (ippm). Available:
https://datatracker.ietf.org/wg/ippm

http://www.opendaylight.org/
http://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.omnetpp.org/
http://opnetprojects.com/
http://www.isi.edu/nsnam/ns

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

50

A. Hanemann, A. Liakopoulos, M. Molina, and D. Swany, "A study on
network performance metrics and their composition,” Campus-Wide
Information Systems, vol. 23, pp. 268-282, 2006.

T. Hsiao and W. Chang, "Network controller for delay measurement in SDN
and related delay measurement system and delay measurement method," US
Patent US9419878 B2, August 2016.

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford, "A NICE Way
to Test OpenFlow Applications,™ in USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), San Jose, CA, 2012, pp. 127—
140.

G. Wang and Y. Xia, "An NS2 TCP Evaluation Tool," Internet-Draft, April
2007.

J. Benjamin, L. Niels, and A. Kuipers, "Scalability and Resilience of
Software-Defined Networking: An Overview," CoRR, vol. abs/1408.6760,
2014.

D. Kotani and Y. Okabe, "A packet-in message filtering mechanism for
protection of control plane in openflow networks," in ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS), Los
Angeles, California, USA, 2014, pp. 29-40.

S.-C. Lin, P. Wang, and M. Luo, "Control traffic balancing in software defined
networks," Computer Networks, vol. 106, pp. 260 - 271, 2016.

M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, "A Self-
Organizing Distributed and In-Band SDN Control Plane,"” in International
Conference on Distributed Computing Systems (ICDCS), 2017, pp. 2656-
2657.

M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, et
al., "GENI: A federated testbed for innovative network experiments,"
Computer Networks, vol. 61, pp. 5-23, March 2014.

NAME

DATE OF BIRTH

PLACE OF BIRTH

ADDRESS

POSITION

PLACE OF WORK

EDUCATION

BIOGRAPHY
Mr. Piyawad Kasabai
October 4, 1986
Nakhon Ratchasima Province

85/1 M. 2 Rangka Yali,

Phimai sub-distric,

Nakhon Ratchasima Province 30110,
Thailand

Lecturer

Udon-Thani Rajabhat University, Udon-Thani Province,

Thailand

2009 Bachelor of Science in Computer Science,
Mahasarakham University

2011 Master of Science in Information Technology,
Mahasarakham University

2018 Doctor of Philosophy in Computer Science,
Mahasarakham University

	titlepage

	acknowledgement

	abstract

	content

	chapter 1

	chapter 2

	chapter 3

	chapter 4

	chapter 5

	chapter 6

	references

	biodata

