

Priority-based Scheduling Policy for OpenFlow Control Plane

Piyawad Kasabai

A Thesis Submitted in Partial Fulfillment of Requirements for

degree of Doctor of Philosophy in Computer Science

Academic Year 2017

Copyright of Mahasarakham University

นโยบายการจดัก าหนดการตามล าดบัความส าคญัส าหรับเพลนควบคุมโอเพนโฟว ์

 วทิยานิพนธ์
ของ

ปิยวจัน์ คา้สบาย

เสนอต่อมหาวทิยาลยัมหาสารคาม เพื่อเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตร

ปริญญาปรัชญาดุษฎีบณัฑิต สาขาวชิาวทิยาการคอมพิวเตอร์
ปีการศึกษา 2560

สงวนลิขสิทธ์ิเป็นของมหาวิทยาลยัมหาสารคาม

Priority-based Scheduling Policy for OpenFlow Control Plane

Piyawad Kasabai

A Thesis Submitted in Partial Fulfillment of Requirements

for Doctor of Philosophy (Computer Science)

Academic Year 2017

Copyright of Mahasarakham University

The examining committee has unanimously approved this Thesis,

submitted by Mr. Piyawad Kasabai , as a partial fulfillment of the requirements for the

Doctor of Philosophy Computer Science at Mahasarakham University

Examining Committee

(Asst. Prof. Kornchawal Chaipah

Ph.D.)

Chairman

(Somnuk Puangpronpitag , Ph.D.)

Advisor

(Asst. Prof. Chatklaw Jareanpon ,

Ph.D.)

Committee

(Asst. Prof. Suchart Khummanee ,

Ph.D.)

Committee

Mahasarakham University has granted approval to accept this Thesis as a

partial fulfillment of the requirements for the Doctor of Philosophy Computer Science

(Asst. Prof. Sujin Butdisuwan , Ph.D.)

Dean of the Faculty of The Faculty of

Informatics

(Asst. Prof. Krit Chaimoon , Ph.D.)

Dean of Graduate School

Day Month Year

 D

ABST RACT

TITLE Priority-based Scheduling Policy for OpenFlow Control Plane

AUTHOR Piyawad Kasabai

ADVISORS Somnuk Puangpronpitag , Ph.D.

DEGREE Doctor of Philosophy MAJOR Computer Science

UNIVERSITY Mahasarakham

University

YEAR 2017

ABSTRACT

Software Defined Networking (SDN) is a new network paradigm, allowing

administrators to manage networks through central controllers by separating a control

plane from a data plane. So, one or more controllers must locate outside switches.

However, this separation may cause delay problems between controllers and switches.

In this thesis, we therefore propose a Priority-based Scheduling policy for OpenFlow

(PSO). The purpose of PSO is to give a higher priority for OpenFlow control messages

in the in-band control network. Furthermore, PSO provides different priorities for

OpenFlow control messages, based on contents/services (data traffic types) and/or

customers for both in-band and out-of-band control network. The PSO is based on

packet prioritization mechanisms in both OpenFlow switches and controllers. In

addition, we have prototyped and experimented on PSO using a network simulator (ns-

3). From the experimental results, the PSO can help the data flow with high priority

acquire forwarding rules with lower delay under network congestion in control

links (Normalized Load > 0.8), comparing to traditional OpenFlow.

Keyword : Software Defined Networking, OpenFlow, Switch-Controller Delay

 E

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

The PhD thesis would not have been accomplished if without the help from

several people. First of all, I would like to thank Dr. Somnuk Puangpronpitag for

providing invaluable support throughout my Ph.D. program. I also thank to my colleagues

in the Information Security and Advanced Network (ISAN) laboratory for a sharp

discussion. I was very fortunate to have many friends both within and outside the Faculty

of Informatics during my doctoral life. I thank them all for their being very supportive. I

would also grateful to a few members of Distributed Systems & Services (DSS) research

group (Leeds University, UK) for their comments and discussions. This thesis is partly

supported by the Newton Mobility Grant (No: NI160138) from the UK’s Official

Development Assistance together with Office of Higher Education Commission (OHEC)

Thailand, University of Leeds (UK), and Mahasarakham University (Thailand). I am also

grateful to Prof. Karim Djemame for all of his supports, during six-month collaboration

in Leeds (UK).

Piyawad Kasabai

TABLE OF CONTENTS

 Page

ABSTRACT .. D

ACKNOWLEDGEMENTS .. E

TABLE OF CONTENTS ... F

LIST OF TABLES ... I

LIST OF FIGURES ... J

 Introduction ... 1

 Research Motivation .. 1

 Objectives .. 2

 Key Contributions ... 2

 Scope ... 2

 Terminology .. 3

 Background and Related Work ... 4

 Limitation of Traditional Networks ... 4

 Software-Defined Networking (SDN) ... 5

 Communication between Control and Data Planes ... 7

 OpenFlow Switch .. 8

 Evolution of OpenFlow Specifications ... 11

 Open Source OpenFlow Controllers ... 13

 Role of SDN Controllers ... 14

 SDN in the Real World .. 16

 Cornell University .. 17

 REANZZ New Zealand .. 17

 Google B4 ... 17

 SDN Products ... 17

 Differentiated Service Code Point (DSCP) of the DS field 17

 G

 Previous Solutions .. 18

 Research Methodology .. 20

 Overview of Research Methodology ... 20

 Implementation and Performance Evaluation Techniques 21

 Analytical Model .. 21

 Network Simulation and Emulation ... 21

 Measurement Testbed ... 21

 Performance Metrics & Parameters ... 22

 Delay in SDN ... 22

 Packet Loss ... 23

 Throughput ... 23

 Overhead of PMT ... 24

 Result Analysis .. 24

 Testing and Validation .. 25

 Design.. 26

 Problems and Solution Design .. 26

 Design of Priority-based Service Scheduling Policy for OpenFlow (PSO) 27

 PSO Modules .. 27

 Traffic Classifier ... 30

 Queue and Packet Scheduler .. 34

 Configuration of Policy Map Table .. 34

 Performance Evaluation .. 35

 Network Simulation Scenarios .. 35

 Experiment 1: a PMT for an out-of-band control network to give a

priority for a specific service .. 36

 Experiment 2: a PMT for an out-of-band control network to give a

priority for a specific user/customer ... 36

 Simulation Results ... 36

 Experiment-1: a PMT for an out-of-band control network to give a

priority for a specific service .. 36

 H

 Experiment-2: a PMT for an out-of-band control network to give a

priority for a specific user/customer ... 38

 Discussion of In-band Control Network .. 39

 Analysis of PMT Overhead ... 40

 Conclusions and Future Work ... 41

 Summary and Discussion .. 41

 Thesis Achievement .. 42

 Future Work ... 42

 Implementation and Complex Simulation Scenarios 42

 Prototyping and Measurement on Testbed ... 43

REFERENCES .. 44

BIOGRAPHY .. 49

LIST OF TABLES

 Page

Table 1 Terminology.. 3

Table 2 OpenFlow message types .. 9

Table 3 Summary of OpenFlow specifications .. 13

Table 4 List of Open Source OpenFlow Controllers ... 14

Table 5 Commonly used DSCP and IP precedence values .. 18

Table 6 Metrics/Parameters of IETF IPPM RFCs ... 22

Table 7 Traffic types .. 31

LIST OF FIGURES

 Page

Figure 1 Traditional vs. SDN devices .. 4

Figure 2 Overview of SDN .. 6

Figure 3 OpenFlow switch main components ... 8

Figure 4 OpenFlow header... 8

Figure 5 OpenFlow packet-in message format .. 8

Figure 6 OpenFlow packet-out message format .. 10

Figure 7 OpenFlow flow-mod message format ... 11

Figure 8 OpenFlow over Internet Protocol .. 11

Figure 9 Match fields of a flow table entry in OpenFlow 1.0...................................... 12

Figure 10 Match fields of a flow table entry in OpenFlow 1.1.................................... 12

Figure 11 Example of OpenFlow protocol (Host 1 sends a message to host 3) 16

Figure 12 Example of OpenFlow protocol (Host 3 responses to host 1) 16

Figure 13 Overview of Research Methodology ... 20

Figure 14 Delay measurement ... 23

Figure 15 Three components of network simulation tool .. 24

Figure 16 Overview of centralized control in SDN ... 26

Figure 17 SDN-enabled Ethernet switch ... 27

Figure 18 Traditional OpenFlow Switch vs. OpenFlow switch with PSO 28

Figure 19 SDN interfaces... 29

Figure 20 The components of PSO modules ... 30

Figure 21 Policy Map Table (PMT) ... 30

Figure 22 Network Scenario .. 35

Figure 23 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)

Packet loss, b) Delay .. 36

Figure 24 Impact on a high priority data traffic: (a) Throughput, (b) Delay 37

 K

Figure 25 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)

Packet loss, b) Delay .. 38

Figure 26 Impact on a high priority data traffic: a) Throughput, b) Delay 39

Figure 27 TCAM processing time ... 40

INTRODUCTION

 Research Motivation

Traditional IP networks are complex and very hard to manage [1]. Classical

switching and routing devices on the traditional IP networks are inflexible to optimize.

These devices integrate both data plane and control plane on the same hardware device.

So, the Software-Defined Networking architecture (SDN) [2] has been proposed to

separate and operate between data plane and control plane. This architecture is designed

to provide various perspectives in the programmable networks, such as manageability,

scalability, and flexibility. So far, there have been several SDN-based solutions, such

as SoftRouter [3], ForCES [4], and OpenFlow [5].

SDN defines some abstraction layers in computer networking. These abstraction

layers separate a control plane from a data plane. The data plane locates in switch

hardware, whereas the control plane is software running on one or more servers, called

‘controller’. The data plane provides the simplest function of switches, i.e., forwarding

packet according to a set of rules. The rules in the switch are managed by software at

the controller. In general, several switches are controlled by a controller using an SDN

protocol, such as OpenFlow.

OpenFlow has been widely deployed in various network products, and attracts

several network industries [6]. The OpenFlow protocol defines control messages to

handle a switch. The control messages may be sent on a separated network from the

data traffic (called out-of-band control network), or may be sent on a shared network

infrastructure with the data traffic (called in-band control network). Most of the

scalability in OpenFlow network relates to the decoupling of the control and data

planes. In particular, the first packet of a new flow is sent by a switch to the controller

to acquire a forwarding rule. This may increase network load, and make the control

plane a potential bottleneck [7]. In addition, since the flow tables of switches are

configured in real-time by an external device, there is also the extra delay, introduced

by the flow rule request process. Since SDN networks grow in scale and complexity,

the control traffic may suffer from a delay, resulting in inefficient network as studied

in [8].

Several solutions [8-12] have also been proposed to reduce the delay of the

control traffic. However, some solutions support only a specific communication

between the control and data planes (in-band or out-of-band control networks). The

solution in [8] has proposed an initial design to fix this problem, but with a rather high

overhead for traffic tagging.

Hence, this thesis proposes a Priority-based Scheduling policy for OpenFlow

(PSO) to fix the aforementioned problems. The purpose of PSO design is twofold: 1)

to overcome the bandwidth competition between data traffic and control traffic for the

 2

in-band control network, 2) to provide high-priority OpenFlow packet-in messages of

a specific traffic (such as real-time services) or a specific user for both in-band and out-

of-band control networks.

 Objectives

1) To analyze delay of acquiring forwarding rules in Software-Defined

Networking (SDN)

2) To design solutions to help an OpenFlow message with shorter delay in

acquiring forwarding rules in SDN

3) To evaluate the proposed solutions in terms of throughput and delay of a

specific traffic by using network simulator

 Key Contributions

This thesis presents delay problems in SDN, and proposes an enhanced design of

the OpenFlow switch. Our design offers the following properties:

1) in-band and out-of-band support,

2) low delay for targeted traffic even under unstable situations,

3) scalability and feasibility to implement.

 Scope

1) Among several SDN protocols, this work is based on OpenFlow protocol,

which is the most widely used SDN protocols.

2) For communication between control and data planes, out-of-band control

network will be evaluated in this work.

3) Distributed and centralized controllers are two SDN architecture types. This

work mainly focuses on centralized controller. This centralized controller

allows several switches to connect a single controller.

4) The performance evaluation of this work uses simulation techniques. ns-3

[13] will be used in this work.

5) Differentiated Service Code Point (DSCP) of IP header is originally

deployed for Quality of Service (QoS) issues. However, this work takes the

DSCP into the design mainly to mitigate the delay of higher priority traffic

only, not covering all QoS parameters.

6) For network deployment, this work will mainly focus on managed networks,

not covering public networks.

 3

 Terminology

This study uses terminology described in [8, 14, 15]. Table 1 gives the description

of each term.

Table 1 Terminology

Term Definition

Asynchronous message A message sent by a switch to a controller

without request

Control plane A plane related to software application that

places in a controller to control a data plane

Control traffic Traffic related to OpenFlow messages such as

Packet-in messages

Data plane A plane related to data traffic that locates in

hardware and is responsible for forwarding

packets

Data traffic Traffic related to data packets, such as ARP

packets, TCP packets, UDP packets and so on.

Flow-mod message A message sent from a controller to a switch

to modify flow entry

OpenFlow message OpenFlow protocol unit or packet unit, sent

over OpenFlow connection

Packer-in message A message sent to a controller in the event of

table-miss

Packet-out message A messages sent from a controller for a switch

to specific output port or action

Software-Defined Networking

(SDN)

A modern network architecture that separates

data and control planes to allow

administrators to program network

functionalities via a controller connected with

network devices

Synchronous message A message sent by a switch to a controller

with request

BACKGROUND AND RELATED WORK

 Limitation of Traditional Networks

The Internet has been expanded to serve millions of users. So, it has become more

and more complex. Manageability of network devices is a major issue of this

complexity. To serve several applications, these network devices must be managed in

different levels of services. However, almost all current network devices are inflexible

and closed systems. A traditional network device (e.g. router/switch) provides a unified

stack of functions [16]. From Figure 1a, there are three main traditional router/switch

functions as follows. First, a specialized packet-forwarding function is responsible to

accept data packets, and then forward to the next hop according to the configurations

of the router or switch. Second, an operating system, provided by the router/switch’s

vendor, is responsible to control the device as a whole. This operating system can be

proprietarily optimized by each vendor for each underlying hardware platform. Third,

network applications (such as network protocols) provide rules, used in operating

system and the packet-forwarding hardware. There are several standards underlying

router/switch (approximately 6000 RFCs) to provide layer 2&3 network functions. It is

rather complicated and inflexible to optimize network behaviors on these traditional

routers/switches due to vendor-dependency.

Figure 1 Traditional vs. SDN devices

A possible solution to this problem is the implementation of data handling rules

as software rather than embedding them in hardware [17]. Routing Control Platform

(RCP) [18] is one of the solutions, proposed by Caesar et al. RCP is a centralized

platform, separating from data plane, to collect information about external destinations,

and to select the BGP routes for each router. Recently, SDN is one of the most well-

known solutions.

 5

 Software-Defined Networking (SDN)

Internet technologies have been developed to enable programmability. Active

networks [19] were proposed to allow their users to inject customized programs into

the network devices. The network devices extract and execute programs from injected

data packets. In this solution, a new routing mechanisms and network services can be

implemented without the modification of the network hardware. However, security and

performance issues can be problems due to injection malicious programs into packets

from attacker and executing injected-malicious programs [20]. So, this solution has not

convinced.

Programmable networks [21] were developed to provide programmability in the

network by allowing programs to execute network devices similar to active networks.

However, the programs are not injected in data packets as with active networks. So,

security issues on the programmable networks can be achieved.

Both active networks and programmable networks introduce a new network

paradigm (named Software-Defined Networking: SDN). SDN has emerged from a

research work, initially performed in 2004 as a part of researching a new network

management paradigm [16]. This initial work was built in 2008 by two different groups.

A company, named Nicira Networks, has created a network operating system, named

NOX [22]. At the same time, an OpenFlow switch has also been created by the

cooperation between Nicira Networks and a research team from Stanford University.

OpenFlow is then widely supported by network industries [6]. Now, OpenFlow is

managed by Open Networking Foundation (ONF) [6].

SDN is a new approach for network administrators to manage network

functionality and provision. It provides software to program network devices

dynamically. SDN focuses on roles of software in running networks through an

abstraction of a data plane, and separating it from a control plane. This separation

allows faster innovation cycles at both planes [14]. Several ideas and concepts are

applicable to research and development in SDN standardization [23]. The Software-

Defined Networking Research Group (SDNRG) [24] was chartered by Internet

Research Task Force (IRTF) to investigate SDN from various perspectives with the

goal to identify the approaches that can be defined, deployed and used in the near term

as well as to identify future research challenges [14].

RFC 7426 [14] has described the layers and architecture of SDN. As shown in

Figure 1b, SDN architecture consists of multiple planes, including Forwarding Plane

(FP), Operational Plane (OP), Control Plane (CP), Management Plane (MP), and

Application Plane (AP).

FP is widely referred to the "data plane" or the "data path". The FP is responsible

for handling packets in the data path, based on the instructions received from the CP.

The FP takes action from the instructions, such as forwarding, dropping, and changing

packets. OP is responsible for managing operational states of the network device such

as device active/inactive, port status, and port available. The OP relates to network

 6

device resources (e.g. ports, memory), and it is usually the termination point for MP

and AP. CP is responsible for making instructions sent to FP on how packets should be

dropped or forwarded by one or more network devices. The CP may be related in OP

information e.g., current port status or its capabilities. MP is responsible for monitoring,

configuring, and maintaining network devices. The MP makes decision regarding the

states of network devices, and may be used to configure the FP. For instance, the MP

may set up all or parts of the forwarding rules at the first time. AP is a part of

applications and services that define network behaviors.

The communication between FP and CP is provided by southbound APIs.

OpenFlow protocol and OF-Config are used these APIs. Northbound APIs are used to

establish CP and AP. These APIs enable innovative applications. REST are the most

used northbound APIs and most of the controllers implement it.

Figure 2 Overview of SDN

In general, SDN decouples control plane and data plane (as illustrated in Figure

2). The control plane is actually RFC 7426’s CP together with MP, while the data plane

is RFC 7426’s FP together with OP. In addition, the controller may collect any

information from analytic engine at the application layer or application plane (optional).

The lower layer is the control plane, also called the network infrastructure layer. It

 7

consists of forwarding network devices. The responsibilities of this plane are mainly

data forwarding, monitoring and gathering statistics.

 Communication between Control and Data Planes

To communicate between control and data planes, there are two alternatives,

namely in-band control network and out-of-band control network. In the out-of-band

control network, control traffic (an OpenFlow control message) is sent on a separate

network from data traffic, whereas the control and data traffic share the same network

link for the in-band control network. From the literature, the out-of-band control

network has been focused by several studies [25]. It is also used by B4 (Google

Software Defined WAN) [26]. Its advantages are as follows: 1) high security can be

provided for control messages; 2) high availability can be provided even if there are

failures in the data plane. However, this out-of-band control network is expensive to

build due to the separation of network link. Sharma et al. [9, 10] have argued that the

in-band control network would be more widely deployed since it is suitable for all types

of topologies.

Centralized and distributed controllers are two alternatives for the SDN controller

placement. For the distributed controllers, inter-connection links among controllers

[27] must be built. Russ and Shawn [28] have suggested that the distributed controllers

are rather complex and require heavy configuration to deploy, design, and manage. On

the other hand, the centralized controller is much simpler. So, the centralized controller

is more widely deployed comparing to the distributed controllers. However, SDN can

grow in scale, and the number of the switches under the same centralized controller

could be increased. This issue inevitably causes a network congestion problem [8].

In general, both centralized and distributed controllers can cause delay problems,

namely inbound and outbound delays. The inbound delay (or inbound latency) happens

when a switch generates packet-in messages and sends them to a controller. The

outbound delay (or outbound latency) happens when a controller generates packet-out

messages and sends them to a switch in order to install, modify, delete, and forward

rules. He et al. [11] have found that both delays could result in the inefficiencies of the

link between the switch and the controller.

For the above reasons, network inefficiencies may occur in SDN, and the delay

of data traffic is then increased. For the in-band control network, this problem can be

even more severe since the control traffic may be dropped, resulting in the failure of

data traffic forwarding. In addition, there is still no explanation how the switch and the

controller can prioritize different traffic types (data and control packets). Some previous

studies [8-10, 12] are proposed to figure out and solve this problem, but all of them still

have some drawbacks that will be further discussed in Section 2.10.

 8

 OpenFlow Switch

Figure 3 OpenFlow switch main components

An OpenFlow switch forwards data packets according to a set of rules in flow

tables. These rules are managed by a software-based controller at the control plane

outside the switch (as shown in Figure 3). The OpenFlow switch consists of secure

channel (open channel), flow table and OpenFlow protocol. The secure channel is a

software API to connect with the controller, allowing commands and packets to

communicate between the controller and the switch. The flow table is built in the switch

hardware using Ternary Content Addressable Memory (TCAM). It contains a list of

flow entries, which define the rules for forwarding/dropping packets. Each flow entry

consists of match fields, counters and instructions. For each incoming packet, the

packet header is compared to the match fields of each entry. If matched, the packet is

processed according to the instructions. The counters are used to collect statistics about

the packets. The OpenFlow protocol provides a standard for communication between

controllers and switches by defining control traffic between them. Each control traffic

has the following header structure (shown in Figure 4)

version (8bits) type (8bits) length (16bits)

xid (32bits)

Figure 4 OpenFlow header

buffer_id (32bits)

total_len (16bits) reason (8bits) table_id (8bits)

cookie (64bits)

match (TLVs)

pad data

Figure 5 OpenFlow packet-in message format

 9

The structure of the OpenFlow header is described in Figure 4, consisting of four

fields, namely version, type, length, and xid. version specifies the version number of

the OpenFlow protocol. There are several categories of OpenFlow messages (as shown

in Table 2), such as symmetric messages, switch configuration messages, asynchronous

messages, and controller command messages. Each category contains different types.

For example, OFPT_PACKET_IN is a type of asynchronous messages, describing

packet-in messages (as shown in Figure 5). The length field indicates the total length

of the message. The xid indicates transaction ID, associated with the packet. The types

can have the following values, as shown in Table 2.

Table 2 OpenFlow message types

Type Value

Symmetric messages

OFPT_HELLO 0

OFPT_ERROR 1

OFPT_ECHO_REQUEST 2

OFPT_ECHO_REPLY 3

OFPT_EXPERIMENTER 4

Switch configuration messages

OFPT_FEATURES_REQUEST 5

OFPT_FEATURES_REPLY 6

OFPT_GET_CONFIG_REQUEST 7

OFPT_GET_CONFIG_REPLY 8

OFPT_SET_CONFIG 9

Asynchronous messages

OFPT_PACKET_IN 10

OFPT_FLOW_REMOVED 11

OFPT_PORT_STATUS 12

Controller command messages

OFPT_PACKET_OUT 13

OFPT_FLOW_MOD 14

OFPT_GROUP_MOD 15

OFPT_PORT_MOD 16

OFPT_TABLE_MOD 17

Multipart messages

OFPT_MULTIPART_REQUEST 18

OFPT_MULTIPART_REPLY 19

Barrier messages

OFPT_BARRIER_REQUEST 20

OFPT_BARRIER_REPLY 21

Controller role change request messages

OFPT_ROLE_REQUEST 24

 OFPT_ROLE_REPLY 25

Asynchronous message configuration

OFPT_GET_ASYNC_REQUEST 26

 10

Type (cont.) Value (cont.)

OFPT_GET_ASYNC_REPLY 27

OFPT_SET_ASYNC 28

Meters and rate limiters configuration messages

OFPT_METER_MOD 29

Controller role change event messages

OFPT_ROLE_STATUS 30

Asynchronous messages

OFPT_TABLE_STATUS 31

Request forwarding by the switch

OFPT_REQUESTFORWARD 32

OFPT_BUNDLE_CONTROL 33

OFPT_BUNDLE_ADD_MESSAGE 34

Controller status asynchronous message

OFPT_CONTROLLER_STATUS 35

When data packets are received at a switch, the switch uses an

OFPT_PACKET_IN message (as shown in Figure 5) to manage these data packets.

This message includes OpenFlow header, containing eight fields, namely buffer_id,

total_len, reason, table_id, cookie, match, pad, and data. The buffer_id is used to

identify a buffered packet, associated with the previous packet-in message. The

total_len is the full length of the packet. The reason field indicates the context of the

packet-in message. This filed can also contain other messages, such as output to a

controller in apply-actions, invalid TTL. The table_id is ID of the flow table for looking

up. The cookie field contains the cookie of the flow entry, caused the OpenFlow

message to be sent to the controller. The match field is a set of OpenFlow Extensible

Match (OXM) Type Length Values, containing data packet’s header (pipeline) fields

associated with the packet. The pad field is additional padding. This pad is set even if

the data field is empty. The data field is a part of data packet that associates with a

packet-in message such as Ethernet frame.

buffer_id (32bits)

actions_len (16bits)

pad (64bits)

actions (TLVs)

Figure 6 OpenFlow packet-out message format

The OpenFlow packet-out message (OFPT_PACKET_OUT) is illustrated in

Figure 6. The buffer_id and pad fields are the same given in the packet-in message. The

actions_len is the size of action array in bytes. The actions field contains an action list

defining how the packet should be processed by the switch. The field may include an

output port, packet modification, group processing.

The OFPT_FLOW_MOD message (as shown in Figure 7) is used to modify flow

entry in the flow tables. The command field is used to specify the context of this

message i.e., new flow, modify all matching flows, modify entry, delete all matching

flows, delete entry. The idle_timeout and hard_timeout fields indicate how quickly flow

 11

entries expire. The priority indicates priority within the specified flow table. The

out_port and out_group are optional fields (more details can be found in OpenFlow

specification [20]).

buffer_id (32bits)

cookie (64bits)

cookie_mask (64bits)

table_id (8bits) command (8bits) idle_timeout (16bits)

hard_timeout (16bits) priority (16bits)

buffer_id (32bits)

out_port (32bits)

out_group (32bits)

flags (16bits) importance (16bits)

match (TLVs)

Figure 7 OpenFlow flow-mod message format

For the IP network, each OpenFlow message is encapsulated and sent over TCP

at the default port no. 6653. It is usually encrypted using Transport Layer Security

(TLS) (as shown in Figure 8).

OpenFlow

TLS

IP

Ethernet

Figure 8 OpenFlow over Internet Protocol

The flow tables of the OpenFlow switch are deployed to operate the incoming

data packets. For example, when data packets arrive at the switch, the switch then

inspects each packet’s header and tries to match it with a flow entry in the flow tables.

If matched, the switch then takes the action of instructions in that flow entry. If the

header of the packet is not matched with any flow entry, this case is called table-miss

event. The packet is then encapsulated into an OpenFlow packet-in message. After that,

the switch sends the packet-in message to the controller to request an action or a new

flow entry that will be stored in the flow tables. The controller responds by sending an

OpenFlow packet-out message and maybe an OpenFlow flow-mod message back to the

switch. Since the controller is software-based, so it can be dynamically programed to

provide manageability.

 Evolution of OpenFlow Specifications

Different versions of OpenFlow specifications are available. The first version was

the OpenFlow version 0.2.0, released in 2008. The most widely deployed specification

is the version 1.0 [20]. This version has used 12 header fields of the Ethernet frame and

IP packets (as shown in Figure 9) coming into the switch. A packet can be matched to

a flow entry in the flow tables by using one or more header fields of the packet. After

 12

that, in the OpenFlow 1.1 specification, the OpenFlow switch has contained metadata

and Multiprotocol Label Switching (as shown in Figure 10). This version has supported

several flow tables and a group table. A packet can be changed by one or more flow

tables (pipeline processing). OpenFlow specification 1.1 has also introduced a new

action (called instructions). Previously, an action can be: 1) forwarding the packet, or

2) dropping the packet. However, the instructions, from version 1.1, include also

modifying a packet, and updating an action set. In OpenFlow specification version 1.2,

IPv6 addressing has been added. The OpenFlow specification version 1.3 has then been

released since 2012. This version can control some QoS by adding meter tables. It is

possible to handle the rate of packets through per-flow meters. The major extension for

OpenFlow specification version 1.4 has supported a new set of port properties to add

optical ports to OpenFlow switch. Finally, OpenFlow specification version 1.5 has

introduced egress tables. This tables enable processing to be done in the context of the

output port, instead of the input port as the previous version. Table 3 shows the

summary of OpenFlow specifications.

Ingress port

Ethernet src

Ethernet dst

Ethernet type

VLAN id

VLAN priority

IP src

IP dst

IP proto

IP ToS bits

TCP/UDP src port

TCP/UDP dst port

Figure 9 Match fields of a flow table entry in OpenFlow 1.0

Ingress port

Metadata

Ethernet src

Ethernet dst

Ethernet type

VLAN id

VLAN priority

MPLS label, MPLS EXP traffic class

IP src

IP dst

IP proto

IP ToS bits

TCP/UDP src port

TCP/UDP dst port

Figure 10 Match fields of a flow table entry in OpenFlow 1.1

 13

Table 3 Summary of OpenFlow specifications

Feature OF

1.0

OF

1.1

OF

1.2

OF

1.3

OF

1.4

OF

1.5

Ethernet: src,dst,type X X X X X X

IPv4: src,dst,proto,ToS X X X X X X

TCP/UDP: src_port, dst_port X X X X X X

Per table, flow, port, queue statistics X X X X X X

MPLS: label, traffic class X X X X X

OpenFlow Extensible Match (OXM) X X X X

IPv6: src,dst,flow label X X X X

Per-flow meter & meter band X X X

Optical ports X X

Egress table X

 Open Source OpenFlow Controllers

As shown in Table 4, there are various open source OpenFlow controllers, such

as NOX [22], POX [29], Beacon [30], Floodlight [31], OpenDaylight [32], ONOS [33],

Ryu [34], and so on. NOX has been developed by researchers at Stanford University

and Nicira Networks. NOX provides a programming platform for controlling one or

more OpenFlow switches. POX has been extended from NOX, and rewritten in python

to support various platforms. Beacon has been developed in Java by researchers at

Stanford University. Floodlight is an extension from Beacon by Big Switch Networks.

It has been developed in Java to deploy software applications by using REST APIs.

OpenDaylight has been developed in Java by the Linux Foundation (sponsored by

several network industries, such as Cisco, NEC, IBM and so on). It is an open platform

for customizing and automating scalable networks by focusing on network

programmability. ONOS has been developed as a next-generation SDN solution for

service providers, with a focus on scalability and performance. ONOS has also hosted

by Linux Foundation, and written in Java. The software of this controller has been

implemented as an Apache Karaf OSGi container, allowing interaction through Java

APIs and REST APIs. This controller provides several features and standard protocols,

such as OpenFlow, NETCONF [35], YANG model [36]. Ryu is a component-based

SDN framework, written in python. Ryu provides various standard protocols for

managing network devices, such as OpenFlow, NETCONF, OF-config and so on.

 14

Table 4 List of Open Source OpenFlow Controllers
N

a
m

e

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

L
ic

en
se

O
p

en
F

lo
w

v
er

si
o
n

s

G
U

I

S
o
u

th
b

o
u

n
d

A
P

Is

N
o
rt

h
b

o
u

n
d

A
P

Is

NOX C++ GPL OF1.0 Python,

QTP4

OF1.0 REST

API

POX Python Apache OF1.0 Python,

QT4

OF1.0 REST

API

Beacon Java BSD OF1.0 Web

based

OF1.0 REST

API

Floodlight Java Apache OF1.0,

1.3

Web

based

OF1.0, 1.3 REST

API

OpenDaylight Java EPL OF1.0-

1.4

Web

based

OF1.0,1.4,

NETCONF,

YANG,OF-

Config

REST

API

ONOS Java Apache OF1.0-

1.5

Web

based

OF1.0,

OF1.3,

NETCONF,

YANG

REST

API

Ryu Python Apache OF 1.0-

1.5

Ryu

GUI

OF1.0-1.3,

NETCONF,

OF-config

REST

API

 Role of SDN Controllers

As previous mentioned, SDN is a new network paradigm, allowing manageability

and flexibility that traditional networks suffer from. In SDN, intermediate network

devices (switches/routers) is just a forwarding device or a dump-device. The brains of

the network are controllers. Applications at controller act as a strategic control point in

the network. They manage the flow control of several switches/routers in the network

from the centralized controllers. So, SDN allows any business logics to be intelligently

deployed in the network without depending on or limiting to the vendors of network

devices.

According to the Internet-draft report [37], the goal properties of SDN controllers

are scalability, reliability, programmability, intercommunity, security, and

manageability. An SDN controller interacts with network devices through southbound

interfaces. Several models are interacted, including topology management, route

management, host management, flow-tables management, interface management,

database management, and so on. Topology management is calculated by using the

 15

information (e.g., Link Layer Discovery Protocol (LLDP), BGP Link State [38], and so

on), which is reported from the network devices. At the controller, route management

is calculated from the abilities of network devices, such as link cost, bandwidth, and

network information. Host management is a management of all hosts in the network,

which takes functions of MAC and ARP learning. Flow-tables management is

responsible for the basic functions of forwarding/routing storage. Interface

management is a configuration of all ports in the network devices, including dynamic

and static interface configuration. Database management involves in a management of

all tables in the network devices with data synchronization.

From Figure 11 and Figure 12, two hosts (host-1 and host-3) want to

communicate with each other. The controller in the figures has been implemented with

the “learning switch application” for the following tasks:

1) When a data packet (SYN port 80) arrives at the switch, the switch

inspects the packet’s header, and tries to match it with a flow entry in the

flow tables.

2) If the header of the packet is not matched with any flow entry. The switch

generates OpenFlow packet-in message, including buffer-id (Buffer

ID=100) and other fields. The packet is then encapsulated into the

OpenFlow packet-in message.

3) The switch sends the OpenFlow packet-in message to the controller to

request an action or a new flow.

4) The controller checks OXM fields of the OpenFlow packet-in message

(i.e. data packet SYN port 80), and takes a destination MAC address. It

then looks up a stored information of a MAC-address-switch-port map to

find the destination switch-port, where the destination (host-3) is

connected. The controller then generates an OpenFlow packet-out

message and set its action to deliver the packet to the destination switch-

port.

5) If the destination MAC address cannot be found from the MAC-address-

switch-port map, the controller sets the action of the OpenFlow packet-

out message to flood all ports of the switch.

6) The OpenFlow packet-out message is then sent from the controller back

to the switch.

7) The controller may also send an OpenFlow flow-mod message with the

same action of the packet-out message if it wants to store the action into

the rule table.

 16

Figure 11 Example of OpenFlow protocol (Host 1 sends a message to host 3)

Figure 12 Example of OpenFlow protocol (Host 3 responses to host 1)

 SDN in the Real World

The SDN revolution was initiated by the development of OpenFlow during 2008-

2009. A lot of developments occur among a group of engineers at Stanford University.

Now (as of July 2018 while writing this report), OpenFlow version 1.5.1 is the latest

version, released in 2015 by Open Network Foundation (ONF)[6].

Many large networking companies have embedded OpenFlow technology into

their products, such as Google and AT&T. In addition, these companies are parts of

ONF and participate in designing OpenFlow. An OpenFlow has been deployed in

many networking companies such as Google, Cornell University, REANZZ, and so on.

 17

 Cornell University

Cornell University has been running OpenFlow and OpenDaylight in production

since 2014. Director of Computing and Information Science at Cornell’s College of

Engineering, says that [39] “we did not know exactly what the applications of the future

would be, so we decided that we wanted to go with an OpenFlow network so we would

have lots of flexibility.”, and “SDN technology gives the network better performance

and flexibility by allowing traffic flows to be redirected dynamically”.

 REANZZ New Zealand

REANNZ is the New Zealand’s own National Research and Education Network

(NREN), providing researchers and scientists with the ultra-fast network. This network

allows researchers to store and share data and collaborate with other researchers in New

Zealand and around the world in real-time. REANNZ’s networks run on an OpenFlow-

based switching, with the goal of providing an open networking environment [40].

 Google B4

Google manages one of the largest enterprise networks and cloud deployments in

the world. Engineers with direct experience have point out that OpenFlow is a key

element of the Google architecture. OpenFlow has been used in both inside the Google

data center, and to interconnect data centers, as a Wide Area Network (WAN)

application [26, 41].

 SDN Products

A lot of network industries have produced OpenFlow products to provide SDN

deployment such as Cisco, ECI Telecom, Ericsson, Extreme Networks, Fujitsu, H3C,

Hewlett Packard Enterprise, Huawei, Juniper Networks, NEC, Nokia (Alcatel-Lucent),

and so on [6].

 Differentiated Service Code Point (DSCP) of the DS field

In the Internet Protocol (IP), differentiated Services (DiffServ) [42] is a traffic

control architecture, relying on the 8-bit DS field (in place of the outdated Type of

Service (ToS) field [43]) in the IP header. DS field consists of the first six bits for the

Differentiated Services Code Point (DSCP) and the other two bits for Explicit

Congestion Notification (ECN). Due to its six-bit length, DSCP can support up to 64

different classes of traffic. DiffServ routers then decide on per-hop basis how to forward

packets based on their class. First three bits of DSCP indicates IP precedence. These

bits are called Class Selector (CS), prioritizing traffic types by class (CS0 – CS7, lowest

to highest priorities respectively). For our design, DSCP value can be used to classify

different traffic types (as shown in Table 5)

 18

Table 5 Commonly used DSCP and IP precedence values

DSCP [41] IP precedence [42]

Value Name Value Description

000 000 (0) CS0 (default) 000 (0) Routine, Best Effort

001 000 (8) CS1 001 (1) Priority

010 000 (16) CS2 010 (2) Immediate

011 000 (24) CS3 011 (3) Flash (voice or video signaling)

100 000 (32) CS4 100 (4) Flash Override

101 000 (40) CS5 101 (5) Critical (voice streams)

110 000 (48) CS6 110 (6) Internetwork Control

111 000 (56) CS7 111 (7) Network Control

 Previous Solutions

According to the OpenFlow specification [15], an OpenFlow switch provides

limited Quality of Service (QoS) through a simple queuing mechanism to manage data

packets. A matched packet can be treated by output queue ID. Packet scheduling using

queues is not defined by the latest specification (protocol version 0x06), and is switch

dependent. First-In-First-Out (FIFO) queue is commonly used in the OpenFlow switch.

In in-band control network, an OpenFlow message may compete with data packets. In

out-of-band control network, the OpenFlow control messages of delay-sensitive traffic

cannot gain low delay in competing with the OpenFlow control messages of delay-

tolerant traffic. Without considering different prioritization, an OpenFlow messages

may wait, or may be dropped in queue resulting in the increase of transmission delay

of data traffic in acquiring forwarding rule.

Sköldström [44] have evaluated resource allocation in OpenFlow-based wide

area networks in both in-band and out-of-band control networks. Their experimental

results have shown that OpenFlow messages may compete with data traffic for network

resources (e.g. bandwidth). This competition could finally cause the controller been

disconnected after suffering from significant latency due to the increase of data traffic.

 He et al. [12] have proposed SDN-based control suitably responsive for critical

management applications, named Mazu: taming latency in software-defined networks.

The first technique in Mazu is to avoid CPU processing events due to data plane packet

arrivals by redirecting packets to a fast proxy. This process is tasked with generating

the necessary messages for the controller. The first technique can overcome the inbound

latency. Second, a technique to reduce the outbound latency is as follows: 1) flow

engineering is used to compute paths such that the latency of installing forwarding state

at any switch is minimized; 2) rule offloading is used to compute strategies for

opportunistically offloading portions of forwarding state to be installed at a switch to

other switches downstream. The Mazu techniques have been proposed to bypass the

slow embedded switch CPU by redirecting unmatched packets to a proxy. However,

the proxy in SDN may suffer network congestion itself. In case of a large number of

switches are connected to the same proxy, this situation can cause latency to be

 19

increased dramatically. This situation is not mentioned in the approach. In addition,

Russ et al. [28] have pointed that a scale and speed are major problems of single point

connection (like a proxy). Therefore, adding proxy to solve the latency problem may

become unmanageable and unavailable.

In [9], the authors have proposed Quality of Service (QoS) framework using the

SDN technologies and test the framework in failure-conditions. This study shows that

an effectively high QoS can be achieved by prioritization different traffic. In [10], the

authors have proposed queuing and failure recovery functionalities for OpenFlow in in-

band control network. The results of the queuing functionality show that control traffic

can be served with the highest priority and hence, data traffic cannot affect the

communication between the controller and a switch. This study proposes to separate a

queue for control and data traffic, serving the control traffic queue before the data traffic

queue. The queues are provided by OF-Config (OpenFlow Configuration and

Management Protocol) and OVSDB (Open vSwitch Database Management Protocol).

The queues are controlled by Linux traffic control commands (e.g., Reference,

Trafficlab1.1, and Trafficlab1.3 switches). Yet, the proposed solutions in [9, 10] have

not designed to prioritize different types of control messages. The mechanism of this

work also needs vendor specific options to handle queue priority. Moreover, this work

is only designed for the in-band control network, and cannot be deployed for the out-

of-band control network.

Traffic prioritization for OpenFlow has also been standardizing in [8]. This work

is proposed to optimize OpenFlow protocol by appending a priority tag to the

OpenFlow packet-in message and adding the Priority-based Flow Rule Request

Message Processing Mechanism (PFRRMPM) at the switches and controllers. The

PERMPM defines two modules, namely flow rule request sending module and flow

rule request receiving module. Each module contains a service-type-based priority

table to classify packet priorities. For instance, timely services (such as, the video

streaming) possess a higher priority, compared to the background traffic. This solution

can help the data flow with delay sensitivity to acquire the forwarding rule with shorter

waiting delay, when there are excess flow rule request messages in the SDN. However,

by adding priority tag to the OpenFlow packet-in messages, this work would

significantly cause an overheard to the size of the control messages. In contrast, our

work does not have such an overhead since it uses the existing DS field in the standard

IP header of the control messages for priority marking. In comparison to ours, this

work aims to support both in-band and out-of-band control networks as same as our

work. Yet, this work has no detail of how to classify different traffic priorities in their

design. It is only an initial design, with no prototype. There has been no experiment and

performance evaluation to test their design. Our work has proposed more details for

prioritizing different traffic, and different types of OpenFlow messages. We have also

implemented the prototype of our design. Furthermore, experiments and performance

evaluations have been done to demonstrate the success of our design in the out-of-band

control network. We also expect positive results in the in-band control network.

RESEARCH METHODOLOGY

 Overview of Research Methodology

This thesis aims to propose and evaluate a new design (called a Priority-based

Service Scheduling Policy for OpenFlow) to mitigate the delay problem for high-

priority OpenFlow packet-in messages, based on packet contents or a specific user.

Figure 13 Overview of Research Methodology

Figure 13 shows the overview of research methods. For problem definition, delay

in OpenFlow network is focused in this thesis. we will further describe delay problems

and our solution in Chapter 4. Previous solutions are discussed in Chapter 2. In

summary, some solutions support only in-band control network, whereas some

solutions support only out-of-band control network. Although the solution in [8] has

proposed an initial design to fix this problem in both in-band and out-of-band control

networks, but with a rather high overhead for traffic tagging. For implementation and

evaluation, there are three performance evaluation techniques (i.e., analytical model,

network simulation and measurement testbed). We implement a prototype on network

simulation and describe the reasons for choosing it in Section 3.2. The objective of this

thesis is to design a solution for helping an OpenFlow message with shorter delay in

acquiring forwarding rules in SDN. So, we describe delay in SDN and other parameters

that will be used for performance metrics in Section 3.3.

21

 Implementation and Performance Evaluation Techniques

For implementation, we implement a prototype on the ns-3 [13], based on the

OpenFlow module version 1.3 for ns-3 [45]. For performance evaluation,

Puangpronpitag [46] has investigated various of evaluation techniques including

analytical model, network simulation and measurement testbed.

 Analytical Model

An analytical model uses a mathematical modeling to evaluate proposed

technique. An effectiveness of this model involves in the estimation and classification

patterns of data. The results are commonly reported in terms of the estimated means

and variances. This model may not be applied to evaluate our proposed method.

 Network Simulation and Emulation

Simulation is a widely used tools to evaluate studies, both in academic research

and industrial. It can provide the dynamic behavior of complex networks. There are

several simulation tools (e.g., OMNeT [47], OPNET [48], ns-2 [49], ns-3 [13] and so

on) to provide various of network environment. In general, these tools are based on an

event-based stochastic technique. This technique is a set of full events and time to

compute a network scenario. Each event (called sequence) contains specific time to

process. Network emulation using virtualization technologies to provide realistic

physical links, and analyze network behaviors in a discrete situation.

According to ns-3 website [12], ns-3 is a discrete-event network simulator for

Internet systems, targeted primarily for research and educational usage. The ns-3

project is designed, following to the popular ns-2 simulator. ns-3 is also free software,

licensed under the GNU GPLv2, and is publicly available for research, and

development. The goal of the ns-3 project is to develop a preferred open simulation

environment for networking research. ns-3 supports research on both IP and non-IP

networks. In ns-2, simulation scripts are written in OTcl script, but simulation scripts

in ns-3 are written in C++. ns-3 provides better support than in ns-2 for the following

items:

 Modularity of components,

 Scalability of simulations,

 Integration of externally developed code and software utilities,

 Emulation,

 Tracing and statistics,

 Validation.

 Measurement Testbed

A testbed network consists of specific hardware and software to evaluate an

approach. To make a testbed, the combination of hardware and software is required to

run the experiments. This testbed may be difficult to perform due to unmanageability

and high cost. Puangpronpitag [46] has argued that several parameters in the testbed

22

may be disturbed by unpredictable parameters. So, the experimental results may be

misled.

 Performance Metrics & Parameters

In the standardization, IETF published several RFCs to provide performance

metrics for IP networks (presented in Table 6).

Table 6 Metrics/Parameters of IETF IPPM RFCs

Category IETF IPPM RFCs [50]

Framework 2330

Sampling 2330

3432

Loss 2680

Delay 2679(One-way)

2681(Round-trip)

3391 (Delay Variation)

Availability 2678

According to Hanemann et al. [51], the authors have summarized from [50],

including the set of elementary metrics to indicate network performance. There are four

main elementary metrics, namely availability, loss & error, delay and throughput.

The availability is considered that how robust the network (i.e., percentage of

time to run without any problem). The loss & error indicate the network congestion

conditions or transmission error, such as radio signal problem. The delay also indicates

the network congestion. The delay is measured either one-way delay (time to transmit

from source until receiving at destination), or round-trip delay (one-way delay from

source to destination plus one-way delay of destination sent acknowledgement back).

There are several delays in computer networks (i.e., processing delay, queuing delay,

transmission delay, propagation delay). In SDN, delay measurements are quite different

from traditional networks. The throughput indicates amount of data that a user can

transfer through network in time unit. Hence, we will use the following performance

metrics to evaluate our approach:

 Delay in SDN

Delay is a crucial index of the operation efficiency of SDN networks, especially

for real-time applications (such as Voice over IP). For the event of table-miss in

OpenFlow switches, a data packet will be encapsulated into an OpenFlow packet-in

message. The message is then sent to a controller to acquire forwarding rule. In case of

network congestions, this OpenFlow packet-in message can cause an increase of the

delay. Moreover, in an in-band control network, OpenFlow control messages may wait

in queue and may be dropped due to the competition with data packets. There have been

several studies on the delay in SDN, such as Long et al.[8], Hsiao and Chang [52]. The

23

delay measurement of this work is based on these previous studies. The details are

described as follows.

Figure 14 Delay measurement

As shown in Figure 14, delay of a data packet can be measured as the summation

of transmission time (T1, T2, T3), and delay in each switch or each hop delay (D1, D2).

T1 is a transmission time, counting the time from a source node to a switch S1. D1 is

the hop delay, counting the time from switch S1 sending a packet-in message to the

controller until switch S1 receiving a packet-out message (i.e. acquiring forwarding

rules). This time includes processing time at both switch S1 and the controller, queuing

delay at both switch S1 and the controller, and transmission time of the packet-in and

packet-out messages. For the next hop, T2 is a transmission time from switch S1 to

switch S2. The controller can look at the network end-to-end while making instruction

for the switches because it has a full physical and logical view of the network topology.

So, flow rules of switch S2 are known. These rules can be installed automatically [53].

So, the time to acquire forwarding rules will be excluded from D2. For this reason, D2

is obtained by the summation of processing delay in the flow-tables (TCAM packet

matching delay) and queuing delay in switch S2. Experimental results of this work will

be evaluated in term of this delay.

 Packet Loss

Packet loss is defined as fraction of the total transmitted packets that have not

been received at the receiver. In this work, packet loss is described as the percentage of

packets lost with respect to packets sent. Packet loss is generally caused by network

congestion. In SDN, packet loss in control links directly affects data traffic. Packet loss

can be obtained as follows:

𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑒𝑛𝑡
× 100

 Throughput

Throughput is defined as the rate of successful packets delivered over a

communication channel. Throughput is usually measured in bits per second (bps). In

24

SDN, network congestion in control links can reduce the throughput of both control

and data traffic. Throughput can be obtained as follows:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 (𝑏𝑖𝑡𝑠)

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛

 Overhead of PMT

According to TCAM operations, the OpenFlow module in ns-3 [45] considers the

concept of virtual TCAM to estimate the average searching time of flow tables. To

provide a more realistic delay, this module uses sophisticated search algorithms for

packet matching such as binary search trees.

The following equation is used to estimate the processing time of flow tables:

Processing time of flow tables = 𝐾 × log2(𝑛)

where K is the processing time for a single TCAM operation; n is the number of

entries on pipeline flow tables. For our design of PMT, a binary search tree is used for

packet matching in the PMT. So, the following equation is used to estimate the

processing time of PMT:

PMT processing time = 𝐾 × log2(𝑚)

where K is previously mentioned; m is the number of rules in PMT. Due to the same

processing time of single TCAM operation between flow tables and PMT, the

following equation can be used to estimate the processing time of flow tables after

adding the delay of the PMT:

The processing time flow tables and PMT = 𝐾 × log2(𝑛 𝑥 𝑚)

PMT adds some overhead in a switch. So, this overhead will be evaluated in Chapter

5.

 Result Analysis

According to Wang and Xia [54], there are three main components (network

topology, traffic model and performance metrics) to get the results from network

simulators as shown in Figure 15.

Figure 15 Three components of network simulation tool

Results

Network
Topology

Traffic Model
Performance

Metrics

25

 For network topology, a parking-lot topology is used to evaluate our proposed

design. This topology is suitable to evaluate the situation in network unsuitable, such

as the competition among control traffic in an out-of-band control network (further

described in Chapter 5). For traffic model, we define several traffic models to

experiment (further described in Chapter 4). Finally, the performance metrics have

previously been described in Section 3.3.

If an experiment is simulated/measured repeatedly, the result will be different

each time. In Statistics, a confidence interval is a type of estimation, statistically

computed several results. In this work, each simulation will be run 50 times using a

different Random Number Generator (RNG) seeds to get the averaged results, quoted

with error bars with respect to confidence intervals of 95%.

 Testing and Validation

Ns-3 [13] provides tools to allow for both model validation and testing scripts.

These scripts perform self-validation that contains a specific set of input with known

outputs. The simulated results of these scripts can notify the user whether pass or fail.

So, our proposed design will be validated by using these scripts.

DESIGN

 Problems and Solution Design

Figure 16 Overview of centralized control in SDN

In the centralized controller environment, there may be several switches under

the same controller, resulting in the bandwidth competition among OpenFlow control

messages in the out-of-band control network (as show in Figure 16). This competition

could increase the transmission delay of data traffic. Without considering different data

traffic types and prioritizing their control traffic properly, some delay sensitive services

may finally fail. Network inefficiencies may then occur in SDN. Hsiao et al. [52] has

previously pointed out that SDN suffers from the transmission delay, and this

transmission delay is a significant issue of transmission quality for network operators.

Furthermore, the situation in the in-band control network would be even worse

than the out-of-band control network. There is an extra competition between OpenFlow

control messages and data packets. Without giving higher priority, the OpenFlow

control messages may be dropped. This should cause the failure of forwarding data

traffic at the end.

Moreover, different customers of a network provider may be under different

Service Level Agreements (SLA). Up to the agreement between the provider and their

customers, different customers may be treated differently in terms of transmission

delay. In this regard, it is necessary to be able to prioritize the control messages of some

specific customers differently according to their SLA.

27

Hence, this thesis proposes a Priority-based Service Scheduling Policy for

OpenFlow (PSO). The purpose of PSO is to give a higher priority for control traffic in

the in-band control network. Furthermore, PSO provides different priorities for

OpenFlow control messages, based on contents/services (data traffic types) and/or

customers (according to their SLA) for both in-band and out-of-band control networks.

 Design of Priority-based Service Scheduling Policy for OpenFlow (PSO)

Figure 17 SDN-enabled Ethernet switch

Source: [55]

According to the SDN-enable Ethernet switch (as shown in Figure 17), Benjamin

et al. [55] have proposed to separate between outgoing ports and controller ports (SDN

interfaces). Unmatched packets are sent from the switch to the controller via the SDN

interface, while matched packets are forwarded to the outgoing ports according to the

action, specified in the flow tables. We propose a design for the in-band control network

as follows. For any OpenFlow switches, which are not connected to the controller, they

will be connected to the next switch via an SDN interface. So, the unmatched packets

will be forwarded to the next hop’s SDN interface until reaching the controller. For our

design, this interface will be used to manage both OpenFlow messages and data packets.

In general, there is no queuing functionality, proposed in the OpenFlow protocol

[15]. All messages are served equally. So, we propose Priority-based Scheduling Policy

for OpenFlow (PSO) to provide a queuing mechanism. This queuing mechanism

automatically prioritizes OpenFlow messages serving in queues before data traffic.

 PSO Modules

Figure 18a) shows the architecture of traditional OpenFlow switches. Generally,

an OpenFlow switch looks up all incoming packets from an IN_PORT queue to match

with its flow tables. The incoming packets are then served at an OUT_PORT queue, by

taking actions according to the rule in the matched flow entry. In general, queue

management is FIFO (First In First Out) with a drop-tailed algorithm. All packets are

treated equally. According to our PSO design (illustrated in Figure 18b), PSO modules

are embedded into both OpenFlow switches (PSO switch module) and controllers (PSO

28

controller module) respectively. These modules provide a special queuing mechanism

to automatically prioritize OpenFlow messages and data traffic.

Figure 18 Traditional OpenFlow Switch vs. OpenFlow switch with PSO

29

Figure 19 SDN interfaces

Instead of FIFO queue (as mentioned in Chapter 2), a PSO switch module

provides special queue management on SDN interfaces of the OpenFlow switch. For

the out-of-band control network, the SDN interface (or an SDN port) of an OpenFlow

switch is a specific port of that switch, directly connecting to the OpenFlow controller

[55]. As shown in Figure 19a, port-1 of the OF-switch 1, port-1 of the OF-switch 2, and

port-1 of OF-switch 3 are SDN interfaces. For the in-band control network, some

specific ports on each switch are deployed to pass OpenFlow control messages to the

controller. We also call them SDN interfaces. Some of these SDN interfaces may

directly connect to the controller, for example, port-1 of the OF-switch 1 (as shown in

Figure 19b). Otherwise, some SDN interfaces on the in-band control network may

indirectly connect to the controller via the other switches. For example, port-2 of the

OF-switch 1, port-2 and 3 of the OF-switch 2, and port-2 of OF-switch 3 are SDN

interfaces (as shown in Figure 19b). As previously mentioned, these SDN interfaces in

the in-band network could suffer the delay due to the competition between OpenFlow

control messages and data packets transmitting over the same interface. Our PSO switch

module will mitigate this problem by providing special queue management on these

interfaces to prioritize OpenFlow messages over data packets.

At the controller, a PSO controller module will provide special queue

management for all interfaces to prioritize OpenFlow messages.

30

Figure 20 The components of PSO modules

Both PSO modules consist of a traffic classifier, multiple queues, and a packet

scheduler (as illustrated in Figure 20). The traffic classifier differentiates packets by

using a Policy Map Table (PMT). The multiple queues are internal queues for different

priority traffic. The packet scheduler is a packet prioritization scheduling mechanism.

The details of the prioritization will be further discussed in next section. The PSO

controller module is designed to follow the prioritization set by the PSO switch module.

It has a queuing mechanism corresponding to the PSO switch module.

 Traffic Classifier

For any traffic arriving at an SDN interface, a traffic classifier will differentiate

traffic according to a set of predefined rules in a Policy Map Table (PMT). The rules

must be set by a network administrator at the controller. Otherwise, the traffic will be

treated equally. The PMT will then be copied to all OpenFlow switches in the network

using OFPT_SET_CONFIG, which is an OpenFlow control message for switch

configuration. Each rule contains traffic type, match fields, and action (as shown in

Figure 21. The traffic classifier will match the arriving traffic with traffic type and

match fields, then follows the action of the matched record.

Traffic type Match fields Action

Figure 21 Policy Map Table (PMT)

31

Table 7 Traffic types

Traffic type no. Traffic type description

1 OpenFlow configuration messages, and OpenFlow

symmetric messages

2 OpenFlow packet-in message, OpenFlow packet-out

messages, and other OpenFlow control command

messages

3 Other OpenFlow messages

4 data packets

traffic type is a field to specify different types of traffic, as shown in

32

Table 7. In this work, we predefine four traffic types that should be treated with

different priorities accordingly. The first type includes OpenFlow configuration

messages (e.g., OFPT_SET_CONFIG) and OpenFlow symmetric messages (e.g.,

OFPT_ECHO_REQUEST, OFPT_ECHO_REPLY). The second type includes

OFPT_PACKET_IN, OFPT_PACKET_OUT messages and other control command

messages. The third type includes other OpenFlow control messages, such as

OFPT_TABLE_STATUS. Finally, the forth type includes data packets. In the in-band

control network, the data packets may share the same link with OpenFlow control

messages. So, we give OpenFlow control messages higher priorities than data packets.

Among the OpenFlow control messages, we give three different priorities as shown in

the

33

Table 7. OpenFlow configuration messages are given the highest priority to

ensure that any configurations by network administrators work out on time. Packet-in

messages (OFPT_PACKET_IN), packet-out messages (OFPT_PACKET_OUT) and

other control command messages are given a higher priority than other OpenFlow

control messages since they carry important instructions between the controller and the

OpenFlow switches. For the details of the types of OpenFlow control messages, they

can be found from [15]. These predefined traffic types and priorities are also flexible,

and may be specified differently by network administrators for different organizations.

match fields is exactly the same as match fields of flow tables, which details are

given in the OpenFlow specification [20]. They contain several header fields to match

against the header of data packets. The match fields can help specify application

services (for example, protocol=TCP port=80 is specified “http” service). These match

fields may also help specify the customers (such as, by looking at a specific source or

destination IP addresses).

action contains an action defining how the traffic should be treated by the packet

scheduler. action may be “setting DSCP values”, or “setting output queue ID”.

34

Example-1: In an out-of-band control network, a PMT is defined as follows:

Rule #1: traffic_type=1, action=dscp:CS7

Rule #2: traffic_type=2, ip_proto=17, udp_dst=20000, action=dscp:CS6

Rule #3: traffic_type=2, action=dscp:CS5

Rule #4: traffic_type=3, action=dscp:CS4

From example-1, a PMT contains four rules. Rule #1 sets DSCP header of packets

to CS7 for all OpenFlow configuration and OpenFlow symmetric messages. This is to

ensure that any configuration commands by network administrators should get the

highest priority. Rule #2 gives the second priority to OpenFlow packet-in/packet-out

messages of real-time services (UDP port 20000) by setting their DSCP header to CS6.

Rule #3 gives the third priority to OpenFlow packet-in/packet-out message of other

services by setting their DSCP header to CS5. The last rule (Rule #4) gives the lowest

priority to other OpenFlow messages. In summary, example-1 differentiates traffic by

looking at its traffic types, and its services (using match-fields), and then marks its

priority by setting DSCP header. These DSCP values will be later considered by a

packet scheduler to handle the traffic according to its priority (such as using Weighted

Fair Queue (WFQ)).

Example-2: In an out-of-band control network, a PMT is defined as follows:

Rule #1: traffic_type=1, action=queue_id:0

Rule #2: traffic_type=2, ipv4_dst=202.28.34.1/26, action=queue_id:1

Rule #3: traffic_type=2, ipv4_src=202.28.34.1/26, action=queue_id:1

Rule #4: traffic_type=2, action=queue_id:2

Rule #5: traffic_type=3, action=queue_id:3

From example-2, a PMT contains five rules as follows. Rule #1 is to set

queue_id=0 (the highest priority queue) for all OpenFlow configuration and symmetric

messages. This is to give the highest priority to configuration commands from network

administrators. Rule #2 and Rule #3 are to set queue_id=1 (the second highest priority

queue) for OpenFlow packet-in/packet-out messages of a specific customer (source or

destination IP address=202.28.34.1) since this customer may have a special agreement

with the network provider. Rule #4 is to set queue_id=2 (the third highest priority

queue) for OpenFlow packet-in/packet-out messages of all other customers. Rule #5 is

to put all other OpenFlow messages into queue_id=3 (the lowest priority queue). The

packet scheduler of this case manages output queue using Priority Queue.

Example-3: In an in-band control network, a PMT is defined as follows.

Rule #1: traffic_type=1, action=dscp:CS7

Rule #2: traffic_type=2, action=dscp:CS6

Rule #3: traffic_type=3, action=dscp:CS5

Rule #4: traffic_type=4, action=dscp:copy

In this example, there are both OpenFlow control messages and data packets,

competing on the same connection due to an in-band control network. Rule #1 will set

DSCP header of packets to CS7 for all OpenFlow configuration and symmetric

messages. This is to give the highest priority to configuration commands by network

35

administrators. Rule #2 gives the second priority to OpenFlow packet-in/packet-out

messages, and other OpenFlow control command messages, by setting their DSCP

headers to CS6. Rule#3 gives the third priority to other OpenFlow messages, by setting

their DSCP headers to CS5. Finally, Rule#4 gives the lowest priority to data packets,

and set their DSCP headers to be equal to the DSCP value inside the data packets. In

this case, DSCP of the data packets may be previously set to give different priorities.

These DSCP values of data packets should be defined less than CS5. In the other case,

DSCP of the data packets may not be set; thus, all data packets are treated equally.

These DSCP values of OpenFlow control messages and data packets will be then

considered by a packet scheduler to schedule the traffic according to their priorities

(such as using WFQ).

Example-4: In an in-band control network, a PMT is defined as follows.

Rule #1: traffic_type=1, action=dscp:CS7

Rule #2: traffic_type=2, ip_proto=17, udp_dst=20000, action=dscp:CS6

Rule #3: traffic_type=2, action=dscp:CS5

Rule #4: traffic_type=3, action=dscp:CS4

Rule #5: traffic_type=4, action=dscp:copy

From example-4, a PMT contains five rules in an in-band control network. Rule

#1 is the same as the one given in the example-3. Rule #2 gives the second priority to

OpenFlow packet-in/packet-out messages of real-time services (UDP port 20000) by

setting their DSCP header to CS6. Rule #3 gives the third priority to OpenFlow packet-

in/packet-out message of other services by setting their DSCP header to CS5. Rule #4

gives a lower priority (DSCP=CS4) than Rule #3 to other OpenFlow messages. The last

rule (Rule #5) gives the lowest priority to data packets, and set their DSCP headers to

be equal to the DSCP value inside the data packets. In this case, DSCP of the data

packets may be previously set to give different priorities. These DSCP values of data

packets should be defined less than CS4. In the other case, DSCP of the data packets

may not be set; thus, all data packets are treated equally. These DSCP values of

OpenFlow control messages and data packets will be then considered by a packet

scheduler to schedule the traffic according to their priorities (such as using WFQ).

Example-5: In an in-band control network, a PMT is defined as follows.

Rule #1: traffic_type=1, action=queue_id:0

Rule #2: traffic_type=2, ip_proto=6, ipv4_dst=202.28.34.1/26, action=queue_id:1

Rule #3: traffic_type=2, ip_proto=6, ipv4_src=202.28.34.1/26, action=queue_id:1

Rule #4: traffic_type=2, action=queue_id:2

Rule #5: traffic_type=3, action=queue_id:3

Rule #6: traffic_type=4, action=queue_id:4

 From example-5, a PMT contains six rules in an in-band control network. Rule

#1 is to set queue_id=0 (the highest priority queue) for all OpenFlow configuration and

symmetric messages. Rule #2 and Rule #3 give the second priority to OpenFlow packet-

in/packet-out messages to a specific customer (source or destination IP

address=202.28.34.1). This rule allows a specific customer to have a special agreement

with the network provider. Rule #4 is to set queue_id=2 (the third priority queue) for

OpenFlow packet-in/packet-out messages of all other customers. Rule #5 is to set

36

queue_id=3 (the fourth priority queue) to all other OpenFlow messages. The last rule

(Rule #6) is to put all data packets into queue_id=4 (the lowest priority queue). The

packet scheduler of this case should manage output queue using Priority Queue.

 Queue and Packet Scheduler

Multiple queues and a packet scheduler are last two components of PSO modules.

Instead of FIFO drop-tail queuing, PSO modules provide a queuing mechanism that can

prioritize different traffic. Weighted Fair Queue (WFQ) or Priority Queues (PQ) or min

rate [15] or other suitable queues can be deployed for this purpose. The multiple queues

are one or more internal queues, attached to a specific port (an SDN interface). These

internal queues are used to schedule out packets from the SDN interface.

After passing through the traffic classifier, packets will be differentiated

according to the rules in PMT. After that, the DSCP values of the packets may be set

(marked), or a queue ID may be specified. For the first case, the packet scheduler will

schedule the packets according to the DSCP values and scheduling mechanisms

(defined by the network administrator). For the second case, the packet scheduler will

map the specified queue ID directly to a specific internal queue.

For example, the traffic classifier may specify traffic priorities by marking DSCP

values of the IP header. These DSCP values can provide up to 64 traffic categories

without an extra-overhead. The traffic scheduler can then use WFQ to handle different

traffic priorities. In the other way, the traffic classifier may specify queue ID, and the

packet scheduler then uses PQ or min rate for different traffic types.

 Configuration of Policy Map Table

In general, a controller can set or query configuration parameters in an OpenFlow

switch using the OpenFlow configuration messages. In this work, our PMT is defined

by a network administrator at the controller, and distributed to OpenFlow switches

using configuration messages or suitable configuration protocol (i.e., OF-Config),

during the connection setup. The controller and switches then have the same PMT. The

configuration steps are as follows:

1) The administrator configures the controller paths for all switches.

2) The administrator creates rules in PMT according to the organization

policy at the controller.

3) The controller sends and updates PMT to all switches by using set

configuration messages.

4) The administrator can check the PMT of any switch by using get

configuration messages.

PERFORMANCE EVALUATION

 Network Simulation Scenarios

Figure 22 Network Scenario

The performance study will be conducted using the ns-3 [12]. The OpenFlow

module version 1.3 for ns-3 is based on [45]. All nodes (source and receiver nodes,

cross traffic nodes) implement first-in-first-out scheduling and drop-tail queuing.

Network simulation scenario is shown in Figure 22. Out-of-band network will be

evaluated. Each link of data traffic has a capacity of 200 Mbps. Each link of control

traffic has a capacity of 100 Mbps. A specific data traffic is set to 1000 Kbps, sent from

a source node to a receiver node. To make the competition among OpenFlow messages,

switch OF-1 has cross traffic. Cross-traffic nodes generate several data flows and send

them via switch OF-1 to the sink node. In this case, switch OF-1 will generate

OpenFlow packet-in messages (associated with the data flows), which increase a load

on CL-1.

Since the cross-traffic has increased, several OpenFlow packet-in messages are

sent to the controller. In this case, a load on a control link (CL-1) (as shown in Figure

22) is then increased. So, we define this load on CL-1 as Normalized Load (NL), and

NL can be obtained as follows:

38

 Experiment 1: a PMT for an out-of-band control network to give a priority for a

specific service

For experiment 1, a PMT is defined as shown in the Example-1 (as described in

Chapter 4). This PMT is to provide highest priority to OpenFlow messages of a specific

data traffic. In this experiment, a PMT contains four rules. This is to give that any

configuration commands by network administrators and OpenFlow packet-in/packet-

out messages of real-time services (UDP port 20000) should get the higher priority than

other traffic. The objective of this experiment is to test how the increase in load on a

control link (CL-1) impacts to data traffic, and to test the PSO in terms of throughput

and delay of a specific data traffic (high priority traffic)

 Experiment 2: a PMT for an out-of-band control network to give a priority for a

specific user/customer

 For experiment 2, a PMT is defined as shown in the Example-2 (as described in

Chapter 4). This PMT is to provide highest priority to OpenFlow messages of a specific

user/customer. The objective of this experiment is to test how the increase in load on a

control link (CL-1) impacts to data traffic, and to test the PSO in terms of throughput

and delay of a specific user/customer traffic.

 Simulation Results

To report the results, each simulation will be run 50 times to get the average

results, quoted with error bars with respect to confidence intervals of 95%.

 Experiment-1: a PMT for an out-of-band control network to give a priority for a

specific service

Figure 23 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)
Packet loss, b) Delay

39

Figure 24 Impact on a high priority data traffic: (a) Throughput, (b) Delay

Figure 23 a) shows packet loss of OpenFlow packet-in messages and OpenFlow

packet-out messages of high priority data traffic, comparing between OpenFlow with

PSO and traditional OpenFlow. Figure 23 b) shows the hop delay in switch OF-1 of

high priority data traffic, comparing between OpenFlow with PSO and traditional

OpenFlow.

 Under a low and medium NL (NL ≤ 0.8) over CL-1, the results have shown low

OpenFlow packet loss (0%) and low delay (2.2 ± 0.6 ms) of both OpenFlow with PSO

and traditional OpenFlow. However, at a high load (NL > 0.8), the congestion cause a

significantly high packet loss (5 ± 1.4 %) in traditional OpenFlow. In this case, as the

load increases, a switch drops more OpenFlow packet-in messages. After dropping, a

switch has to retransmit these messages after their timeouts. This finally increases hop

delay in switch OF-1 (83 ± 2.7 ms). Yet, even with a high load (NL > 0.8), OpenFlow

with PSO provides a lower OpenFlow packet loss, and a lower hop delay (22 ± 2 ms)

of switch OF-1, as shown in Figure 23 b).

Figure 24 shows throughput and delay of a high priority data traffic by comparing

between OpenFlow with PSO and traditional OpenFlow. In traditional OpenFlow, at a

high load (NL > 0.8), some buffered high priority packets are then dropped after their

timeouts because the OpenFlow control messages at CL-1 are dropped. So, the

throughput is reduced to 887 ± 52 Kbps, and the delay of a high priority data traffic is

increased to 103 ± 5 ms. However, in the OpenFlow with PSO even at a high load (NL

> 0.8), a higher throughput (992 ± 6 Kbps) of the specific data traffic can be provided.

The PSO can also provide a low delay (27.6 ± 2.8 ms) in comparison to the traditional

OpenFlow.

So, our PSO can help the data flow with high priority to acquire forwarding rules

with lower delay under network congestion at the control link. In case of the congestion

40

at the control link, traditional OpenFlow would cause a severe problem to the delay

sensitive services such as for Voice over IP.

 Experiment-2: a PMT for an out-of-band control network to give a priority for a

specific user/customer

Figure 25 OpenFlow packet of a high priority data traffic on a control link (CL-1): a)

Packet loss, b) Delay

Figure 25 a) shows packet loss of OpenFlow packet-in messages and OpenFlow

packet-out messages of high priority data traffic, comparing between our design

OpenFlow and traditional OpenFlow. Figure 25 b) shows the hop delay in switch OF-

1 of high priority data traffic, comparing between our design OpenFlow and traditional

OpenFlow.

Under a low and medium load (NL ≤ 0.8) over CL-1, the results have shown low

OpenFlow packet loss (0%) and low delay (4.2 ± 0.8 ms) of both our design and

traditional OpenFlow. However, at a high load (NL > 0.8), the congestion causes a

significantly high packet loss rate (2.6 ± 1 %) in traditional OpenFlow. In this case, as

the load increases, a switch drops more OpenFlow packet-in messages. After dropping,

a switch has to retransmit these messages after their timeouts. This finally increases hop

delay in switch OF-1 (98 ± 3.2 ms), as shown in Figure 25 a). Yet, even with a high

load (NL > 0.8), our design provides a lower OpenFlow packet loss, and a lower hop

delay (27 ± 2.3 ms) of switch OF-1, as shown in Figure 25 b).

41

Figure 26 Impact on a high priority data traffic: a) Throughput, b) Delay

Figure 26 a) shows throughput and delay of data traffic of a specific customer by

comparing between our design and traditional OpenFlow. In traditional OpenFlow, at

a high load (NL > 0.8), some buffered high priority packets are then dropped after their

timeouts because the OpenFlow control messages at CL-1 are dropped. So, the

throughput is reduced to 874 ± 47 Kbps, and the delay of a high priority data traffic is

increased to 108 ± 4 ms. However, in our design even at a high load (NL > 0.8), a higher

throughput (1000 Kbps) of the specific customer traffic can be provided. Our design

can also provide a low delay (33 ± 2 ms) in comparison to the traditional OpenFlow (as

shown in Figure 26 b).

So, our design can help the data flow with high priority to acquire forwarding

rules with lower delay under network congestion at the control link. In case of the

congestion at the control link, traditional OpenFlow would cause a severe problem to

some privilege user/customer.

 Discussion of In-band Control Network

For the in-band control network, we have designed PSO to prioritize OpenFlow

messages over data traffic. So, this mechanism would give positive results. However,

OpenFlow mechanisms for in-band control network are still at their early stage. There

are quite a few open-research issues to complete the design, such as bootstrapping

mechanisms (to establish a communication path between switches and a controller),

topology discovery mechanisms (to find the most suitable path from a switch to the

controller), control path recovery mechanisms (to recover from the control path failure).

Some studies (such as [56-58]) have initially investigated on the issues but still

unsolved. The previous experiments over the in-band control networks, are only

specific to each design. Therefore, we have not yet experimented on our PSO over the

42

in-band control network. The future work would be proposing several mechanisms,

required for in-band networks. However, it is not in the scope of this thesis.

 Analysis of PMT Overhead

For our PSO, the PMT adds some overhead in a switch. However, this overhead

is applicable for all situations (in examples 1-5 Chapter 4). For example, the maximum

rule of these examples is six rules (m=6). According to Chavas [45], K is to set 20 µs.

If flow tables have the minimum rule (n=1), the overhead of the flow tables plus PMT

could be obtained: 20 × log2(1 × 6) ≈ 52 µs. Figure 27 shows the values of TCAM

delay for more rules in PMT (including 64 rules), and more flow entries in the flow

tables. Summarily, the overall TCAM-delay overhead is acceptable (less than 0.3 ms).

Figure 27 TCAM processing time

 CONCLUSIONS AND FUTURE WORK

 Summary and Discussion

Internet technologies have been deployed to enable programmability. Therefore,

active networks and programmable networks were proposed to allow their users to

program the intermediate network devices. Recently, SDN is a new network paradigm

that has been introduced for both active and programmable networks. SDN has been

designed to separate control plane from data plane. Controllers are located in the control

plane, whereas network devices (such as switch/router) are located in the data plane.

OpenFlow has been deployed as a SDN protocol to communicate between both planes.

The decoupling of the control and data planes is related to the manageability in the

network. In particular, when the first data packet of a new flow arrives at a switch, the

switch then inspects each packet’s header and tries to match it with a flow entry in the

flow tables. If the header of the packet is not matched with any flow entry, the switch

generates an OpenFlow packet-in message and sent it to the controller to acquire a

forwarding rule. This may increase network load, and make the control plane a potential

bottleneck. In addition, since the flow tables of switches are configured in real time by

an external device, there is the extra delay introduced by its flow setup process.

In this thesis, we have investigated into the aforementioned delay problem and

proposed a design of Priority-based Scheduling policy for OpenFlow (PSO) as the

solution. PSO modules are designed to be embedded in both OpenFlow switches and

controllers. The purposes of PSO are: 1) to give the priority to control traffic in

competing with data traffic for the in-band control network, 2) to provide high-priority

OpenFlow packet-in messages of a specific traffic (such as real-time delay-sensitive

audio/video) or specific users (such as users with special Service Level Agreement) for

both in-band and out-of-band control networks. According to our design, PSO can be

controlled by network administrators by putting the priority policies into the Policy

Mapped Table (PMT). Our design has also proposed several PMT samples to prioritize

different traffic, users, control messages. To mark different traffic priority, our traffic

classifier module uses DS field [39] without adding any extra overhead to the traffic.

To experiment and evaluate our solution, this thesis has selected network

simulation as a research method. The prototype of PSO modules have been

implemented into the simulator by extending OpenFlow module version 1.3 for ns-3

[53]. Our experimental results in out-of-band control networks have shown that our

PSO can help the delay-sensitive get forward in time even under network congestion in

control links (with normalized load > 0.8), while the traditional OpenFlow switch fails

in the same situation. In comparison with other previous solutions, our solution have

less overhead, and support both in-band and out-of-band networks.

 44

For in-band control networks, we also expect the same results. Yet, the design of

several mechanisms in-band control network are still an open-research issue. So, it is

put as a future.

 Thesis Achievement

This work has evaluated the OpenFlow protocol, and proposed a new design of

OpenFlow protocol successfully. The major contribution of this work can describe as

follows:

1) This work has established a set of key performance evaluation criteria and

performance metrics/parameters to evaluate the proposed solution.

2) A performance study by network simulation (ns-3) of traditional OpenFlow

have been successfully completed. At a high load on control links,

traditional OpenFlow causes delay problems to delay sensitive services and

privilege user/customer.

3) The ideas learnt from the performance study of traditional OpenFlow have

been deployed to propose a novel design of an innovative OpenFlow to

differentiate traffic priorities.

4) A performance comparison between our new design and traditional

OpenFlow has been done, and demonstrated a few advantages of our

design. Under network congestion on control link, high priority traffic can

be served in time by Priority Queue together with our mechanisms.

 Future Work

Although several achievements have been claimed in this thesis, there would be

also some weaknesses. Several ideas have occurred during work on this thesis. The

following aspects discuss some restrictions of this thesis and the issues that would be

investigated as future work.

 Implementation and Complex Simulation Scenarios

In this work, network simulation scenarios are rather simple. However, these

simple scenarios are useful to evaluate the situation in network congestion in SDN.

There is no current simulation technology that can simulate networks of real size. Even

if the model could be scaled, suitable tools to reach effectively the results are still

difficult to find. So, the issues of simulation scale are remaining one of the simulation

issues.

Module of OpenFlow version 1.3 for ns-3 has been implemented by Chaven et

al. [45]. This module allows ns-3 to simulate OpenFlow networks, considering main

features of this version. Some features are not yet support:

1) OpenFlow channel encryption: Switches and controllers may communicate

through TLS connections. Since there is no TLS support on ns-3, the

OpenFlow channel is implemented over TCP connection.

 45

2) In-band control network: For in-band control network, controllers can

manage switches remotely over a shared network link. However, due to the

limitation of ns-3 modules and the uncompleted design of in-band

mechanisms, this thesis has not yet experimented to evaluate in the in-band

control environment. So, one of the future direction could be proposing the

mechanisms for the in-band networks on the open-research issues, and

experimenting on them.

 Prototyping and Measurement on Testbed

The performance evaluation in this thesis has relied only on the network

simulation. The network simulation is accepted by the research community and

industries. The network simulation should be correctly taken as the real world. Building

and prototyping a testbed are complex and expensive. However, after simulation,

prototyping and testing on the real test-bed would be a good idea. So, the next step

could be implementing and evaluating PSO on the real test-bed using a tool, such as

GENI testbed [59].

REFE REN CES

REFERENCES

REFERENCES

[1] B. Theophilus and A. Aditya, "Unraveling the Complexity of Network

Management," in USENIX Symposium on Networked Systems Design and

Implementation, pp. 335–348.

[2] A. Lara, A. Kolasani, and B. Ramamurthy, "Network Innovation using

OpenFlow: A Survey," IEEE Communications Surveys Tutorials, vol. 16, pp.

493-512, First Quarter 2014.

[3] T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, "The

SoftRouter Architecture," in ACM SIGCOMM Workshop on HOTNETS, 2004.

[4] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, et al.,

"Forwarding and Control Element Separation (ForCES) Protocol

Specification," IETF RFC-5810, March 2010.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, et al., "OpenFlow: Enabling Innovation in Campus Networks,"

SIGCOMM Compututer Communication Review, vol. 38, pp. 69–74, March

2008.

[6] ONF. (July 2017). ONF: Open Networking Foundation. Available:

https://www.opennetworking.org

[7] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S.

Azodolmolky, and S. Uhlig, "Software-Defined Networking: A

Comprehensive Survey," Proceedings of the IEEE, vol. 103, pp. 14–76,

January 2015.

[8] X. Long, W. Wang, X. Gong, X. Que, and Q. Qi, "Priority based Flow Rule

Request Message Processing Mechanism in the OpenFlow Switch," IETF

Internet-Draft, October 2016.

[9] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Gonçalves, R. Figueiredo, et

al., "Implementing Quality of Service for the Software Defined Networking

Enabled Future Internet," in Third European Workshop on Software Defined

Networks, Budapest, 2014, pp. 49–54.

[10] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, "In-band

control, queuing, and failure recovery functionalities for openflow," IEEE

Network, vol. 30, pp. 106-112, February 2016.

[11] K. He, J. Khalid, S. Das, A. Gember-Jacobson, C. Prakash, A. Akella, et al.,

"Latency in Software Defined Networks: Measurements and Mitigation

Techniques," ACM SIGMETRICS Performance Evaluation Review, vol. 43,

pp. 435–436, June 2015.

[12] K. He, J. Khalid, S. Das, A. Akella, L. Li, and M. Thottan, "Mazu: Taming

Latency in Software Defined Networks," University of Wisconsin-Madison

Technical Report, 2014.

[13] nsnam.org. (July 2017). ns-3. Available: https://www.nsnam.org

[14] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O.

Koufopavlou, "Software-Defined Networking (SDN): Layer and Architecture

Terminology," IETF RFC-7426, January 2015.

[15] Open Networking Foundation. (March 2015). OpenFlow Switch Specification

version 1.5.1 (Protocol version 0x06). Available:

http://www.opennetworking.org/
http://www.nsnam.org/

 48

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-switch-v1.5.1.pdf

[16] A. Morreale and M. Anderson, Software Defined Networking: Design and

Deployment: CRC Press, 2014.

[17] F. Hu, Q. Hao, and K. Bao, "A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation," IEEE Communications Surveys

Tutorials, vol. 16, pp. 2181-2206, Fourth Quarter 2014.

[18] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. Merwe,

"Design and implementation of a routing control platform," in Conference on

Networked Systems Design & Implementation, 2005, pp. 15–28.

[19] D. L. Tennenhouse and D. J. Wetherall, "Towards an active network

architecture," in DARPA Active Networks Conference and Exposition, New

York, NY, USA, 2002, pp. 2–15.

[20] W. Braun and M. Menth, "Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices," Future Internet,

vol. 6, pp. 302–336, 2014.

[21] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, and

D. Villela, "A Survey of Programmable Networks," SIGCOMM Computer

Communication Review, vol. 29, pp. 7–23, April 1999.

[22] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, et al.,

"NOX: towards an operating system for networks," SIGCOMM Computer

Communication Review, vol. 38, pp. 105-110, 2008.

[23] N. Feamster, J. Rexford, and E. Zegura, "The road to SDN: an intellectual

history of programmable networks," SIGCOMM Computer Communication

Review, vol. 44, pp. 87-98, April 2014.

[24] IRTF. (March 2017). Software-Defined Networking Research Group

(SDNRG). Available: https://datatracker.ietf.org/rg/sdnrg

[25] R. Ahmed and R. Boutaba, "Design considerations for managing wide area

software defined networks," IEEE Communications Magazine, vol. 52, pp.

116-123, July 2014.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, et al., "B4:

Experience with a Globally-deployed Software Defined Wan," in ACM

SIGCOMM, 2013, pp. 3–14.

[27] L. Schiff, S. Schmid, and P. Kuznetsov, "In-Band Synchronization for

Distributed SDN Control Planes," SIGCOMM Computer Communication

Review, vol. 46, pp. 37-43, 2016.

[28] W. Russ and Z. Shawn, "Cloudy-Eyed: Complexity and Reality with

Software-Defined Networks," The Internet Protocol Journal, vol. 19, pp. 33-

44, November 2016.

[29] POX project team. (July 2017). POX. Available:

https://github.com/noxrepo/pox

[30] D. Erickson, "The Beacon Openflow Controller," in ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, New York, NY,

USA, 2013, pp. 13–18.

[31] R. Izard. (July 2017). Project Floodlight. Available:

http://www.projectfloodlight.org

http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
http://www.projectfloodlight.org/

 49

[32] Linux Foundation. (July 2017). OpenDaylight. Available:

https://www.opendaylight.org

[33] ONF. (March 2017). ONOS. Available: https://onosproject.org

[34] RYU project team. (July 2017). Ryu SDN Framework. Available:

https://osrg.github.io/ryu

[35] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, "Network

Configuration Protocol (NETCONF)," IETF RFC-6241, June 2011.

[36] M. Bjorklund, "YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF)," IETF RFC-6020, June 2011.

[37] R. Gu and J. Wang, "SDN Controller Requirement," IETF Internet-Draft, July

2016.

[38] H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, "North-Bound

Distribution of Link-State and Traffic Engineering (TE) Information Using

BGP," IETF RFC-7752, March 2016.

[39] Open Networking Foundation. (July 2017). Special Report: OpenFlow and

SDN State of the Union. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-

Union-B.pdf

[40] S. Cotter. (July 2017). Reannz Deploys New Zealand's First Qrganisation-

Wide SDN Switch. Available: https://reannz.co.nz/news/reannz-deploys-new-

zealands-first-organisation-wide-sdn-switch

[41] R. Ahmed and R. Boutaba, "Design considerations for managing wide area

software defined networks," IEEE Communications Magazine, vol. 52, pp.

116–123, July 2014.

[42] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An

Architecture for Differentiated Services," IETF RFC-2475, December 1998.

[43] P. Almquist, "Type of Service in the Internet Protocol Suite," IETF RFC-

1349, 1992-07.

[44] P. Sköldström and K. Yedavalli, "Network virtualization and resource

allocation in OpenFlow-based wide area networks," in IEEE International

Conference on Communications (ICC), Ottawa, 2012, pp. 6622–6626.

[45] J. Chaves, C. Garcia, and R. Madeira, "OFSwitch13: Enhancing Ns-3 with

OpenFlow 1.3 Support," in The workshop on Ns-3, New York, USA, 2016, pp.

33–40.

[46] S. Puangpronpitag, "Design and Performance Evaluation of Multicast

Congestion Control for the Internet," PhD thesis, University of Leeds, School

of Computing, 2003.

[47] OpenSim Ltd. (July 2017). OMNeT++. Available: https://www.omnetpp.org

[48] OPNET Technologies. (July 2017). OPNET. Available:

http://opnetprojects.com

[49] ISI.edu. (July 2017). The Network Simulator - ns-2. Available:

https://www.isi.edu/nsnam/ns

[50] IETF. (March 2017). IP Performance Metrics (ippm). Available:

https://datatracker.ietf.org/wg/ippm

http://www.opendaylight.org/
http://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
http://www.omnetpp.org/
http://opnetprojects.com/
http://www.isi.edu/nsnam/ns

 50

[51] A. Hanemann, A. Liakopoulos, M. Molina, and D. Swany, "A study on

network performance metrics and their composition," Campus-Wide

Information Systems, vol. 23, pp. 268–282, 2006.

[52] T. Hsiao and W. Chang, "Network controller for delay measurement in SDN

and related delay measurement system and delay measurement method," US

Patent US9419878 B2, August 2016.

[53] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, "A NICE Way

to Test OpenFlow Applications," in USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), San Jose, CA, 2012, pp. 127–

140.

[54] G. Wang and Y. Xia, "An NS2 TCP Evaluation Tool," Internet-Draft, April

2007.

[55] J. Benjamin, L. Niels, and A. Kuipers, "Scalability and Resilience of

Software-Defined Networking: An Overview," CoRR, vol. abs/1408.6760,

2014.

[56] D. Kotani and Y. Okabe, "A packet-in message filtering mechanism for

protection of control plane in openflow networks," in ACM/IEEE Symposium

on Architectures for Networking and Communications Systems (ANCS), Los

Angeles, California, USA, 2014, pp. 29–40.

[57] S.-C. Lin, P. Wang, and M. Luo, "Control traffic balancing in software defined

networks," Computer Networks, vol. 106, pp. 260 - 271, 2016.

[58] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, "A Self-

Organizing Distributed and In-Band SDN Control Plane," in International

Conference on Distributed Computing Systems (ICDCS), 2017, pp. 2656-

2657.

[59] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, et

al., "GENI: A federated testbed for innovative network experiments,"

Computer Networks, vol. 61, pp. 5-23, March 2014.

BIOGRAPHY

BIOGRAPHY

NAME Mr. Piyawad Kasabai

DATE OF BIRTH October 4, 1986

PLACE OF BIRTH Nakhon Ratchasima Province

ADDRESS 85/1 M. 2 Rangka Yai,

Phimai sub-distric,

Nakhon Ratchasima Province 30110,

Thailand

POSITION Lecturer

PLACE OF WORK Udon-Thani Rajabhat University, Udon-Thani Province,

Thailand

EDUCATION 2009 Bachelor of Science in Computer Science,

 Mahasarakham University

2011 Master of Science in Information Technology,

 Mahasarakham University

2018 Doctor of Philosophy in Computer Science,

 Mahasarakham University

	titlepage

	acknowledgement

	abstract

	content

	chapter 1

	chapter 2

	chapter 3

	chapter 4

	chapter 5

	chapter 6

	references

	biodata

