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ABSTRACT 

 

 The development of general and efficient methods for the addition of N―H 

bond across a C―C multiple bond, hydroamination represent a significant challenge in 

both organic synthesis and homogeneous catalysis. Palladium- and gold-catalyzed 

hydroamination has seen an explosion of activity and has led to new methodologies in 

the synthesis of C―N containing molecule. 

  Both palladium and gold methods for catalyzed hydroamination of C-(tetra-O-

acetyl-β-D-galactopyranosyl)allene with a variety of aromatic amines have been 

successfully developed. 
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CHAPTER 1 

 

INTRODUCTION 
 

Carbohydrate-based starting materials are widely used in target-oriented 

syntheses of optically active compounds [1]. The important role of carbohydrates in 

many biological processes is evident, and tailored derivatives are discussed as 

promising leads for efficient pharmaceuticals [2]. Sugars or saccharides are the most 

abundant bio-molecule on the planet. They are important in a number of biological 

roles. Most obviously you will know them as a major component of your diet [3]. 

Sugars are essential feedstocks in biological systems and are useful substances because 

they are inexpensive, highly water-soluble, optically active materials. These properties 

can be exploited to prepare bioactive materials, chiral auxiliaries in asymmetric 

synthesis, and for functionalization of hydrophobic materials [4]. 

 

1.1 Hydroamination  

 

The hydroamination is a highly atom economical process in which an amine N-

H bond is added to an unsaturated carbon-carbon bond (Scheme 1.1). This reaction is a 

great potential interest for the waste-free synthesis of basic and fine chemicals, 

pharmaceuticals and other industrially relevant building blocks starting from 

inexpensive precursors (alkenes, alkynes, or allenes) [5-9]. The intermolecular 

hydroamination reaction of an amine with an unsymmetrical unsaturated carbon-carbon 

bond can be lead to either the Markovnikov or anti-Markovnikov product. The 

hydroamination of alkene or alkyne are providing a higher substituted amine or 

enamine, respectively (Scheme 1.1; Equation 1.1, 1.2), while hydroamination of 

unsymmetrical allene are providing allylic amines or enamine as products (Scheme 1.1; 

Equation 1.3). 
The intramolecular hydroamination of unsaturated carbon―carbon bond, is 

simply the addition of N―H across a C=C bond in an intramolecular fashion, illustrated 

in Scheme 1.2 [6]. The hydroamination/cyclization of an aminoolefin and aminoalkyne 

substrate leads to the cyclic amines and cyclic enamines product (Scheme 1.2 Equation 
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1.4, 1.5), while the aminoallene substrate can be the formation of allylic cyclic amine or 

cyclic enamine as products (Scheme 1.2 Equation 1.6). 

 

   
       1                   2                                                    3                                    4 

 

  
       5                   2                                                    6                                    7 

    
          11              

                                                                  anti-Markovnikov product 

           

Scheme 1.1 Hydroamination of unsaturated carbon-carbon bond 

 

In generally, hydroamination reactions are hindered by two major problems: 1) 

a high activation barrier for the direct addition of amines across carbon-carbon multiple 

bonds exists which arises from electrostatic repulsion between the electron lone pair at 

the nitrogen atom and the electron-rich π-bond, and 2) the general negative reaction 

entropy ∆S° of the reaction is responsible for the fact that the equilibrium of 

hydroamination reaction is shifted towards the starting materials at the higher 

temperatures that are necessary to overcome the activation barrier [7].  

 

  8                   2                                                    9                                    10 

(1.1) 

(1.2) 

(1.3) 

Markovnikov product       
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            12                                                                 13                                 14 

 

     
            15                                                                 16                                 17 

 

     
            18                                                                 19                                 20 
 

Scheme 1.2 Intramolecular hydroamination of unsaturated carbon-carbon bond 
 

Hence, there is a catalyst required to open an alternative, low-energy pathway 

by activating one or both of the reaction partners. The hydroamination can be assisted or 

catalyzed by alkali metal ions, lanthanide complexes, or transition metal, which allow 

the processes to be performed under milder conditions [6]. 
 

1.2 Palladium catalyzed reaction of allenes 
 

Allenes are three-carbon functional groups possessing a 1,2-diene moiety and 

serve as potential precursors in the synthesis of highly complex and strained target 

molecules of biological and industrial importance [10]. The first synthetic allene can be 

dated back to as early as 1887, and its structure was confirmed in 1954. Allenes can also 

be found in many natural sources. Due to the nature that these compounds would be 

thermally unstable, for a long period of time, their chemistry and synthetic routes had 

not been well established. However, due to the presence of the unique cumulated diene 

structural unit, allenes are a class of compounds with the following interesting 

properties: (1) with up to four substituents, methodologies starting from allenes provide 

synthetic diversity; (2) the electron density and the reactivity of each carbon atom of 

allene unit can be tuned by the substituent effect; (3) the inherent axial chirality  

(1.4) 

(1.5) 

(1.6) 
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provides a challenge for the highly stereoselective synthesis of optically active allenes 

and the transfer of the chirality of the allenes into final products [11]. 

Palladium-catalyzed reaction of allenes with carbon and heteroatom 

nucleophiles leading to the formation of carbon―carbon and carbon-heteroatom bonds 

generally proceed with the involvement of a π-allylpalladium intermediates, which 

plays an ever increasing role in organic synthesis [10]. The first report on Pd-catalyzed 

reaction of allenes with amines and malonate was given by Coulson in 1973 [12].  

A nucleophilic addition on allene can occur on three carbon atoms depending 

on the substituents at the terminals. All three possible regioisomers can be selectively 

produced by properly substituting the allene at its terminals (steric and electronic effect) 

(Scheme 1.3) [10,13]. 

 

            α-adducts    β-adducts    γ-adducts 

       21                                                  22                           23                            24 

 

 
 

Scheme 1.3 Palladium-catalyzed addition of pronucleophiles to allenes 

 

It was observed that alkoxy (aryloxy) allenes afford α-adducts, arylallenes 

bearing an electron-withdrawing group at the para-position afford β-adducts, and 

dialkyl-substituted allenes afford γ-adducts [10]. 

Pd-catalyzed and promoted reactions of allenes can be classified into three 

groups. The first one is promoted by Pd(II). For example, aminopalladation of hexa-1,2-

dienyl-6-amine with Pd(II) generates the alkenylpalladium intermediate 26, which is 

converted to functionalized alkene 27 with generation of Pd(0). In order to make the 

reaction catalytic, Pd(0) has to be oxidized to Pd(II) with some oxidants [13]. 
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      25              26          27       28 

 

     
      28                                          29 

 

In the Pd(0)-catalyzed reaction of allene 32 with aryl halide, carbopalladation 

of allene with Ar―Pd―X takes place to give the π-allylpalladium intermediate 34, 

which is attacked by a pronucleophile to give 35. The catalytic reactions of this type 

have been extensively studied [13]. 

 

     
       30                                                     31 

 

      32              33              34                          35 

 

Facile Pd(0)-catalyzed reactions of 2,3-alkadienyl derivatives 36 with 

nucleophiles occur via the formation of methylene-π-allylpalladium intermediates 37, 

from which 1,2- and 1,3-dienes 38 and 39 are formed depending on the nature of the 

pronucleophiles [13]. 

        36         37                        39 

38 
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While, the Pd(0)-catalyzed reaction of allenes with pronucleophile are clearly 

different mechanistically from the reactions explained in the above. Attack of 

nucleophiles may occur at C‒1, C‒2, and C‒3 carbons of the allenes 40. Among them, 

attack at C‒3 to give 42 is predominant. Most importantly, reactions of allenes with 

pronucleophiles start by the oxidative addition of pronucleophiles to Pd(0) to generate 

H―Pd―Nu 43. The formation of 42 by hydrocarbonation can be explained in two 

ways in the case where Nu―H is the carbon pronucleophile. As one possibility, 

hydropalladation of one of the two double bonds occurs to afford the terminal palladium 

intermediate 44, which is stabilized by the formation of π-allyl complex 45, and 

reductive elimination provides the C‒3 adduct 42. Another possibility is 

carbopalladation to generate 46, and subsequent reductive elimination provides 42. Of 

these two possibilities, the hydropalladation mechanism is preferable [13]. 

 

 
        40                   41                         42 

 

 
    41                                                                 43 

 

     40           44                                 45                          42 

 

          40            46         42 
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1.3 Gold catalyzed organic transformation  

 

Gold has accompanied mankind from the very early days; no name of a 

chemist is associated with the discovery of the element gold. It is probably the only 

chemical element that literally every adult has heard about. A highly positive normal 

potential is responsible for a low reactivity and allows gold to occur in nature in 

elemental form, for example, as nuggets. Some of the oldest and some of the most 

beautiful ancient art is made of gold, and this stresses the impressive durability of this 

metal. It has always been precious, which is nicely reflected by the Greek myth of king 

Midas. Monetary systems based on the rare gold and consequently the desire to possess 

gold has been the driving force for all kinds of activities such as gold rushes to even the 

most hostile regions of earth, wars, the conquering of whole continents, and, to come to 

the more positive effects, for the early development of science and chemistry. Besides 

the alchemists, famous names like Archimedes and Rutherford are connected with gold 

[14]. 

The frequent use of gold in dental medicine, applications in the treatment of 

arthritis and recent investigations of the anticancer activity have proven that, unlike, for 

example, with nickel, no problems of allergic reactions are associated with gold. 

Metallic gold is highly biocompatible, but gold in ionic form is toxic. While the 

stoichiometric chemistry of gold has intensively and continuously been investigated, 

this close relationship between gold and chemical applications got lost during the 

development of catalysis reactions. The periodic table with 81 stable, nonradioactive 

elements offers only a limited number of building blocks to the chemists exploring 

catalysis. Therefore, they can hardly afford to skip one of the elements, but they indeed 

heavily neglected it. Probably a low catalytic activity was mistakenly deduced from the 

inertness of elemental gold that only dissolves in aqua regia or oxidants such as air, the 

latter only in the presence of strong ligands such as cyanide [14]. 

Out of the different oxidation states possible for gold, in the presence of 

organic substrates, gold(0), gold(I), and gold(III) are possible. In aqueous solution, in 

the absence of stabilizing ligands, gold(I) spontaneously disproportionate to gold(III) 

and gold(0). From stoichiometric chemistry and theoretical considerations for gold(I), it 

is known that the fragment R3PAu+ is isolobal to H+ and LHg2
+. Relativistic effects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



8 
 
reach their maximum in the periodic table with gold [14]; significant for catalysis is, for 

example, that in complexes gold(I) can be smaller than silver(I) [15]. Gold has only one 

isotope and thus lacks a characteristic isotope pattern in mass spectrometry [16]. The 

nuclear spin of gold is 3/2, but because of a very low sensitivity and a quadropole 

moment, only a few 79Au spectra in a highly symmetric environment have been 

reported. The diamagnetic character of both gold(I) and gold(III) conveniently allows 

the monitoring of catalysis reactions by NMR. Mössbauer spectroscopy can deliver 

information about the oxidation state. Ligand exchange processes, which are essential 

for catalysis, have been investigated. There is only little data on Au(I), which favors an 

associative mechanism. Au(III) also favors an associative mechanism; the reaction rate 

was reported to be higher than in the corresponding palladium and platinum but lower 

than in the nickel complexes [14]. 

Although there are many types of transformations catalyzed by gold 

complexes, a vast majority of them proceed through some very similar mechanistic 

steps and involve the activation of a π‐system (typically an alkyne or an allene, but 

sometimes even an alkene moiety) towards the attack of a nucleophile. A general 

pathway for these transformations is given in Scheme 1.4 [14,17]. The first step is 

always the formation of the catalyst's active species. The next step is the selective 

coordination of [Au] on the π‐system, which renders this moiety more electrophilic and 

activates it for the nucleophilic attack. 

The nucleophilic group can be nitrogenated (amines, imines etc.), oxygenated 

(alcohols, ethers, epoxides, aldehydes, ketones, esters etc.), sulfurated (thiols etc.) or 

carbonated (alkenes, alkynes, aryls, enols, enamines etc.). It can attack either in an inter‐ 

or in an intramolecular fashion. Given the excellent propensity of gold to undergo η2 to 

η1 migrations, the attack will result in the formation of two new C―[Au] and 

respectively C―Nu bonds.  
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Scheme 1.4 General mechanism of gold‐catalyzed transformations 

 

The final step is always the regeneration of the active species and the formation 

of final products. This happens usually by protodemetallation from the organogold 

intermediates, although alternatively other electrophiles can be used to trap these 

derivatives or direct eliminations can take place. 

 

1.4 Research objectives 

 

To developed methods for hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene using palladium and gold catalyst 

 

1.5 Scope of research 

 

1. The sugar allene, C-(tetra-O-acetyl-β-D-galactopyranosyl)allene was used as 

a starting material. 

2. Aliphatic and aromatic amine derivatives were used as nucleophiles. 

2.1 Aromatic amines: aniline, o-anisidine, m-anisidine, p-anisidine, m-

toluidine, p-toluidine, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 1-napthylamine, 

4-aminoacetophenone 

2.2 Aliphatic amines: morpholine, n-butylamine, n-octhylamine, 

benzylamine, and phenylhydrazine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



10 
 

3. Gold and palladium were used as catalysts. 

 

1.6 Expected results of research 

 

This research may find wide use in the laboratory for functionalization of C-

glycoside. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 
2.1 Intermolecular hydroamination of allenes 

 

 In 1992, Walsh and co-workers used zirconium bisamides Cp2Zr(NHAr)2 for 

the hydroamination of allene 47 to give the anti-Markovnikov addition product 49 

(Scheme 2.1) [18]. In 1995, Besson and co-workers used palladium complex/BrØnsted 

acid combinations for catalyzed hydroamination of mono-substituted allenes 49 with 

secondary amines to give a mixture of allylic amines 51 (hydroamination product) and 

52 in the presence of a Pd(dba)2/PPh3/Et3NHI catalytic system (dba = dibenzylidene-

acetone) (Scheme 2.2) [19]. These reactions have been improved (yields, reaction rates, 

and selectivity) to give only allylic amines by using 1, 1 -́bis(diphenylphosphino)-

ferrocene and acetic acid instead of PPh3 and Et3NHI, respectively (Scheme 2.3) [20]. 

 

  
       47                           48                                                        49 
 Ar = 2,6-dimethylphenyl 
 

Scheme 2.1 Zirconium-catalyzed conversion of allenes to imines 

   

 
           49            50                                               51                           52 
              R = n-C7H15, Ph;  R1R2NH = Et2NH, pyrrolidine, piperidine 

 

Scheme 2.2 Palladium-catalyzed hydroamination of mono-substituted allenes 
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      53           54                                                                     55 
               R = Ph, p-MeC6H4, p-CF3OC6H4 ; R1 = R2 = Bn, Ph; R1 = Ph, R2 = 2-naphtyl 

 

Scheme 2.3 Synthesis of allylic amines from mono-substituted allenes 

 

 In 2001, Johnson and Bergman used imidotitanium complexes (Cp2TiMe2) 

catalyzed hydroamination of allene 47 with amine 48 in C6D6 at 90 °C to give the anti-

Markovnikov addition product 49 (Scheme 2.4) [21]. In 2006, Schafer group and co-

worker used a bis(amidate)-bis(amido) titanium complex as a precatalyst for the 

intermolecular hydroamination of allenes 56 with amines 57 to give imines 58, which 

must be reduce by LiAlH4/Et2O to give substituted amines (Scheme 2.5) [22]. 

 

 
               47                           48                                                         49 
    Ar = 2,6-dimethylphenyl 

 

Scheme 2.4 Imidoitanium -catalyzed conversion of allenes to imines 

  

 
          56               57                                                               58 
    R = Ph; R´ = Ph, 2,6-dimethylphenyl 

 

Scheme 2.5 Bis(amidate)-bis(amido) titanium -catalyzed conversion of allenes to 

imines 
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 In the same year, Nishina and Yamamoto reported the intermolecular 

hydroamination of allenes 59 with aniline 60 takes place with gold(III) catalyst at 

ambient temperature in tetrahydrofuran to give corresponding allylic amine 61 in good 

to high yield. Furthermore, the axial chirality of allenes 62 can be transferred with very 

high ee values to the product 64 (Scheme 2.6) [23]. 

 

 
                59                 60                                                            61 

 

              

                62                 63                                                            64 
    Ar = Ph, CH3C6H4 (o-, m-, or p-) 

 

Scheme 2.6 Gold-catalyzed hydroamination of allenes with arylamine 

 

 Kinder and co-workers reported intermolecular hydroamination of 2,3-

pentadienyl benzoate 65 with benzyl carbamate in the presence of a 1:1 mixture of 

(NHC)AuCl and AgOTf at 23 °C to give (E)-4-(benzyloxycarbonylamino)-2-pentenyl 

benzoate 67 in good yield as a single regio- and diastereomerallylic (Scheme 2.7) [24]. 

 

 
    65                          66                                                         67 

 

Scheme 2.7 Synthesis of allylic carbamates from allenes 

 

 In another set of experiments, Zeng and co-workers reported intermolecular 

hydroamination of allene 68 with amine 69 in the presence of cationic (CAAC)gold(I) 
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complex afforded allylic amine 70 (Scheme 2.8) [25]. In the same year, Nishina and 

Yamamoto reported hydrofunctionalization of allene 71 with amine 72 in the presence 

of gold catalyst lead to formation of allylic amine 73 (Scheme 2.9) [26]. 

 

 
    68                    69                                                               70 

 

Scheme 2.8 Synthesis of allylic amines from hydroamination of allenes 

  

 
   71                    72                                  73 

 

Scheme 2.9 Hydrofunctionlization of allenes with amines 
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2.2 Intramolecular hydroamintion of allenes 

 

 In 1991, Gallagher and co-workers synthesized of 2,4-disustituted pyrrolidine 

75 from cyclization of allene 74 using silver tetrafluoroborate (AgBF4) as a catalyst 

(Scheme 2.10) [27]. 

 

 
   74          75 

 

Scheme 2.10 Synthesis of 2,4-disubstituted pyrrolidine 

 

 In 1998, Schierle and co-workers used silver tetrafluoroborate (AgBF4) for 

catalysed hydroamination/cyclization of allene 76 to give 77 in high yield (Scheme 

2.11) [28]. In the same year, Meguro and Yamamoto reported a method for synthesis of 

nitrogen heteroatom via palladium catalyzed intramolecular hydroamination of allenes 

(Scheme 2.12) [29]. 

 

 
            76                 77 

 

Scheme 2.11 Synthesis of pyrrolidine sugar precursor 

 

 
   78           79 

R= H, Ts, Tf 

 

Scheme 2.12 Palladium catalyzed intramolecular hydroamination of allenes 
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  In 1999, Amombo and co-workers synthesized of pyrrole derivatives by 

cyclization of allene 80 using KOtBu in DMSO at 50 °C (Scheme 2.13) [30]. 

 

 
           80                                                             81 

 

Scheme 2.13 Synthesis of pyrrole derivatives from allene 

 

 In the same year, Arredondo and co-workers reported intramolecular 

hydroamination/cyclization of 1,3-disubstituted aminoallene 82 using organo-lanthanide 

(Cp´2SmCH(SiMe3)2) as a catalyst (Scheme 2.14) [31]. In 2003, Ackermann and co-

workers used titanium complex for catalysed hydroamination of allene 84 to give imine 

85 as major product (Scheme 2.15) [32]. 

 

 
                               82                            83 

 

Scheme 2.14 Hydroamination of 1,3-disubstituted aminoallenes 

 

 
           84                  85 

 

Scheme 2.15 Titanium complex catalyzed hydroamination of allenes 
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 In 2004, Morita and Krause synthesized of 3-pyrroline 87 from cyclo-

isomerization of α-aminoallene 86 in the presence gold(III) chloride (AuCl3) in CH2Cl2 

at room temperature (Scheme 2.16) [33].  

 

  
        86                87 

R = Me, n-hexyl, Ph; R´= Bn, TBS 

 

Scheme 2.16 Gold(III) chloride-catalyzed hydroamination of allenes 

 

 In the same year, Hoover and co-workers reported hydroamination of 

substituted aminoallene 88 catalyzed by chiral titanium amino-alcohol complex to give 

89 and 90 (Scheme 2.17) [34]. 

 

 
              88                 89                  90 

 

Scheme 2.17 Intramolecular hydroamination of substituted aminoallenes 

  

 In 2006, Patil and co-workers synthesized of five and six membered nitrogen 

heterocycles from intramolecular hydroamination of allenes 91 in the presence of gold 

catalyst (Scheme 2.18) [35]. In the same year, Zhang and co-workers reported 

intramolecular hydroamination of N-allenyl carbamate 93 catalyzed by Au[P(t-Bu)2(o-

biphenyl)]Cl and AgOTf in dioxane at 25 °C to give amine 94 (Scheme 2.19) [36]. In 

2007, Lalonde and co-workers reported hydroamination of allene 95 using gold(I) as a 

catalyst to give 96 in high yield (Scheme 2.20) [37]. 
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        91                   92 

R=Ts, COOEt, Cbz, Bn, Nf 

 

Scheme 2.18 Synthesis of five and six membered nitrogen heterocycles from intra-

molecular hydroamination of allenes 

 

 
                    93                                     94 

 

Scheme 2.19 Intramolecular hydroamination of N-allenyl carbamates 

 

 
          95                 96 

 

Scheme 2.20 Gold(I)-catalyzed hydroamination of allenes 

 

 In 2009, Manzo and co-workers reported intramolecular hydroamination of α-

amino allenemide 97 using gold as a catalyst to give 2-vinylimidazolidinone 98 

(Scheme 2.21) [38]. 

 

 
                97                   98 

Scheme 2.21 Preparation of 2-vinylimidazolidinones 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 
 

3.1  Materials 

 

3.1.1 Instrumentation 

Nuclear magnetic resonance (1H NMR and 13C NMR) spectra were 

determined on Varian Mercury Plus 400 spectrometer (400 MHz) at Department of 

Chemistry, Khon Kaen University. Deuterochloroform (CDCl3) was used as solvent. 

Chemical shifts were given in parts per million (ppm) downfield from tetramethylsilane 

(TMS) at 0.00 ppm. Coupling constants (J) were reported in Hertz (Hz). Splitting 

patterns were designated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet), br (broad), dd (double doublet), dt (double triplet), app. t (apparent triplet).  

High resolution mass spectra (HRMS) were obtained with LC/Mass 

spectrometer (LC WATERS, PDA) and (Bruker Daltonics, micrOTOF) at Department 

of Chemistry, Chiang Mai University and Mahidol University, respectively. 

Optical rotations were measured with ADP 220 Polarimeter and the infrared 

(IR) spectra were recorded on a FTIR Perkin-Elmar Spectrum 1 spectrophotometer. IR 

spectra were recorded as a thin film on sodium chloride plates at the Central 

Instrumentation Unit, Faculty of Science, Mahasarakham University. 

3.1.2 Chromatographic systems 

Thin layer chromatography (TLC) was performed on silica gel 60 F254 

aluminum sheets. Flash column chromatography was used for purification some of 

products. Merck’s silica gels (40-60 mesh) were employed. Using a glass column dry-

packed silica gel according to the method of W. Clark Still (1978) [39]. 

3.1.3 Chemical reagents 

All commercially available reagents and solvents were used as received 

from Merck, Fluka and Aldrich Chemical and where appropriate anhydrous quality 

material was purchased.  
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3.2. Methods 

 

3.2.1 Synthesis of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 

 

 

99                        100            101 

 

The C-(tetra-O-acetyl-β-D-galactopyranose tetraacetate 101 was prepared 

according to the literature method [2,40,41]. Trimethylsilyl trifluoromethane sulfonate 

(TMSOTf) (14.8 mL, 82.0 mmol) and boron trifluoride dietherate (15.2 mL, 123.0 

mmol) were sequentially added dropwise over 15 min to a solution of β-D-

galactopyranose pentaacetate 99 (16.0 g, 41.0 mmol) and propargyl trimethylsilane 

(PTMS) 100 (16.0 g, 131.2 mmol) in anhydrous MeCN (200 mL). The reaction mixture 

was stirred for 4 h. at 0 °C, diluted with CH2Cl2 (200 mL), quenched with 1 M HCl (80 

mL) and then saturated beine (100 mL). The organic layer was separated. Dried 

(Na2SO4), filtered and filtrate was evaporated. Purification of the residue by column 

chromatography, eluting with 2:1 v/v hexane-diethyl ether, gave the product (10.6g, 

28.7 mmol, 71%) as colorless plates, mp 62-64 °C (diethyl ether). 

 
1H NMR (400 MHz, CDCl3): δ 5.43 (2H, d, J = 1.7, 1-H), 5.35 (1H, dd, J = 5.6 

Hz, 7-H), 5.23-5.27 (2H, m, 5-H, 6-H), 4.92 (2H, 2d, J = 5.6, 

9.2 Hz, 9-H), 4.24 (1H, d, J = 6.7 Hz, 5-H), 4.06-4.14 (2H, 

m, 4-H, 8-H), 2.05, 2.04, 2.03, 2.00 (12H, 4xs, 4xOCOMe). 
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3.2.2 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 101 with amines 

3.2.2.1 General procedure A 

 

        amines                    allylic amines               diallylated amines 

 

All reactions were performed under an atmosphere of air. A reaction tube 

was charged with the C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (1 equiv.), 

amines (3 equiv.), Pd salts (catalyst, 5-10 mol %), PPh3 (ligand, 5 mol%), carboxylic 

acid (10-100 mol%), LiCl or LiBr (additive, 5 mol%), and solvent (0.5 mL). The 

mixture was either stirred at room temperature or heated at 60 °C for 24 h, then the 

solvent was evaporated under reduced pressure, and the residue was purified by flash 

column chromatography on silica gel to give the products.  

3.2.2.1.1 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-

D-galactopyranosyl)allene with aniline 

According to the general procedure A, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), aniline 102 (0.81 mmol), 

Pd2(dba)3·CHCl3 (5 mol%), PPh3(10 mol%), CH3COOH (20 mol%) in tetrahydrofuran 

(THF) (0.5 mL) was stirred at 60 ºC for 24 h, then the solvent was evaporated under 

reduced pressure, and the residue was purified by flash column chromatography on 

silica gel, eluting with 2:1 v/v hexane-ethyl acetate, gave the mixtures of diallylated 

acetate 124 and diallylated amine 125 in 35% and 10% yields, respectively, along with 

trace amounts desired allylic amine 114. 

According to the general procedure A, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), aniline 102 (0.81 mmol), 

Pd(OAc)2 (5 mol%), trifluoroacetic acid (TFA) (20 mol%) in tetrahydrofuran (THF) 

(0.5 mL) was stirred at room temperature for 24 h, then the solvent was evaporated 
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under reduced pressure, and the residue was purified by flash column chromatography 

on silica gel, eluting with 2:1 v/v hexane-ethyl acetate, gave the mixtures of desired 

allylic amine 114 (42%) and diallylated amine 125 (12%) as a byproduct. 

3.2.2.1.2 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-

D-galactopyranosyl)allene with p-anisidine 

According to the general procedure A, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), p-anisidine 103 (0.81 mmol), 

Pd(OAc)2 (5 mol%), trifluoroacetic acid (TFA) (20 mol%) in tetrahydrofuran (THF) 

(0.5 mL) was stirred at room temperature for 24 h, then the solvent was evaporated 

under reduced pressure, and the residue was purified by flash column chromatography 

on silica gel, eluting with 2:1 v/v hexane-ethyl acetate, gave the desired allylic amine 

115 (16%). 

3.2.2.1.3 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-

D-galactopyranosyl)allene with p-nitroaniline 

According to the general procedure A, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), p-nitroaniline 104 (0.81 mmol), 

Pd(OAc)2 (5 mol%), trifluoroacetic acid (TFA) (20 mol%) in tetrahydrofuran (THF) 

(0.5 mL) was stirred at room temperature for 24 h, then the solvent was evaporated 

under reduced pressure, and the residue was purified by flash column chromatography 

on silica gel, eluting with 2:1 v/v hexane-ethyl acetate, gave the desired allylic amine 

116 (22%). 

3.2.2.1.4 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-

D-galactopyranosyl)allene with m-nitroaniline 

According to the general procedure A, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), m-nitroaniline 105 (0.81 mmol), 

Pd(OAc)2 (5 mol%), trifluoroacetic acid (TFA) (20 mol%) in tetrahydrofuran (THF) 

(0.5 mL) was stirred at room temperature for 24 h, then the solvent was evaporated 

under reduced pressure, and the residue was purified by flash column chromatography 

on silica gel, eluting with 2:1 v/v hexane-ethyl acetate, gave the mixtures of desired 

allylic amine 117 (25%) and diallylated amine 126 (3%) as a byproduct. 
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3.2.2.1.5 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-

D-galactopyranosyl)allene with 1-naphthylamine 

According to the general procedure A, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), 1-naphthylamine 106 (0.81 

mmol), Pd(OAc)2 (5 mol%), trifluoroacetic acid (TFA) (20 mol%) in tetrahydrofuran 

(THF) (0.5 mL) was stirred at room temperature for 24 h, then the solvent was 

evaporated under reduced pressure, and the residue was purified by flash column 

chromatography on silica gel, eluting with 2:1 v/v hexane-ethyl acetate, gave the 

mixtures of desired allylic amine 118 (17%) and diallylated amine 127 (6%) as a 

byproduct. 

3.2.3 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 

3.2.3.1 General procedure B 

 

 

          101                            amines                                               allylic amines 

 

All reactions were performed under an inert atmosphere of nitrogen 

(balloon). A reaction tube was charged with the C-(tetra-O-acetyl-β-D-galactopyrano-

syl)allene 101 (1 equiv.), amines (3 equiv.), gold-catalyst (10-20 mol%) and solvent 

(0.5 mL). The mixture was stirred at room temperature for 1-3 day, then the solvent was 

evaporated under reduced pressure, and the residue was purified by flash column 

chromatography on silica gel to give the product. The conditions for the highest yield 

for gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 

with several amines are reported below. 

3.2.3.1.1 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with aniline 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), aniline 102 (0.81 mmol), AuBr3 

(10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature for 3 
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day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 114 (82%). 

3.2.3.1.2 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with p-anisidine 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), p-anisidine 103 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 

for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 115 (61%). 

3.2.3.1.3 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with p-nitroaniline 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), p-nitroaniline 104 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 

for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 116 (47%). 

3.2.3.1.4 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with m-nitroaniline 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), m-nitroaniline 105 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 

for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 117 (65%). 

3.2.3.1.5 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with 1-naphthylamine 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), 1-naphthylamine 106 (0.81 

mmol), AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room 
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temperature for 3 day, then the solvent was evaporated under reduced pressure, and the 

residue was purified by flash column chromatography on silica gel, eluting with 2:1 v/v 

hexane-ethyl acetate, gave the desired allylic amine 118 (36%). 

3.2.3.1.6 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with m-anisidine 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), m-anisidine 107 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 

for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 119 (56%). 

3.2.3.1.7 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with o-anisidine 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), o-anisidine 108 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 

for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 120 (52%). 

3.2.3.1.8 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with m-toluidine 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), m-toluidine 109 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 

for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 121 (39%). 

3.2.3.1.9 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with p-toluidine 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), p-toluidine 110 (0.81 mmol), 

AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room temperature 
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for 3 day, then the solvent was evaporated under reduced pressure, and the residue was 

purified by flash column chromatography on silica gel, eluting with 2:1 v/v hexane-

ethyl acetate, gave the desired allylic amine 122 (39%). 

3.2.3.1.10 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene with 4-aminoacetophenone 

According to the general procedure B, a mixture of C-(tetra-O-acetyl-

β-D-galactopyranosyl)allene 101 (100 mg, 0.27 mmol), 4-aminoacetophenone 111 (0.81 

mmol), AuBr3 (10 mol%) in tetrahydrofuran (THF) (0.5 mL) was stirred at room 

temperature for 3 day, then the solvent was evaporated under reduced pressure, and the 

residue was purified by flash column chromatography on silica gel, eluting with 2:1 v/v 

hexane-ethyl acetate, gave the desired allylic amine 123 (70%). 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 

 

Initially the reaction of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 with 

aniline 102 using Yamamoto’s conditions (5 mol% Pd2(dba)3·CHCl3, 10 mol% PPh3, 20 

mol% CH3COOH in THF at 60 °C for 24 h) was studied [20]. Quite unexpectedly, a 

mixture of diallylated acetate 124 and diallylated amine 125 was obtained in 35% and 

10% yields, respectively, along with trace amounts of 114 (Scheme 4.1). When the 

same reaction was carried out in the presence of trifluoroacetic acid (TFA), the mixture 

of desired allylic amine 114 (29%) and a minor amount (18%) of dienic amine 125 was 

obtained (entry 2 in Table 4.1). 

 

               114 

 

Scheme 4.1 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-galactopy-

ranosyl)allene 

 

The reaction conditions were adjusted to find a suitable catalyst-ligand-solvent-

carboxylic acid system for the desired transformation. The results are summarized in 
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Table 4.1. These results suggested that both Pd(0) and Pd(II) catalysts and carboxylic 

acid play a dramatic part on the yields of the desired allylic amine 114. In addition, a 

profound solvent effect on the reaction was observed. THF was found to be the best 

solvent (Table 4.1, entry 20). 

 

Table 4.1 Effect of reaction parameters on palladium-catalyzed hydroamination of C-
(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 with aniline 102 a  

% Yieldb Entry Palladium salt 
and ligand      
(mol %) 

Carboxylic acid and 
additive (mol %) 

Solvent Temperature
(C) 

114 125 

1 Pd2(dba)3.CHCl3 
(5), Ph3P (10) 

CH3COOH THF 60 3 10 

2 Pd2(dba)3.CHCl3 
(5), Ph3P (10) 

TFA (20) THF 60  29 18 

3 Pd2(dba)3.CHCl3 
(5), Ph3P (10) 

TFA (20) THF rt 10 46 

4 Pd2(dba)3 (5), 
Ph3P (10) 

TFA (20) THF 60  15 42 

5 Pd2(dba)3 (5), 
Ph3P (10) 

TFA (20) THF rt 13 42 

6 Pd2(dba)3 (5), 
TFP (10) 

TFA (20) THF rt 6 47 

7 Pd2(dba)3 (5), 
Ph3P (10) 

formic acid (20) THF rt ND 14 

8 Pd2(dba)3 (5), 
Ph3P (10) 

benzoic acid (20) THF rt ND 17 

9 Pd(OAc)2(5), 
Ph3P (20) 

TFA (20) THF rt 6 48 

a All reactions were carried out with conditions: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 mmol) and aniline 102 

(0.81mmol) in 0.5 mL of solvent for 24 h. b Isolated yields. ND = Not detected. 
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Table 4.1 (Continued) Effect of reaction parameters on palladium-catalyzed 

hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 with aniline 102 a 

% Yieldb Entry Palladium salt 

and ligand      

(mol %) 

Carboxylic acid and 

additive (mol %) 

Solvent Temperature

(C) 
114 125 

10 Pd2(dba)3 (5) TFA (20) THF rt 21 12 

11 Pd2(dba)3 (5) TFA (20) THF 60  23 12 

12c Pd2(dba)3 (5) TFA (20) THF 60  14 26 

13 Pd2(dba)3 (5) TFA (50) THF rt 25 13 

14 Pd2(dba)3 (5) TFA (100) THF rt 22 10 

15 Pd2(dba)3 (5) TFA (10) THF rt 13 7 

16 Pd2(dba)3 (5) TFA (5) THF rt 15 13 

17 Pd2(dba)3 (5) TFA (5) DMF rt ND 17 

18 Pd2(dba)3 (5) TFA (5) CH3CN rt 8 14 

19 Pd2(dba)3 (5) TFA (5) Toluene rt 2 5 

20 Pd(OAc)2(5) TFA (20) THF rt 42 12 

21 Pd(OAc)2(5) TFA (20) THF 60  32 9 

22 Pd(OAc)2(5) acetic acid (20) THF rt 25 9 

23 Pd(OAc)2(5) - THF rt 17 3 

24 Pd(OAc)2(5) - THF 60  12 5 

 25c Pd(OAc)2(5) TFA (20) THF rt 21 13 

26 Pd(OAc)2(5) TFA (20), 

K2S2O8(250) 

THF rt 25 19 

a All reactions were carried out with conditions: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 mmol) and aniline 102 

(0.81mmol) in 0.5 mL of solvent for 24 h. b Isolated yields. c Catalyst 10 mol%. ND = Not detected. 
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Table 4.1 (Continued) Effect of reaction parameters on palladium-catalyzed 

hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 with aniline 102 a 

% Yieldb Entry Palladium salt 

and ligand      

(mol %) 

Carboxylic acid and 

additive (mol %) 

Solvent Temperature

(C) 
114 125 

27 Pd(OAc)2(5) TFA (20), 

K2S2O8(100) 

THF rt 17 12 

28 Pd(OAc)2(5) TFA (20), LiCl 

(200) 

THF rt 31 ND  

29 Pd(OAc)2(5) LiCl (200) THF rt 32 ND 

30 Pd(OAc)2(5) TFA(50) THF rt 31 16 

31 Pd(OAc)2(5) TFA(50) THF rt 32 15 

32 Pd(OAc)2(5) TFA (20) DCM rt 30 14 

33 Pd(OAc)2(5) TFA (20) CH3CN rt 33 14 

34 Pd(OAc)2(5) TFA (20) Toluene rt 24 15 

35 Pd(OAc)2(5) TFA (20) Dioxane rt 14 9 

36 - TFA (20) THF rt-60°C ND ND 

a All reactions were carried out with conditions: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 

mmol) and aniline 102 (0.81mmol) in 0.5 mL of solvent for 24 h. b Isolated yields. ND = Not detected. 

 

The scope of the palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-

D-galactopyranosyl)allene 101 with amines under the optimized condition is 

summarized in Table 4.2. From the results, it was found that in the presence of 5 mol% 

Pd(OAc)2, 20 mol% TFA in THF, the reaction of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 101 with p-anisidine 103 and p-nitroaniline 104 gave the desire 

allylic amines 115 and 116 in moderate of yields without the byproduct (Table 4.2, 

entry 1 and 2, respectively).  
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Table 4.2 Palladium-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 101 with amines a 

 

         106-109                                           117-120                        126-127 

 

Entry Amine Product Yieldb (%) 

1 

                  
103 

115 (16)  (ND) 

2 
                 

104 

116 (22) (ND) 

3 

                   
105 

117 (25) 126 (3) 

4 

                             
106 

118 (17) 127 (6) 

a Reaction condition: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 mmol); amine (0.81 mmole); Pd(OAc)2(5 mol %); 

TFA (20 mol %); THF (0.5 mL); room temperature for 24 h. b Isolated yields. ND = Not detected. 

 

In the case of using m-nitroaniline 105 and 1-naphthylamine 106 obtained 

allylic amines 117 and 118 in moderate of yields along with trace amounts of diallylated 

amines 126 and 127 (Table 4.2, entry 3 and 4, respectively). Other amines, such as 
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morpholine, n-butylamine, n-octylamine, and benzylamine were no reaction occurred 

after testing.  
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S = C-(tetra-O-acetyl-β-D-galactopyranosyl)- 

 

Scheme 4.2 Proposed mechanistic pathways for Pd(0)-catalyzed hydroamination of C-

(tetra-O-acetyl--D-galactopyranosyl)allene 

 

A possible reaction pathway for Pd(0)-catalyzed hydroamination is shown in 

Scheme 4.2. The two principal mechanistic pathways to be considered for 

hydroamination involve either activation of the amine (path a) or palladacycle formation 
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(path b). The oxidative addition of carboxylic acid to Pd(0) produced 

hydropalladium(II) intermediate species (I), which on reaction with amine would give 

intermediate (III) and carboxylic acid. Species III would form the π-allylpalladium 

intermediate (VIII) with C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 which, after 

reductive elimination, would give the hydroamination product (IX). The formation of 

diallylated acetate (VII) and diallylated amine (XII) could arise by a combination of 

either path a or path b, intermediate (V, X) (Scheme 4.2, path a) and intermediate (II) 

(Scheme 4.2, path b). 

 

  
S = C-(tetra-O-acetyl-β-D-galactopyranosyl)- 

 

Scheme 4.3 Proposed mechanistic pathways for Pd(II)-catalyzed hydroamination of C-

(tetra-O-acetyl--D-galactopyranosyl)allene 

 

On the other hand, hydroamination of C-(tetra-O-acetyl--D-galacto-

pyranosyl)allene 101 gave a yield of 42% allylic amine 114 using Pd(OAc)2 and TFA in 

THF (Table 4.1, entry 20). The two possible mechanistic pathways to be considered for 

hydroamination involve either activation of the amine or activation of the allene. In the 

allene activation (Scheme 4.3, path c) the CH2═C double bond of allene is activated by 

coordination to the palladium, and the C―N bond is formed by nucleophilic attack of 

amine on the coordinate allene. To liberate the product, the palladium―carbon bond in 
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the resulting ammonioallyl complex has to be cleaved. This can be brought about either 

by direct protonolysis or by protonation at the palladium with subsequent C―H 

reductive elimination. Amine activation (Scheme 4.3, path d) proceeds via oxidative 

addition of the amine N―H bond to the coordinatively unsaturated palladium center, 

forming the amidohydrido complex, followed by allene coordination, insertion of the 

allene into the palladium―nitrogen bond, and finally C―H reductive elimination, 

liberating the product and closing the catalytic cycle. 

In summary, the palladium(0)- and palladium(II)-catalyzed methods for 

hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 with a variety of 

aromatic amines were successfully developed. 
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4.2 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 

 

In the initial experiment, the hydroamination of C-(tetra-O-acetyl-β-D-galacto-

pyranosyl)allene 101 with aniline 102 in the presence of catalytic amount of AuBr3 or 

(PPh3)AuCl was examined. Further optimization led to find that the reaction of C-(tetra-

O-acetyl-β-D-galactopyranosyl)allene 101 and aniline 102 in THF proceeded smoothly 

at ambient temperature in the presence of 10 mol % of AuBr3 and the corresponding 

allylic amine114 was obtained in 82% yield after 3 day (Table 4.3, entry 3). 

 

Table 4.3 Effect of reaction parameters on gold-catalyzed hydroamination of C-(tetra-

O-acetyl-β-D-galactopyranosyl)allene 101 with aniline 102 a  

 

 

                         101                      102                                                        114 

 

Entry Reaction time 

(day) 

Catalyst     

(10 mol %) 

Solvent     

(0.5 mL) 

Productb (%) 

114 

1 1 AuBr3 THF 52 

2 2 AuBr3 THF 79 

3 3 AuBr3 THF 82 

4 3 AuBr3 DCM 18 

5 3 AuBr3 CH3CN 27 

6 3 AuBr3 Toluene 31 

7 1 (PPh3)AuCl THF ND 

        a Reaction conditions: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 mmol); amine (0.81 mmol); AuBr3  

        (10 mol %) in 0.5 mL of solvent at room temperature.  b Isolated yields. ND = Not detected. 
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The reaction under this optimized condition gave 114 in 18% yield in DCM, 27% yield 

in CH3CN and 31% yield in toluene. Other catalyst, such as (PPh3)AuCl, did not 

promote the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101. 

The scope of the gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 101 with amines under the optimized condition is summarized 

in Table 4.4.  

 

Table 4.4 Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 101 with  amines a 

 

                       
               101                      103-113                                                          115-123 

 

        a Reaction conditions: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 mmol); amine (0.81 mmol); AuBr3  

     (10 mol %); THF (0.5 mL); room temperature for 3 day. b Isolated yields. ND = Not detected 

 

Entry Amine  Productb (%) 

1  
103 

115 (61) 

2  
104 

116 (47) 

3  
105 

117 (65) 

4 
 

106 

118 (36) 
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Table 4.4 (Continued) Gold-catalyzed hydroamination of C-(tetra-O-acetyl-β-D-

galactopyranosyl)allene 101 with amines a 

        a Reaction conditions: C-(tetra-O-acetyl-β-D-galactopyranosyl)allene 101 (0.27 mmol); amine (0.81 mmol); AuBr3  

     (10 mol %); THF (0.5 mL); room temperature for 3 day. b Isolated yields. ND = Not detected. 

Entry Amine  Productb (%) 

5  

107 

119 (56) 

6  

108 

120 (52) 

7  

109 

121 (39) 

8  

110 

122 (39) 

9 
NH2

O  

111 

123 (70) 

10  

112 

 (ND) 

11  

113 

 (ND) 
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As shown in Table 4.4, the intermolecular hydroamination with aliphatic 

amines is rather difficult compared to that with aromatic amines, although the 

intermolecular version with aliphatic amines is known [23]. The AuBr3 catalysis system 

described above did not work with the aliphatic amines at all [23,26]. 

A mechanism for AuBr3-catalyzed hydroamination of allene with aromatic 

amines has been reported by Yamamoto et. al. in 2009 (Scheme 4.4) [26]. 

 

 

 

S = C-(tetra-O-acetyl-β-D-galactopyranosyl)- 

 

Scheme 4.4 A mechanism for the AuBr3-catalyzed hydroamination of C-(tetra-O-

acetyl-β-D-galactopyranosyl)allene 101 

 

 The catalytic cycle is most probably initially by the coordination of the allene 

to the gold-amine complex A to afford the intermediate B. Perhaps the amino-auration 

takes place through B to give the gold-alkenyl intermediate C, which produces D and 

AuBr3 upon protonation by HBr. 

 

 

 

 

A 

B 

C 
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4.3 Physical data 

 

 
114 

 

 

IR (film) cm-1:  3418, 2361, 1746, 1633, 1604, 1507, 1371, 1226, 105 
 

1H-NMR (400 MHz, CDCl3): δ 7.17 (2H, app. t, J 8.4 and 7.2, Ar�H), 6.71 

(1H, app. t, J 8.4 and 7.2, Ar�H), 6.60 (2H, d, J 7.6, 

Ar�H), 5.98 (1H, dt, J 15.6 and 5.2, 2�H), 5.82 (1H, q, J 

15.6 and 5.2, 3�H), 5.37 (1H, d, J 3.2, 6�H), 5.28 (1H, 

dd, J 10.4 and 5.6, 7�H), 5.10 (1H, dd, J 10.4 and 3.2, 

5�H), 4.80 (1H, t, J 3.2, 4�H), 4.00–4.14 (3H, m, 8�H 

and 2x9�H), 3.84 (2H, d, J 5.2, 1�H), 1.90–2.10 (12H, 

4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.52, 170.19, 170.06, 169.87, 147.64, 

134.47, 129.27, 123.49, 117.87, 113.14, 72.53, 68.31, 

68.29, 68.01, 61.83, 45.62, 20.73, 20.69, 20.66 

 

HRMS:  calcd for C23H30NO9 (M+H): m/z 464.1921; found: m/z 

464.1968 
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O

OAcOAc

AcO
OAc

N
H

OMe

 
115 

 

 

IR (film) cm-1:  3442, 2362, 1747, 1638, 1515, 1372, 1231, 1023 
 

1H-NMR (400 MHz,CDCl3): δ 6.79 (2H, d, J 8.8, Ar�H), 6.60 (2H, d, J 8.8, 

Ar�H), 5.97 (1H, dt, J 15.6 and 5.2, 2�H), 5.85 (1H, q, J 

15.6 and 5.2, 3�H), 5.42 (1H, d, J 3.2, 6�H), 5.29 (1H, 

dd, J 10.4 and 5.6, 7�H), 5.12 (1H, dd, J 10.4 and 3.2, 

5�H), 4.79 (1H, t, J 3.2, 4�H), 4.00–4.10 (3H, m, 8�H 

and 2x9�H), 3.80 (2H, d, J 5.2, 1�H), 1.90–2.10 (15H, 

5xs, 5xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.53, 170.23, 170.13, 170.08, 152.44, 

141.82, 134.79, 123.41, 114.92, 114.57, 72.50, 68.40, 

68.33, 68.04, 68.01, 61.87, 45.94, 20.72, 20.70, 20.66 

 

HRMS:  calcd for C24H31NO10Na (M+Na): m/z 516.1846; found: 

m/z 516.2006 
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116 

 

 

IR (film) cm-1:  3439, 2362, 1747, 1636, 1604, 1474, 1372, 1312, 1228, 

1113, 1048 
 

1H-NMR (400 MHz, CDCl3): δ 8.09 (2H, d, J 8.8, Ar�H), 6.58 (2H, d, J 9.2, 

Ar�H), 5.96 (1H, dt, J 15.6 and 5.2, 2�H), 5.88 (1H, q, J 

15.6 and 5.2, 3�H), 5.40 (1H, d, J 3.2, 6�H), 5.30 (1H, 

dd, J 10.4 and 5.6, 7�H), 5.10 (1H, dd, J 10.4 and 3.2, 

5�H), 4.82 (1H, t, J 3.2, 4�H), 4.01–4.18 (3H, m, 8�H 

and 2x9�H), 3.95 (2H, d, J 5.2, 1�H), 1.93–2.14 (12H, 

4xs, 4xOCOMe) 

 

13C NMR (100 MHz, CDCl3): δ 170.64, 170.17, 170.08, 169.77, 152.98, 

138.32, 132.15, 126.36, 124.85, 111.39, 72.24, 68.45, 

68.23, 67.95, 67.82, 61.73, 44.89, 20.73, 20.69, 20.64 

 

HRMS:  calcd for C23H28N2O11Na (M+Na): m/z 531.1591; found: 

m/z 531.1670 
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117 

 

 

IR (film) cm-1:  3398, 2926, 1748, 1622, 1532, 1351, 1228, 1050, 738 
 

1H-NMR (400 MHz, CDCl3): δ 7.55 (1H, d, J 7.6, Ar�H), 7.40 (1H, s, Ar�H), 

7.32 (1H, t, J 8.4, Ar�H), 6.90 (1H, d, J 1.2, Ar�H), 5.99 

(1H, dt, J 15.6 and 5.2, 2�H), 5.92 (1H, q, J 15.6 and 5.2, 

3�H), 5.39 (1H, d, J 3.2, 6�H), 5.33 (1H, dd, J 10.4 and 

5.6, 7�H), 5.11 (1H, dd, J 10.4 and 3.2, 5�H), 4.82 (1H, 

t, J 3.2, 4�H), 4.02–4.15 (3H, m, 8�H and 2x9�H), 3.93 

(2H, d, J 5.2, 1�H), 1.97–2.14 (12H, 4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.61, 170.18, 170.07, 169.85, 149.44, 

148.44, 132.92, 129.81, 124.40, 119.04, 112.38, 106.52, 

72.39, 68.35, 68.25, 67.92, 61.73, 45.31, 20.72, 20.69, 

20.66 

 

HRMS:  calcd for C23H28N2O11Na (M+Na): m/z 531.1591; found: 

m/z 531.1668 
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118 

 

 

IR (film) cm-1:  3440, 2361, 1748, 1584, 1533, 1372, 1228, 1050, 773 
 

1H-NMR (400 MHz, CDCl3): δ 7.83–7.86 (1H, m, Ar�H), 7.77–7.82 (1H, m, 

Ar�H), 7.45–7.53 (2H, m, Ar�H), 7.36 (1H, d, J 7.6, 

Ar�H), 7.30 (1H, d, J 6.8, Ar�H), 6.61 (1H, d, J 7.2, 

Ar�H), 6.12 (1H, dt, J 15.6 and 5.2, 2�H), 5.93 (1H, q, J 

15.6 and 5.2, 3�H), 5.38 (1H, d, J 3.2, 6�H), 5.33 (1H, 

dd, J 10.4 and 5.6, 7�H), 5.14 (1H, dd, J 10.4 and 3.2, 

5�H), 4.83 (1H, t, J 3.2, 4�H), 4.07–4.15 (3H, m, 8�H 

and 2x9�H), 4.05 (2H, d, J 5.2, 1�H), 1.90–2.13 (12H, 

4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.58, 170.20, 170.05, 169.88, 142.73, 

134.34, 133.99, 128.71, 126.45, 125.79, 124.86, 123.99, 

123.53, 119.84, 117.95, 105.02, 72.50, 68.39, 68.33, 

68.04, 68.01, 61.87, 45.94, 20.72, 20.70, 20.66 

 

HRMS:  calcd for C27H31NO9Na (M+Na): m/z 536.1897; found: 

m/z 536.1963 
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119 

 

 

IR (film) cm-1:  3738, 3399, 2941, 2362, 1747, 1685, 1614, 1509, 1458, 

1372, 1226, 1164, 1049, 762, 689 
 

1H-NMR (400 MHz, CDCl3): δ 7.09 (1H, app. t, J 8.4 and 8.0, Ar�H), 6.28 

(1H, d, J 8.0, Ar�H), 6.23 (1H, d, J 7.6, Ar�H), 6.16 (1H, 

s, Ar�H), 6.00 (1H, dt, J 15.6 and 5.2, 2�H), 5.87 (1H, q, 

J 15.6 and 5.6, 3�H), 5.38 (1H, d, J 3.2, 6�H), 5.31 (1H, 

dd, J 10.0 and 5.6, 7�H), 5.13 (1H, dd, J 10.4 and 3.2, 

5�H), 4.81 (1H, t, J 5.6, 4�H), 4.04-4.11 (3H, m, 8�H 

and 2x9�H), 3.83 (2H, d, J 5.2, 1�H), 3.75 (3H, s, OMe), 

1.97-2.15 (12H, 4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.53, 170.20, 170.04, 169.89, 160.84, 

149.10, 134.52, 130.04, 123.49, 106.18, 102.82, 99.28, 

72.52, 68.29, 68.07, 68.00, 61.86, 55.01, 45.61, 20.73, 

20.68, 20.63 

 

HRMS:  calcd for C24H31NO10Na (M+Na): m/z 516.1846; found: 

m/z 516.1824 
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120 

 

 

IR (film) cm-1:  3738, 3677, 3651, 3423, 2938, 2362, 1748, 1685, 1603, 

1511, 1458, 1372, 1225, 1125, 1051, 742 
 

1H-NMR (400 MHz, CDCl3): δ 6.87 (1H, t, J 7.6, Ar�H), 6.78 (1H, d, J 8.0, 

Ar�H), 6.69 (1H, t, J 7.6, Ar�H), 6.58 (1H, d, J 8.0, 

Ar�H), 6.01 (1H, dt, J 15.6 and 5.2, 2�H), 5.87 (1H, q, J 

15.6 and 5.2, 3�H), 5.37 (1H, d, J 3.2, 6�H), 5.31 (1H, 

dd, J 10.4 and 6.0, 7�H), 5.137 (1H, dd, J 10.4 and 3.6, 

5�H), 4.82 (1H, t, J 5.6, 4�H), 4.01-4.12 (3H, m, 8�H 

and 2x9�H), 3.87 (2H, d, J 5.2, 1�H), 3.85 (3H, s, OMe), 

1.98-2.13 (12H, 4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.47, 170.20, 170.04, 169.88, 146.95, 

137.59, 134.84, 123.30, 121.23, 117.01, 109.57, 72.62, 

68.29, 68.09, 68.05, 61.88, 55.41, 45.47, 20.75, 20.72, 

20.68, 20.65 

 

HRMS:  calcd for C24H31NO10Na (M+Na): m/z 516.1846; found: 

m/z 516.1835 
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IR (film) cm-1:  3738, 3398, 2924, 2362, 1748, 1685, 1608, 1509, 1492, 

1435, 1372, 1227, 1050, 775, 695, 602, 427 
 

1H-NMR (400 MHz, CDCl3): δ 7.06 (1H, t, J 7.6, Ar�H), 6.55 (1H, d, J 7.6, 

Ar�H), 6.44 (1H, d, J 8.0, Ar�H), 6.40 (1H, d, J 8.0, 

Ar�H), 6.01 (1H, dt, , J 15.6 and 5.2, 2�H), 5.87 (1H, q, 

J 15.6 and 5.2, 3�H), 5.38 (1H, d, J 3.2, 6�H), 5.31 (1H, 

dd, J 10.8 and 5.6, 7�H), 5.13 (1H, dd, J 10.0 and 3.2, 

5�H), 4.81 (1H, t, J 5.2, 4�H), 4.03-4.20 (3H, m, 8�H 

and 2x9�H), 3.84 (2H, d, J 5.2, 1�H), 2.27 (3H, s, CH3), 

1.97-2.14 (12H, 4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.48, 170.16, 170.01, 169.83, 147.67, 

138.98, 134.61, 129.13, 123.31, 118.75, 113.88, 110.19, 

72.57, 68.26, 68.02, 67.96, 61.80, 45.65, 21.54, 20.70, 

20.65 

 

HRMS:  calcd for C24H32NO9 (M+H): m/z 478.2077; found: m/z 

478.2067 
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IR (film) cm-1:  3737, 3394, 2923, 2361, 1747, 1684, 1618, 1521, 1458, 

1371, 1226, 1049, 814 
 

1H-NMR (400 MHz, CDCl3): δ 6.99 (2H, d, J 8.4, Ar�H), 6.55 (2H, d, J 8.4, 

Ar�H), 6.00 (1H, dt, , J 15.6 and 5.2, 2�H), 5.86 (1H, q, 

J 15.6 and 5.2, 3�H), 5.37 (1H, d, J 3.2, 6�H), 5.31(1H, 

dd, J 10.4 and 5.6, 7�H), 5.12 (1H, dd, J 10.4 and 3.2, 

5�H), 4.81 (1H, t, J 5.6, 4�H), 4.03-4.11 (3H, m, 8�H 

and 2x9�H), 3.82 (2H, d J 5.6, 1�H), 2.22 (3H, s, CH3), 

1.99-2.13 (12H, 4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 170.50, 170.19, 170.04, 169.86, 145.37, 

134.73, 129.76, 127.09, 123.34, 113.35, 72.59, 68.24, 

68.05, 68.00, 61.83, 46.03, 20.70, 20.67, 20.34 

 

HRMS:  calcd for C24H32NO9 (M+H): m/z 478.2077; found: m/z 

478.2064 
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IR (film) cm-1:  3738, 3394, 2362, 1747, 1685, 1599, 1539, 1458, 1369, 

1227, 1052, 429 
 

1H-NMR (400 MHz, CDCl3): δ 7.84 (2H, d, J 8.8, Ar�H), 6.59 (2H, d J 8.8, 

Ar�H), 6.12 (1H, dt, J 15.6 and 5.2, 2�H), 5.93 (1H, q, J 

15.6 and 5.2, 3�H), 5.38 (1H, d, J 3.2, 6�H), 5.31 (1H, 

dd, J 10.0 and 5.6, 7�H), 5.12 (1H, dd, J 1.0 and 3.2, 

5�H), 4.81 (1H, t, J 3.2, 4�H), 4.02-4.16 (3H, m, 8�H 

and 2x9�H), 3.93 (2H, d, J 4.8, 1�H), 2.50 (3H, s, 

OCOCH3), 1.96-2.16 (12H, 4xs, 4xOCOMe) 
 

13C-NMR (100 MHz, CDCl3): δ 196.43, 170.53, 170.15, 170.03, 169.78, 

151.74, 133.05, 130.78, 130.73, 127.01, 124.12, 111.73, 

111.66, 72.32, 68.35, 67.92, 67.85, 61.74, 44.83, 25.98, 

20.70, 20.65, 20.60 

 

HRMS:  calcd for C25H31NO10Na (M+Na): m/z 528.1846; found: 

m/z 528.1820 
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IR (film) cm-1:  3477, 2964, 1747, 1436, 1372, 1229, 1119, 1049 
 

1H NMR (400 MHz, CDCl3): δ 5.92 (1H, d, J 6.4, 3�H), 5.80 (1H, d, J 6.0, 

3′�H), 5.41–5.45 (2H, m, 6 and 6′�H), 5.31–5.36 (2H, m, 

7 and 7′�H), 5.24 (1H, t, J 2.4, 5�H), 5.21 (1H, t, J 3.6, 

5′�H), 5.15(1H, t, J 6.4, 4�H), 5.03–5.06 (2H, m, 1�H), 

4.82 (1H, d, J 13.2, 4′�H), 4.02–4.20 (6H, m, 2x(8,8′�H) 

and 4x(9,9′�H)), 1.90–2.20 (30H, 10xs, 9xOCOMe and 

1′�CH3)  
 

13C NMR (100 MHz, CDCl3): δ 170.42, 170.32, 170.29, 170.15, 170.11, 

170.01, 169.96, 169.82, 169.57, 145.01, 143.28, 123.86, 

120.77, 69.62, 68.88, 68.76, 68.40, 68.24, 68.20, 67.98, 

67.85, 67.82, 67.44, 61.67, 61.32, 59.27, 20.70, 20.66, 

20.64, 20.60, 15.61  

 

HRMS:  calcd for C36H48O20Na (M+Na): m/z 823.2637; found: m/z 

823.2566 
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IR (film) cm-1:  3440, 2361, 1747, 1637, 1372, 1226, 1023 
 

1H NMR (400 MHz, CDCl3): δ 7.16 (2H, app. t, J 8 and 7.6, Ar�H), 6.68–6.72 

(1H, m, Ar�H), 6.58 (2H, d, J 8.4, Ar�H), 5.83 (1H, d, J 

6.8, 3�H), 5.75 (1H, d, J 6.4, 3′�H), 5.41–5.45 (2H, m, 6 

and 6′�H), 5.28–5.34 (2H, m, 7 and 7′�H), 5.21–5.26 

(2H, m, 5 and 5′�H), 5.10–5.14 (3H, m, 2x(1�H) and 

4�H), 5.00 (1H, app. t, J 6.4 and 5.6, 4′�H), 4.00–4.20 

(6H, m, 8,8′�H and 4x(9,9′�H)), 1.80–2.10 (27H, 9xs, 

8xOCOMe and 1′�CH3) 
 

13C NMR (100 MHz, CDCl3): δ 170.54, 170.41, 170.13, 170.09, 169.98, 

169.90, 169.83, 169.81, 147.84, 144.58, 129.34, 129.24, 

121.82, 120.62, 117.82, 112.75, 69.48, 69.06, 68.77, 

68.36, 68.26, 68.10, 67.99, 67.91, 67.52, 61.82, 61.51, 

42.14, 20.78, 20.75, 20.73, 20.67, 20.65, 15.87 

 

HRMS:  calcd for C40H51NO18Na (M+Na): m/z 856.3004; found: 

m/z 856.3036 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



51 

 
126 

 

 

IR (film) cm-1:  3736, 2362, 1744, 1540, 1370, 1225, 1023 
 

1H NMR (400 MHz, CDCl3): δ 7.53 (1H, d, J 6.4, Ar�H), 7.41 (1H, app. t, J 

2.4 and 2.0, Ar�H), 7.27 (1H, s, Ar�H), 6.89 (1H, d, J 

2.0, Ar�H), 5.91 (1H, d, J 7.2, 3�H), 5.40–5.46 (3H, m, 

2x(6,6′�H) and 3′�H), 5.27–5.31 (2H, m, 7 and 7′�H), 

5.22–5.26 (2H, m, 5 and 5′�H) 5.12–5.18 (4H, m, 

2x(1�H) and 2x(4,4′�H)), 4.01–4.15 (6H, m, 2x(8,8′�H) 

and 4x(9,9′�H)), 2.00–2.13 (27H, 9xs, 8xOCOMe and 

1′�CH3) 
 

13C NMR (100 MHz, CDCl3): δ 170.61, 170.52, 170.44, 170.19, 170.05, 

170.01, 169.96, 169.91, 149.44, 148.82, 144.33, 142.93, 

129.74, 123.26, 118.69, 117.18, 112.09, 106.16, 70.07, 

69.06, 69.02, 68.16, 67.96, 67.73, 67.59, 61.85, 61.63, 

42.34, 20.80, 20.75, 20.70, 20.65, 14.12 

 

HRMS:  calcd for C40H50N2O20Na (M+Na): m/z 901.2855; found: 

m/z 901.2904 
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IR (film) cm-1:  3442, 2362, 2066, 1746, 1638, 1372, 1227, 1048 
 

1H NMR (400 MHz, CDCl3): δ 7.83 (1H, d, J 8.8, Ar�H), 7.77 (1H, d, J 7.6, 

Ar�H), 7.35–7.46 (2H, m, Ar�H), 7.33 (1H, d, J 7.6, 

Ar�H), 7.24 (1H, d, J 8.4, Ar�H), 6.59 (1H, d, J 7.6, 

Ar�H), 5.94 (1H, d, J 7.2, 3�H), 5.40–5.45 (3H, m, 

2x(6,6′�H) and 3′�H), 5.31–5.36 (3H, m, 2x(7,7′�H) and 

4�H), 5.22–5.30 (2H, m, 5 and 5′�H), 5.16–5.21 (3H, m, 

2x(1�H) and 4′�H), 4.02–4.25 (6H, m, 2x(8,8′�H) and 

4x(9,9′�H)), 1.90–2.10 (27H, 9xs, 8xOCOMe and 

1′�CH3) 
 

13C NMR (100 MHz, CDCl3): δ 170.64, 170.56, 170.51, 170.47, 170.23, 

170.20, 170.12, 170.03, 145.22, 143.30, 134.36, 134.26, 

129.29, 128.99, 128.67, 128.48, 126.54, 125.84, 122.82, 

120.39, 117.79, 104.13, 69.60, 69.14, 69.07, 68.56, 68.40, 

68.28, 67.90, 67.86, 67.70, 61.68, 61.64, 61.14, 43.52, 

20.69, 20.67, 20.63, 14.12 

 

HRMS:  calcd for C44H53NO18Na (M+Na): m/z 906.3160; found: 

m/z 906.3220 
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CHAPTER 5 

 

CONCLUSION 
 

 We have found that Pd(0), Pd(II), or Au(III) catalysts promote a highly 

efficient intermolecular hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosyl)-

allene under very mild conditions. The addition of aromatic amines proceeded smoothly 

at ambient temperature using commercially available palladium and gold complexes to 

give the desire allylic amine in moderate to good yield.  

  Both palladium and gold methods for catalyzed hydroamination of C-(tetra-O-

acetyl-β-D-galactopyranosyl)allene with a variety of aromatic amines have been 

successfully developed 
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Spectral data of compound 114 
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Figure 1 IR spectrum of compound 114 

 

 

 

0.01.02.03.04.05.06.07.0  
Figure 2 1H-NMR (400 MHz, CDCl3) spectrum of compound 114 
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0102030405060708090100110120130140150160170180  
Figure 3 13C-NMR (100 MHz, CDCl3) spectrum of compound 114 

 

 

 

 
Figure 4 High resolution mass spectrum of compound 114 
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Spectral data of compound 115 
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Figure 5 IR spectrum of compound 115 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 6 1H-NMR (400 MHz, CDCl3) spectrum of compound 115 
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0102030405060708090100110120130140150160170180  
Figure 7 13C-NMR (100 MHz, CDCl3) spectrum of compound 115 

 

 

 

 
Figure 8 High resolution mass spectrum of compound 115 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



67 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C 

 

 
 

Spectral data of compound 116 
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Figure 9 IR spectrum of compound 116 

 

 

 

0.01.02.03.04.05.06.07.08.09.0  
Figure 10 1H-NMR (400 MHz, CDCl3) spectrum of compound 116 
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0102030405060708090100110120130140150160170180190  
Figure 11 13C-NMR (100 MHz, CDCl3) spectrum of compound 116 

 

 

 

 
Figure 12 High resolution mass spectrum of compound 116 
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Spectral data of compound 117 
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Figure 13 IR spectrum of compound 117 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 14 1H-NMR (400 MHz, CDCl3) spectrum of compound 117 
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Figure 15 13C-NMR (100 MHz, CDCl3) spectrum of compound 117 

 

 

 

 
Figure 16 High resolution mass spectrum of compound 117 
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Appendix E 
 

 
 

Spectral data of compound 118 
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Figure 17 IR spectrum of compound 118 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 18 1H-NMR (400 MHz, CDCl3) spectrum of compound 118 
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Figure 19 13C-NMR (100 MHz, CDCl3) spectrum of compound 118 

 

 

 

 
Figure 20 High resolution mass spectrum of compound 118 
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Appendix F 
 

 
 

Spectral data of compound 119 
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Figure 21 IR spectrum of compound 119 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 22 1H-NMR (400 MHz, CDCl3) spectrum of compound 119 
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Figure 23 13C-NMR (100 MHz, CDCl3) spectrum of compound 119 

 

 

 

 
Figure 24 High resolution mass spectrum of compound 119 
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Appendix G 
 

 
 

Spectral data of compound 120 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



80 

 

 
Figure 26 IR spectrum of compound 120 

 

 

 

0.01.02.03.04.05.06.07.0  
Figure 27 1H-NMR (400 MHz, CDCl3) spectrum of compound 120 
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Figure 28 13C-NMR (100 MHz, CDCl3) spectrum of compound 120 

 

 

 

 
Figure 29 High resolution mass spectrum of compound 120 
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Appendix H 
 

 
 

Spectral data of compound 121 
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Figure 30 IR spectrum of compound 121 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 31 1H-NMR (400 MHz, CDCl3) spectrum of compound 121 
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Figure 32 13C-NMR (100 MHz, CDCl3) spectrum of compound 121 

 

 

 

 
Figure 33 High resolution mass spectrum of compound 121 
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Appendix I 
 

 
 

Spectral data of compound 122 
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Figure 34 IR spectrum of compound 122 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 35 1H-NMR (400 MHz, CDCl3) spectrum of compound 122 
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Figure 36 13C-NMR (100 MHz, CDCl3) spectrum of compound 122 

 

 

 

 
Figure 37 High resolution mass spectrum of compound 122 
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Appendix J 
 

 
 

Spectral data of compound 123 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



89 

 

 
Figure 38 IR spectrum of compound 123 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 39 1H-NMR (400 MHz, CDCl3) spectrum of compound 123 
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Figure 40 13C-NMR (100 MHz, CDCl3) spectrum of compound 123 

 

 

 

 
Figure 41 High resolution mass spectrum of compound 123 
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Appendix K 
 

 
 

Spectral data of compound 124 
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Figure 42 IR spectrum of compound 124 

 

 

 

0.01.02.03.04.05.06.07.0  
Figure 43 1H-NMR (400 MHz, CDCl3) spectrum of compound 124 
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Figure 44 13C-NMR (100 MHz, CDCl3) spectrum of compound 124 

 

 

 

 
Figure 45 High resolution mass spectrum of compound 124 
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Appendix L 

 

 
 

Spectral data of compound 125 
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Figure 46 IR spectrum of compound 125 
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Figure 47 1H-NMR (400 MHz, CDCl3) spectrum of compound 125 
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Figure 48 13C-NMR (100 MHz, CDCl3) spectrum of compound 125 

 

 

 

 
Figure 49 High resolution mass spectrum of compound 125 
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Appendix M 
 

 
 

Spectral data of compound 126 
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Figure 50 Infrared spectrum (thin film/NaCl) of compound 126 
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Figure 51 1H-NMR (400 MHz, CDCl3) spectrum of compound 126 
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Figure 52 13C-NMR (100 MHz, CDCl3) spectrum of compound 126 

 

 

 

 
Figure 53 High resolution mass spectrum of compound 126 
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Spectral data of compound 127 
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Figure 54 Infrared spectrum (thin film/NaCl) of compound 127 

 

 

 

0.01.02.03.04.05.06.07.08.0  
Figure 55 1H-NMR (400 MHz, CDCl3) spectrum of compound 127 
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Figure 56 13C-NMR (100 MHz, CDCl3) spectrum of compound 127 

 

 

 

 
Figure 57 High resolution mass spectrum of compound 127 
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