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ABSTRACT

In this research, we introduce the concepts of A— sets in biminimal structure
spaces and investigate some of their properties. Moreover, the notion A— sets, A— con-
tinuous functions, .A—separated sets and .A—connected sets in biminimal structure spaces

were studied.
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CHAPTER 1

INTRODUCTION

1.1 Background

In 1972, J. Dugundji [7] introduced the concepts of regular closed sets in topo-
logical spaces. Let (X, 7) be a topological space and let A C X. Then A is called regular
closed if and only if A = Cl(Int(A)). In 2003, A.Csaszar [6] introduced the concepts of
~v—connected sets in topological spaces. Also he studied v—closed sets, y—open sets and
~v—separated sets. In 1986, J. Tong [21] introduced the concepts and properties of A—sets
in topological spaces. Let A be a subset of a topological space (X, 7), then A is an A—
setin (X, 7) if there exist U and B, such that A = U N B when U is open and B is regular
closed in (X, 7). In addition, J. Tong [21] introduced the concepts of . A— continuous func-
tions from a topological space (X, 7) to a topological space (Y,U). Let f be a function
from X to Y, then f is A—continuous function if and only if the inverse image of each
open set in Y is an A—set in X. In 1990, M. Ganster, and Reilly, 1. L. [9] improved J.
Tong’s decomposition result and provide a decomposition of A— continuity. In 2000, the
concepts of minimal structure spaces were introduced by V.Popa and T.Noiri [18]. A pair
(X, mx) is a minimal structure space if and only if X # () and my is family of P(X)
with ), X € mx. Moreover, they also introduced the concepts of mx—open sets and
mx —closed sets in minimal structure spaces. Other from this, such definitions were used
to define m y —interior and m y — closure operators, respectively. In 2010, W. Keun Min
[11] introduced the concepts of am—open sets, a—interior and am—closed operators in
minimal structure space. In 1963, J.C.Kelly [10] introduced the concepts of bitopological
spaces which consist of an empty set and two topological spaces. In 2010, C.Boonpok
[3] introduced the concepts of the spaces which consist of an empty set and two minimal
structures is called biminimal structure spaces. Furthermore, this C.Boonpok [3] defined
m} m3% — closed set in biminimal structure spaces and the complement of m}-m?3 — closed
sets is call mi-m3 — open sets. In 2010, C.Boonpok [4] defined (4, j)m x — regular open
sets in biminimal structure spaces and he also defined (7, j)mx — regular closed sets as

complement of (7, j)m x— regular open sets for i, j = 1,2 and i # j

¥ Mahasarakham University
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The development of the research mentioned above. Researcher interested to de-
fine the study of some properties of A— sets and including .4—continuous functions in

biminimal structure spaces.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will give some definitions, notations, dealing with some pre-

liminaries and some useful results that will be duplicated in later chapter.

2.1 Topological spaces

This section, we recall some notions, notations and previous results.

Definition 2.1.1. [20] Let X be a nonempty set. A class 7 of subsets of X is a topology
on X iff 7 satisfies the following axioms:

(1) X and ) belong to 7;

(2) The union of any number of sets in 7 belongs to 7;

(3) The intersection of any two sets in 7 belongs to 7;

The elements of 7 are then called open sets and there complements are called

closed sets, the pair (X, 7) is called a topological space.

Definition 2.1.2. [20] Let (X, 7) be a topological space and A C X . The interior of A
and the closure of A are defined as follow:
(DInt(A)=U{U:UCAUEeT}
QCI(A)=({F:-ACFX\Fer}.

Definition 2.1.3. [12]Let (X, 7) be a topological space and A C X. Then A is called
semi — open if and only if A C Cl(Int(A)).
The family of all semi—open sets in a topological spaces (X, 7) is denoted by

SO(X, 7).

Definition 2.1.4. [12] Let (X, 7) be a topological space and A C X. Then A is called

semi — closed if and only if X \ A is semi—open .

Definition 2.1.5. [13]Let (X, 7) be a topological space and A C X. Then A is called
pre — open if and only if A C Int(CIl(A)).

The family of all pre—open sets in a topological spaces (X, 7) is denoted by
PO(X, ).

=7 Mahasarakham University
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Definition 2.1.6. [13]Let (X, 7) be a topological space and A C X. Then A is called
pre — closed if and only if X \ A is pre—open.

Proposition 2.1.7. [1] Let (X, 7) be a topological space and A C X. Then A is pre—closed
if and only if Cl(Int(A)) C A.

Definition 2.1.8. [8] Let (X, 7) be a topological space and A C X. The pre — closure of
a subset A, denoted by pcl(A) is the intersection of all pre—closed subsets of (X, 7) that

contain A .

Proposition 2.1.9. [1]Let (X, 7) be a topological space and A C X. Then pcl(A) =
AUCI(Int(A)).

Definition 2.1.10. [16] Let (X, 7) be a topological space and A C X. Then A is called
an o — set ifand only if A C Int(Cl(Int(A))).

The family of all a— sets in a topological spaces (X, 7) is denoted by 7.

Definition 2.1.11. [1] Let (X, 7) be a topological space and A C X. Then A is called
semi — preopen if and only if A C Cl(Int(CIl(A))).
The family of all semi—preopen sets in a topological space (X, 7) is denoted by

SPO(X,T).

Definition 2.1.12. [5]Let (X, 7) be a topological space and A C X. Then A is called
locally — closed if A = U N B when U is open and B is closed in X.

The family of all locally closed sets in a topological space (X, 7) is denoted by
LC (X, 7).

Definition 2.1.13. [20] Let (X, 7) and (Y, i) be topological spaces and [ : (X,7) —
(Y,U). Then f is called continuous if f~1(V) € 7 foreach V € U.

Definition 2.1.14. [17]Let (X, 7) and (Y,U) be topological spaces and [ : (X,7) —
(Y,U). Then f is called semi — continuous if f~1(V) € SO(X, 1) foreach V € U.

Definition 2.1.15. [9] Let (X, 7) and (Y,U) be topological spaces and f : (X,7) —
(Y,U). Then f is called a — continuous if f~'(V) € 7 foreach V € U.

Definition 2.1.16. [9] Let (X, 7) and (Y,U) be topological spaces and f : (X,7) —
(Y,U). Then f is called spr — continuous if f~(V) € SPO(X, 1) foreach V € U.
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Definition 2.1.17. [9] Let (X, 7) and (Y,U) be topological spaces and f : (X,7) —
(Y,U). Then f is called LC — continuous if f~*(V) € LC(X,7) for each V € U.

Definition 2.1.18. [7]Let (X, 7) be a topological space and A C X. Then A is called
regular closed if and only if A = Cl(Int(A)).

The family of all regular closed sets in a topological space (X, 7) is denoted by
RC (X, 7).

Definition 2.1.19. [9] Let (X, 7) be a topological space and M C X. Then M is called
an A — set if M = U N B when U is open and B is regular closed in X.
The family of all A— sets in a topological space (X, 7) is denoted by A (X, 7).

Example 2.1.20. Let X = {1,2,3} and 7 = {0, {1}, {2}, {1, 2}, {2,3}, X }.
By the definition of 7, we get the following table.
M | Int(M) | Cl(Int(M))

0 0 0
{1y | {1} {1}
2y | {2 {2,3}
{3} 0 0
{1,2} | {1,2} X
{13y | {1} {1}
{2,3} | {2,3} {2, 3}
X X X

Hence RC(X, 7)= {0, {1}, {2,3}, X }. Thus A (X, 7) = {0, {1}, {2}, {1,2}. {2,3}, X}.
Definition 2.1.21. [22|Let (X, 7) and (Y, i) be topological spaces and [ : (X,7) —
(Y,U). Then f is called A — continuous if f~1(V) € A(X, 1) foreach V € U.

Definition 2.1.22. [22] Let ()X, 7) be a topological space and A C X. Then A is called a
t — set if and only if Int(A) = Int(CI(A)).

The family of all ¢— sets in a topological space (X, 7) is denoted by ¢(X, 7).
Proposition 2.1.23. [22] Let (X, 7) be a topological space and A C X. Then A is a t—

set if and only if A is semi—closed.
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Definition 2.1.24. [8]Let (X, 7) be a topological space and A C X. Then A is called a
B — setif A= U N B when U is open and B is a t— set.

The family of all B— sets in a topological space (X, 7) is denoted by B(X, 7).

Proposition 2.1.25. [8] Let (X, 7) be a topological space.
Then A(X,7) C LC(X,T) C B(X, 7).

Proposition 2.1.26. [8] Let (X, 7) be a topological space and A is open in (X, 7).
Then CI(A) is regular closed.

Definition 2.1.27. [8]Let (X, 7) be a topological space and A C X. Then A is called a
C —setif A= U N B when U is open and B is pre—closed.
The family of all C— sets in a topological space (X, 7) is denoted by C(X, 7).

Proposition 2.1.28. [8] Let (X, 7) be a topological space and A C X. Then 7 C C(X, 7).

Proposition 2.1.29. [8] Let (X, 7) be a topological space and A C X. If A is pre—closed,
then A is a C— set.

Proposition 2.1.30. [8] Let (X, 7) be a topological space and A C X. If A is closed, then
AisaC— set.

Proposition 2.1.31. [8] Let (X, 7) be a topological space. Then A(X,7) C LC(X,T) C
C(X,T).

Proposition 2.1.32. [8] Let (X, 7) be a topological space and A C X. Then pcl(A) is

pre—closed.

Lemma 2.1.33. [8] Let (X, 7) be a topological space and H C X. Then the following
statements are equivalent:

(1) H € C(X,7);

(2) There exists an open set U in (X, 7) such that H = U N pcl(H).

Lemma 2.1.34. [8] Let (X, 7) be a topological space and H C X. Then the following
statements are equivalent:

(1) There exists an open set U in (X, 7) such that H = U N Cl(Int(H);

(2) H € C(X,7) N SO(X, 7).
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Theorem 2.1.35. [8] Let (X, 7) be a topological space.
Then A(X,7) = SO(X,7) N LC(X, T).

Theorem 2.1.36. [8] Let (X, 7) be a topological space.
Then A(X,7) =C(X,7)N SO(X, 7).

Definition 2.1.37. [8] Let (X, 7) and (Y,U) be topological spaces and f : (X,7) —
(Y,U). Then f is called C — continuous if f~1(V) € C(X, 1) foreach V € U.

Theorem 2.1.38. [8] Let (X, 7) and (Y, U) be topological spaces and f : (X, 7) — (Y,U).

Then f is A—continuous if and only if it is semi—continuous and C—continuous.

Proposition 2.1.39. [22] Let (X, 7) and (Y, i) be topological spaces and f : (X,7) —

(Y,U). Then f is continuous if and only if it is «—continuous and .A—continuous.

Corollary 2.1.40. [8] Let (X, 7) and (Y, /) be topological spacesand f : (X, 7) — (Y,U).

Then f is continuous if and only if it is «—continuous and C—continuous.

Proposition 2.1.41. [5] Let (X, 7) be a topological space and H C X. Then the following
statements are equivalent:

(1) H € LC(X,T1);

(2) There exists an open set U in (X, 7) such that H = U N CI(H).

Proposition 2.1.42. [8] Let (X, 7) be a topological space. Then SO(X,7) C SPO(X, 1).

Theorem 2.1.43. [8] Let (X, 7) be a topological space. Then A(X,7) = SPO(X,7)N
LC(X,T).

Theorem 2.1.44. [8] Let (X, 7) and (Y, U) be topological spaces and [ : (X, 7) — (Y,U).

Then f is continuous if and only if it is spr—continuous and LC—continuous.

2.2 Minimal structure spaces

In this section, we introduce the m—structure and the m—operator notions. Also,

we define some important subsets associated to these concepts.
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Definition 2.2.1. [17]Let X be a nonempty set and P(X) be the power set of X. A
subfamily my of P(X) is called a minimal structure (briefly m — structure) on X if
h€myxand X € my.

The pair (X, mx), we denote a nonempty set X with an m—structure my on X
and it is called a minimalstructurespace (briefly m — space). Each member of my is

said to be m x — open and the complement of an m x — open set is said to be m y — closed.

Definition 2.2.2. [17]Let X be a nonempty set and my an m—structure on X. For a
subset A of X, the my — interior of A and the myx — closure of A with respect to m x
are defined as follows:
(DmxInt(A)=J{U:UCAUemx};
Q2)mxCl(A)=({F:ACF,X\F e€mx}.

Lemma 2.2.3. [14]Let X be a nonempty set and my an m—structure on X. For any
subsets A and B of X, the following properties hold:
(D) mxCUX \A) =X\ mxInt(A) and mxInt(X \ A) = X \ mxCI(A);
Q) If (X \A) € mx,thenmxCIl(A) = Aandif A € mx, thenmxInt(A) = A;
(3) mxCl(0) = 0,mxCIl(X) = X,mxInt()) = 0 and mxInt(X) = X;
(4)If A C B, then mxCl(A) C mxCIl(B) and mxInt(A) C mxInt(B);
(5) A CmxCl(A) and mxInt(A) C A;
(6) mxCl(mxCIl(A)) = mxCIl(A) and mx Int(mxInt(A)) = mxInt(A);
(7) mxInt(AN B) = mxInt(A) N mxInt(B) and
mxInt(A) UmxInt(B) C mxInt(AU B);
8) mxCl(AUB) = mxCIl(A) UmxCIl(B) and mxCIl(AN B)
C mxCl(A) NmxCIl(B) .

Definition 2.2.4. [15] An m—structure mx on a nonempty set X is said to have property

B if the union of any family of subsets belonging to m y belongs to mx.

Lemma 2.2.5. [17|Let X be a nonempty set and mx is an m—structure on X satisfying
property 8. For A C X the following properties hold:

(1) A € my ifand only if mx Int(A) = A,

(2) Ais mx—closed if and only if mxCI(A) = A,

(3) mxInt(A) is mx—open and mxCI(A) is mx—closed.
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Lemma 2.2.6. [15]Let X be a nonempty set and my is an m—structure on X. For any

subset A of X, z € mxCI(A) ifand only if U N A # () for every U € mx containing x.

Definition 2.2.7. [2] Let (X, mx) be an m—space and R C X. Then R is called
mx —regular closed if and only if R = mxCl(mxInt(R)).
The family of all m x —regular closed sets in an m—space (X, mx) is denoted by

RC (X, mx).

Definition 2.2.8. [19] A subset A of an m—space (X, mx) is called an mx — preopen
setif A C mxInt(mxCI(A)) and an mx — preclosed set if mxCl(mxInt(A)) C A.
The family of all m x —preopen sets in an m—space (X, myx) is denoted by

PO(X, my), and mx —preclosed sets in an m—space (X, mx) is denoted by PC(X, mx).

Definition 2.2.9. [19] A subset A of an m—space (X, my) is called an m x — semi—open
if A C mxCl(mxInt(A))and an mx — semi — closed if mxInt(mxCI(A)) C A.
The family of all m x —semi—open in an m—space (X, my) is denoted by SO(X, mx),

and m x —semi—closed in an m—space (X, my) is denoted by SC(X, mx).

Definition 2.2.10. [19] Let (X, mx) be an m—space and A C X, the my — preclosure of
A is denoted by m xpcl(A) is defined as the intersection of all m x —preclosed of (X, m.x)

containing A.

Proposition 2.2.11. [19]Let (X, myx) be an m—space and A, B C X. If A C B, then
mxpcl(A) C mypcl(B).

Proposition 2.2.12. [19] Let (X, mx) be an m—space and A C X. If my satisfies the
property B. Then mxpcl(A)= AUmxCl(mxInt(A)).

2.3 Biminimal structure spaces

In this section, we introduce the bim —space and the bim—operator notions. Also,
we define some important subsets associated to these concepts. This section discusses

some properties of biminimal structure spaces.

Definition 2.3.1. [3] Let X be a nonempty set and m%, m% be m— structures on X.

A triple (X, mk,m%) is called a biminimal structure space ( briefly bim — space).
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Let (X, m%, m%) be a biminimal structure space and A C X. The my — closure
and my — interior of A with respect to m’y are denoted by m’ Cl(A) and m’ Int(A)
respectively, fori = 1, 2.

Each member of m’ is said to be an m’ — open set and the complement of an

m', —open set is said to be m’y — closed , fori =1, 2.

Definition 2.3.2. [3] Let (X, m%, m%) be a biminimal structure space and Y be a subset
of X. Define minimal structures mi., m? on Y as follows:
mi = {ANY | A€ mi}andm? = {BNY | B € m%}. Atriple (X, ml, m})

is called a biminimal structure subspace ( briefly bim — subspace) of (X, mk, m%).

Definition 2.3.3. [4] A subset A of biminimal structure spaces (X, m%, m% ) is said to be

(1) (i, j)mx — regular open if A = mi Int(m’ Cl(A)), where i, j = 1 or 2 and

i F J;

(2) (i, j)mx — semi — open if A C mA Cl(m’ Int(A)), where i, 7 = 1 or 2 and
i 7 J;

(3) (i,7)mx — preopen if A C mi Int(m’CI(A)), where 7,7 = 1 or 2 and
L 7 J

4) (i, j)mx — a — open if A C mi Int(m’ Cl(miInt(A))), where i, j = 1 or
2and i # j;

The complement of an (i, j)my— regular open (resp.((¢,j)mx— semi-open,
(1, 7)mx— preopen, (i, j)mx — a— open) set is called (i, j)mx — regular closed (resp.

((i,j)mx — semi — closed, (i, j)mx — preclosed, (i, j)mx — a — closed).

Lemma 2.3.4. [4] Let (X, m%, m%) be a biminimal structure space and A be a subset of

X. Then

(1) Ais (i, j)mx — regular closed if and only if A = m’ Cl(m’ Int(A));

(2) Ais (i,5)mx — semi — closed if and only if m’ Int(m’ Cl(A)) C A;

(3) Ais (i,j)mx — preclosed if and only if m’ Cl(m’ Int(A)) C A;

(4) Ais (i, j)mx — a — closed if and only if m’ Cl(m’ Int(m’ Cl(A))) C A.

Definition 2.3.5. [4] Let (X, m%,m%) and (Y, mi,, m?) be biminimal structure space.
A function f : (X, m}, m%) — (Y, mi,, m?) is said to be (i, j) — M — continuous at a

point z € X and each V' € m!, containing f(x), there exists U € mJX containing = such
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that f(U) C V,wherei,j =1or2andi # j.
A function f : (X,mk,m%) — (Y,mi},m?) is said to be (i,5) — M —

continuous if it has this property at each point x € X.

Theorem 2.3.6. [4] For a function f : (X, mY, m%) — (Y, ml m?2), the following prop-
erties are equivalen:

(1) fis (i,7) — M —continuous;

2) f7HV) = mi Int(f=1(V)) for every V € mi;

(3) f(m5CI(A)) C mi.Cl(f(A)) for every subset A of X;

4) Mm% Cl(f~(B)) C f~'(miCl(B)) for every subset B of Y;

(5) £~ (mi Int(B)) € m’ Int(f~1(B)) for every subset B of Y;

(6) M CI(f~*(F)) = f~'(F) for every m} —closed set F of ..

‘/ \W
12
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CHAPTER 3

A— SETS IN BIMINIMAL STRUCTURE SPACES

In this section, we introduce the concept of .A—sets in biminimal structure spaces

and study some fundamental properties of A—sets in biminimal structure spaces.

3.1 _A—sets in minimal structure spaces

In this section, we will introduce the notion of .4 —sets in minimal structure spaces

and investigate some of their properties.

Definition 3.1.1. Let (X,mx) be an m—space. A subset M of X is said to be an
mx — A — set if there exist G and R such that M = G N R when G is myx—open
and R is mx—regular closed.

The family ofall m x —.A—sets inan m—space (X, my) is denoted by A (X, mx).

Example 3.1.2. Let X = {1, 2,3}. Define an m—structure mx on X as follows:

mx = {0,{2},{1,2},{1,3}, X}. Then RC(X, mx) = {0, {2}, {1,3}, X} and

A (Xv mX) = {(Z), {1}7 {2}7 {17 2}7 {17 3}7 X}

Definition 3.1.3. Let (X,myx) be an m—space and A C X, then A is said to be an
mx — t — set 1meInt(A) = mxfnt(mel<A))

The family of all mx —t—sets in an m—space (X, mx) is denoted by (X, mx).

Example 3.1.4. Let X = {1,2,3} and define mx = {0,{1},{2},{1,3},{2,3}, X} be
an m—structure on X. It follows that t(X, mx) = {0, {1}, {2}, {3}, {1, 3},{2,3}, X }.

Proposition 3.1.5. Let (X, myx) be an m—space and R C X. If R is mx — regular closed

then R is an mx — t—set.

Proof. Let R be an mx — regular closed. Then R = mxCl(mxInt(R)).
Consequently, mxCI(R) = mxCl(mxCl(mxInt(R))).
Thus mx Int(mxCIl(R)) = mxInt(mxCl(mxInt(R))). Hence mxInt(mxCIl(R)) =

mx Int(R). Therefore, R is an myx — t—set. O

The converse is not true as can be seen from the following example.

=7 Mahasarakham University
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Example 3.1.6. Let X = {1, 2, 3}. Define m—structures mx on X as follows :
mx = {0, {1},{2},{1,3},{2,3}, X}. Thus (X, mx) = {0, {1}, {2}, {3},
{1,3},{2,3}, X} and RC(X,mx) = {0, {1}, {2}, {1,3},{2,3}, X }.

We can see that £(X, my) is not RC(X, mx).

3.2 _A—sets in biminimal structure spaces

In this section, we will introduce the notion of A—sets in biminimal structure

spaces and investigate some of their properties.

Definition 3.2.1. A subset A of a biminimal structure space (X, m}, m%) is said to be
(i,7)mx — locally closed if there exist G and F' such that A = G N F when G is an
m’ —open set G and F is an m&—closed set, where 7, j = 1,2 and 7 # j.

The family of all (¢, j)mx— locally closed sets in biminimal structure spaces

(X, mk,m%) is denoted by (i,5) — LC (X, m%, m%), where i, j = 1,2 and i # j.

Example 3.2.2. Let X = {a, b, c}. Define m—structures m}, and m% on X as follows:
mi = {0,{b,c}, X} and m% = {0, {c}, X}. It follows that ), {a, b}, X are m% —closed.
Thus (1,2) — LC (X, m%,m%) = {0,{b},{b, ¢}, {a, b}, X }.

Lemma 3.2.3. Let S be a subset of a biminimal stucture space (X, m},, m%) and leti, j =
1,2 and i # j. If S is an (i, j)mx—locally closed set then there exists an m’ —open set

U such that S = U Nm% CI(S) .

Proof. Let S be a (i, j)mx—locally closed set. Then there exist U and F' such that S =
U N F where U is m% —open and F is m])'(— closed. Since S=UNF,S CF.

Thus m’% CI(S) C m% CI(F). Since F is m’ —closed, m’% C1(S) C F.

Then U Nm%CI(S) CUNF = S. Since S C U and S C m’ CI(S).

Then S C U Nm?%.CI(S). Therefore, there exists an m? — open set U such that S =
U Nm’CU(S). O

The converse is not true as can be seen the following example.

Example 3.2.4. Let X = {1,2, 3}. Define m—structures mY and m3% on X as follows:
mk = {0,{1},{2}, X}andm% = {0, {1}, {2}, {2,3}, X}. Set.S = {3}. Since there ex-
ists X € mk suchthat S = X Nm3CI(S) and (1,2) — LC (X, m}, m%) = {0, {1}, {2},
{1,3},{2,3}, X}. We see that S isnota (1,2) — LC (X, m%, m%).

&7 Mahasarakham University
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The converse of above lemma is true if mg( has property ‘B as following propo-

sition.

Proposition 3.2.5. Let S be a subset of a biminimal stucture space (X, mY, m%) and let
mﬂ( has property B, where i,j = 1,2 and i # j. Then S is an (4, j)mx —locally closed
set iff there exists an m’ —open set U such that S = U N m’% CI(S).

Proof. (=) By Lemma 3.2.3.
(<) Let S = U N m/ CI(S), for some U € mk. Since m? has property B,
m? C1(S) is closed in (X, m?). Thus S is an (i, j)mx —locally closed. O

Definition 3.2.6. Let (X, m},m%) be a biminimal structure space. A subset M of X
is said to be an (i, j)mx — A — set if there exist G and R, such that M/ = G N R when
G € mi and R is mﬂ(—regular closed, where i, j = 1,2 and @ # j.

The family of all (4, j)m x —.A—sets in a biminimal structure space (X, m%, m3)

is denoted by (7, 7) — A (X, mk,m%), where i, j = 1,2 and i # j.

Example 3.2.7. Let X = {1,2,3}. Define m}, = {0,{1,2},{1,3}, X} and m% =
{0,{2},{1,2}, X} which are m—structures on X. It follows that RC(X, m%) = {0, X }.
Thus (1,2) — A (X, mk,m%) = {0,{1,2},{1,3}, X}.

Remark. The intersection of two (i, j)myx — A—sets may not be an (7, j)mx — A—set

as shown in the next example.

Example 3.2.8. Let X = {1,2,3}. Define m} = {0,{1,2},{1,3}, X} and m% =
{0,{2},{1,2}, X} which are m—structures on X.

It follows that {1,2} and {1,3} are (1,2)mx — A—sets. But {1,2} N {1,3} is not a
(1,2)mx — A—set.

Remark. The union of two (i, j)mx —.A—sets may not be an (7, j)myx —.A—set as shown

in the next example.

Example 3.2.9. Let X = {1,2,3}. Define m}, = {0, {1},{2},{2,3}, X}, m% =
{0,{1},{3},{2, 3}, X}, which are m—structures on X. It follows that RC(X, m%) =
{0,{1},{2,3}, X}. Thus (1,2) — A(X,mk,m%) = {0,{1},{2},{2,3}, X}. Conse-
quently {1} and {2} are (1,2)mx — A—sets. But {1} U {2} isnota (1,2)mx — A—set.
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Lemma 3.2.10. Let (X, m};, m%) be a biminimal structure space mJX has the property ‘5.
If a subset M of X is an (i, j)mx — A—set, then M is (i, j)mx—locally closed, where
1,7 =1,2and i # j.

Proof. Let M is an (i, j)mx — A—set. Then there exist G and R such that M = GN R
where G is m% — open and R is m’, —regular closed. Since R is m’ —regular closed,
R = m’ Cl(m’, Int(R)). But m’ has the property B then m’, Cl(m’ Int(R)) is closed.

Hence R is 0’ closed. It follows that M is an (i, j)mx —locally closed. O
The converse of Lemma 3.2.10, is not true, as shown in the next example.

Example 3.2.11. Let X = {1,2, 3}. Define m—structures m} and m% on X as
follows : mi = {0,{1},{2}, X} and m% = {0,{1},{2},{1,2},{2,3}, X}. Thus
(1,2) = AX,my,m%) = {0,{1},{2},{2,3}, X} and (1,2) — LC(X,m),m¥) =
{0, {1}, {2}, {3}, {1, 3},{2,3}, X}.

We can see that {3} is an (1,2) — LC(X, m%, m%) butitisnota (1,2) — A(X, mk, m%).

The converse of Lemma 3.2.10, is true if m& C m’ and mﬁ( has the property

B as the following proposition.

Proposition 3.2.12. Let (X, m%,m%) be a biminimal structure space and m’, C m/; has
the property 8. If a subset M of X is both (i, j)mxy—semi—open and (i, j)mx —locally
closed, then M is an (i, j)my — A—set, where i, 7 = 1,2 and 7 # j.

Proof. Let M be both (i, j)mx—semi—open and (i, j)m x —locally closed.

It follows that A C m&C’l(m&I nt(M)) and there exists an m'y —open set U such that
M = U N CI(M). Since m’ CI(M) C m’, Cl(m% Cl(m’ Int(M))) C

m Cl(m ClL(mP Int(M))) C m? Cl(m Int(M)). But m? Cl(m Int(M)) C

m?, C1(M), hence m’, CL(M) = m?, Cl(m’, Int(M)).

We will show that m? C1(m’ Int(M)) is regular closed.

Since m Int(M) = m’ Int(m’ Int(M)) C m’ Int(m’ Cl(m’ Int(M))).

It follows that m? Cl(m’ Int(M)) C m’, Cl(m’ Int(m’ Cl(m’ Int(M)))).

Since m Int(m’ Cl(m’ Int(M))) C m? Cl(m’ Int(M)).

Then 1, C1(m’ Int (m?, C1(m? Int(M)))) C m? ClL(m’ Cl(m? Int(M))) =

m? Cl(m’ Int(M)). Thus m’ Cl(m? Int(M)) = m’ Cl(m’ Int(m’, Cl(m’ Int(M)))).




16

Hence m’ C1(m’ Int(M)) is m’, regular closed. Consequently m? C1(M) is m’, regular

closed. Therefore, M is an (7, j)myx — A—set. O

Definition 3.2.13. Let (X, m%, m%) be a biminimal structure space and A C X.
Then A is said to be an (i, j)myx — t — set if mi Int(A) = mi Int(m’CI(A)), where
i, =1,2and i # j.

The family of all (¢, j)m x —t—sets in a biminimal structure spaces (X, m%, m3)

is denoted by (i, 7) — t(X, mk,m%) fori,j = 1,2 and i # j.

Example 3.2.14. Let X = {1, 2, 3}. Define m—structures m?} and m3% on X as follows:

mk = {0,{1},{3},{2,3}, X} and m% = {0, {1}, {1,2}, X }.
Thus (1,2) — t(X,m%k,m%) = {0, {3}, {2,3}, X }.

Theorem 3.2.15. Let (X, m}, m%) be a biminimal structure space and A C X.
Then Aisan (i, j)mx —t—setif and only if A is (¢, j)m x —semi—closed, where i, j = 1,2

and 7 # j.

Proof. (=) Let Abean (i, j)mx — t— set. Then m’y Int(A) = mi Int(m’ Cl(A)).
Thus m’ Int(m’, C1(A)) C A. Hence A is (i, j)mx — semi—closed .
(<) Let A be (i, j)mx —semi—closed. Then m’ Int(m’ CI(A)) C A.
Thus m’ Int(m’ Int(m’,Cl(A))) C mi Int(A). Hence m Int(m’ Cl(A)) C
m Int(A). Since mi Int(A) C mi Int(m?’,Cl(A)). Thus mi Int(A) =
m’ Int(m’ Cl(A)). Hence Ais an (i,5)mx — t—set. O

Definition 3.2.16. Let (X, m%, m%) be a biminimal structure space and A C X.
Then A is said to be an (i, j)mx — B — set if A = U N'T,when U is an m% —open set
and 7" is an mg( — t—set, where i, j = 1,2 and i # j.

The family of all (7, j)mx —B—sets in a biminimal structure space (X, m%, m3)

is denoted by (i, j) — B (X, mY,m%), where i,7 = 1,2 and i # j.

Example 3.2.17. Let X = {1, 2, 3}. Define m—structures m}; and m% on X as follows:
m}( = {®7 {1}7 {2}7 {27 3}’ X} and m%{ = {@, {1}7 {3}7 {2’ 3}’ X}

Then {0, {1},{2}, {1,2},{2, 3}, X} are m% — t—sets.

Therefore, (1,2) — B (X, m%,m%) = {0, {1}, {2}, {1,2},{2,3}, X }.

&7 Mahasarakham University
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Theorem 3.2.18. Let (X, m};, m%) be a biminimal structure space and A C X.

If Aisan (i, j)mx — A—set, then Ais an (i, j)mx — B—set for all 4, j= 1,2 and ¢ # j.

Proof. Let Abe an (i, j)mx — A—set. Then there exist G and R suchthat A = GN R
where G is m’ —open in (X, m%;) and R is an mg( — regular closed. By Proposition 3.1.5,

Ris an m’, — t—set. Hence A is an (i, )mx — B—set. O
The converse is not true as can be seen from the following example.

Example 3.2.19. Let X = {1,2, 3}. Define m—structures m}; and m% on X as
follows : m% = {0,{1},{3},{2,3}, X} and m3 = {0,{1},{2}, X}. Thus (1,2) —
A(X,m,mi) = {0,{1},{3},{1,3},{2,3}, X} and (1,2) - B(X, m},m%) = {0, {1},
{2}, {3},{1,3},{2,3}, X}. We can see that {2} is a (1,2)myx — B—set but it is not a
(1,2)mx — A—set.

Definition 3.2.20. Let (X, m%, m%) be a biminimal structure space and A C X.
Then A is said to be an (i, j)mx — C — set if A = U N B,when U is an m% —open and
B is mg(— preclosed, where 7, 7 = 1,2 and i # j.

The family of all (7, j) — C—sets in a biminimal structure space (X, m%, m%) is

denoted by (i,j) — C (X, mk,m%), where i,j = 1,2 and i # j.

Example 3.2.21. Let X = {1,2,3}. Define m—structures m' and m% on X as
follows : m% = {0,{1},{2},{2,3}, X} and m% = {0, {1}, {3}, {2,3}, X }.
Thus 0, {1}, {2},{1,2}, {2, 3}, X are preclosed in (X, m%).

Therefore, (1,2) — C (X, mk,m%) = {0,{1},{2},{1,2},{2,3}, X }.

Theorem 3.2.22. Let (X, m}, m%) be a biminimal structure space and A C X.

If Aisan (i, 7)mx — A—set, thenitis an (i, j)my — C—set forall i, 7 =1, 2 and i # j.

Proof. Let Abe an (i, j)mx — A—set. Then there exist G and R suchthat A = GN R
where G is m’ —open and R is m’, — regular closed. Since R = m’, Cl(m’, Int(R)), thus
m? Cl(m’ Int(R)) C R. Hence R is an m’ — preclosed.

Therefore, A is an (7, j)mx — C—set. O

The converse is not true as can be seen from the following example.

&7 Mahasarakham University
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Example 3.2.23. Let X = {1,2,3}. Define m—structures m' and m% on X as
follows :mY = {0, {1}, {2}, {1,3}, X} = m%. Thus (1,2) — A(X, m%,m%) = {0, {1},
{2}.{1,3}, X} and (1,2) — C(X, mi, m%) = {0, {1}, {2}, {3}, {1, 3}, {2, 3}, X}.
We can see that {3} isa (1,2)mx — C—set butitisnota (1,2)myx — A—set.

Proposition 3.2.24. Let (X, m, m%) be a biminimal structure space and M be a subset
of X. If M is an (i, j)mx—locally closed set, then it is also an (7, j)my — B—set, where

i,j=1,2andi # j.

Proof. Let M be (7, j)mx—locally closed set. Then there exist U and B such that M =
U N B where U is mi —open and B is m’ —closed. Since B is m’ —closed, B =
m% Cl(B). Thus m’ Int(B) = m’ Int(m’CI1(B)). Hence B is an m’, — t—set. Thus
M is an (i, j)mx — B—set. O

In general, an (i, 7)mx — B—set need not be (7, j)m x —locally closed set, as can

be seen from the following example.

Example 3.2.25. Let X = {1, 2,3}. Define m—structures m}; and m% on X as

follows : mi = {0,{1},{3},{2,3}, X} and m3% = {0,{1},{2}, X}. Thus (1,2) —
B(X,mk,m%) = {0,{1},{2},{3},{1,3},{2,3}, X} and (1,2) — LC(X,m},m%) =
{0,{1},{3},{1,3},{2,3}, X}. We can see that {2} is a (1,2)mx — B—set but it is not

(1,2)mx—locally closed set.

Proposition 3.2.26. Let (X, m, m%) be a biminimal structure space and M be a subset
of X. If M is an (i, j)mx —locally closed set, then it is also an (7, j)mx — C—set, where

i,j =1,2and i # j.

Proof. Let M be an (i, j)mx—locally closed set. Then there exist U and B such that
M = U N B where U is an m’ —open in (X, m% ) and B is an m’, —closed. It follows
that m’, Cl(m’ Int(B)) € m’.Cl(B) = B. Then B is an m’ —preclosed. Hence M is

an (i, j)myx — C—set. N

In general, an (i, 7)mx — C—set is not (i, j)mx —locally closed set, as can be

seen from the following example.

&7 Mahasarakham University



=85 Mahasarakham University

19

Example 3.2.27. Let X = {1,2,3}. Define m—structures m' and m% on X as
follows : mi = {0, {1}, X} and m3 = {0, {1}, {2},{2,3}, X }.

Thus (1,2) — C(X,mk,m%) = {0, {1}, {2}, {3},{1,2},{1,3},{2,3}, X} and

(1,2) — LC(X, mY, m%) = {0,{1},{1,3},{2,3}, X }.

We can see that {2} is a (1,2)my — C—set but it is not a (1, 2)my —locally closed set.

Moreover, an (i, j)mx — B—set and an (i, j)mx — C—set are independent as

can be seen from the following examples.

Example 3.2.28. Let X = {1,2, 3}. Define m—structures m}; and m% on X as
follows : mi = {0, {1}, X} and m3 = {0, {1}, {2},{2,3}, X }.

Thus (1,2) — B(X,mk, m%) = {0, {1}, {2}, {3}, {1,3},{2,3}, X} and

(1,2) — C(X,mk,m%) = {0,{1},{2}, {3}, {1,2},{1,3},{2,3}, X}. We can see that
{1,2}isa (1,2)mx —C—setbutitisnota (1,2)mx — B—set.

Example 3.2.29. Let X = {1,2, 3}. Define m—structures m}; and m% on X as follows:
my = {0,{2}, {3}, X} and m% = {0,{1},{2}, X}. Thus (1,2) — B(X,mk,m%) =

{0, {1}, {2}, {3}, {1.3},{2,3}, X} and (1,2) — C(X,mx, m%) = {0, {2}, {3}, {1, 3},
{2,3}, X}. We can see that {1} isa (1,2)mx — B—set but it is not (1, 2)mx — C—set.

We can conclude the relation among an (¢, j)mx — A—set, an (i, j)mx — B—set,

an (i, j)mx — C—set, an (i, j)myx — LC—set as the following diagram.

(i,7)mx — A—set — (i,j)mx — B—set

<

(i,7)mx — LC—set — (i, j)mx — C—set

Proposition 3.2.30. Let A be a subset of a biminimal stucture space (X, m}, m%) and
m’, has the property 8. Then A is an (i,5) — C—set iff A = U N m’ pcl(A) for some
U € mb,wherei,j =1,2andi # j.

Proof. (=) Let Abe (i, j)mx —C—set. Then there exist U and B suchthat A =UNRB

where U is m’ —open and B is m’ —preclosed. From A C B, m’pcl(A) C m? pcl(B)
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by Proposition 2.2.12, m%pcl(B) = B U m% Cl(m’ Int(B)). As B is m’; —preclosed,
m? Cl(m’ Int(B)) C B. Hence m’ pcl(B) = B. Thus m’, pcl(A) C B. It follows that
Unmlpcl(A) CUNB = A. Since A C U and A C m/pcl(A), A C U Nmpcl(A).
Therefore A = U N mpcl(A).

(<) Let A = U N mlypcl(A) for some U € miy. Since m? pcl(A) is an m’ —

preclosed. Therefore, A is an (7, j)my — C—set. O

Proposition 3.2.31. Let A be a subset of a biminimal stucture space (X, ml,m%) and
m’, has the property 8. Then A = U Nm? Cl(m’ Int(A)) for some U € m'y if and only

if Aisan mg(—semi—open and (i, j)mx — C—set, where i, 7 = 1,2 and i # j.

Proof.  (=)Let A = Unm’ Cl(m’ Int(A)) forsome U € m’.. Then A C m’ Cl(m’; Int(A)).
Thus A is m’, —semi—open. By Lemma 2.2.5, m’ Cl(m’, Int(A)) is m’ —closed. Since
m? Int(m? Cl(m’ Int(A))) C m’ Cl(m’, Int(A)),
m? Ol Int(m?, Cl(m’ Int(A)))) € m Cl(m Int(A)). Hence m’ Cl(m’ Int(A)
is m’, —preclosed. Then A is an (i, j)my — C—set.
(<) Let A be an m’, —semi—open and (i, j)mx —C—set. By proposition 3.2.30,
A = U N mhpcl(A) for some U € mk. Since A is m’ —semi—open. Then A C
m? Cl(m’ Int(A). Since m’; has the property 9 and by Proposition 2.2.12, m’, pcl(A) =
A U ml Cl(ml Int(A)). Thus mpcl(A) = m’ Cl(m’ Int(A). Hence A = U N
m? Cl(m’ Int(A)) for some U € mi. O

Theorem 3.2.32. Let (X, m%, m%) be a biminimal structure space and mJX has the prop-
erty 8. If a subset M of X is an m’, —semi—open and (i, j)my — C—set, then it is an

(7,7)mx — A—set.

Proof. Let M be an m’, —semi—open and (i,j)mx — C—set. By Proposition 3.2.31,
then M = U N m/Cl(m’ Int(M)) for some U € mk. Since m’ Cl(ml Int(M)) is

m&—regular closed. Therefore, M is an (i, j)mx — A—set. ]

Definition 3.2.33. Let (X, mY, m%) and (Y, ml., m?) be biminimal structure spaces. A
function f : (X, mk, m%) — (Y, m},, m%) is said to be
(1) (i,7) — semi — continuous if f~(V) € (i,7) — SO(X,m%,m%) for all

V e my.
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(2) (i,7) — LC — continuous if f~1(V) € (i,7) — LC(X,mk,m%) forall V €

(3) (i,j) — A—continuous if f~(V) € (i,j) — A(X,m%,m%) forall V € m}.

Example 3.2.34. Let X = {1,2,3} and Y = {qa, b}.

Consider m—structures on X and Y as follows :

mi = {0,{1,2},{1,3}, X} and m% = {0,{2},{1,2}, X }.

mi = {0,{a},{a,b},Y} and m? = {0, {a}, {b},Y}.

Let f+ (X, mk,m%) — (V,mb,m2) and £(0) = 0, ({1}) = {a}, F({2}) = {a}.
F{3}) =A{o}, f(X) =Y.

Consider 0, {a}, {a,b},Y € mi,, we get f71(0) =0, f~*({a}) = {1,2}, ' ({a,b})
={1,3}, /1Y) = X are (1,2)mx — A—sets. Thus f is (1,2) — .A—continuous.

Proposition 3.2.35. Let (X, m}, m%) and (Y, mi,, m3) be biminimal structure spaces
and let f : (X, mL, m%) — (Y,ml, m?) be a mapping. If f is (i,j) — .A—continuous

then f is (4, j) — LC—continuous.

Proof. Let f be (i,7) — A—continuous and V' € m},.
Then f~1(V) € (i,75) — A(X, mk, m%). By Lemma 3.2.10, we have f~1(V) € (i,5) —
LC(X,m%,m%). Hence f is (i, j) — LC—continuous. O

Theorem 3.2.36. Let (X, m%,m%) and (Y, m;., m?) be biminimal structure spaces and
m’, has the property B. If a mapping f : (X, mk,m%) — (Y,mi, m2)is (4,5) —

semi—continuous and (7, j) — £LC—continuous then f is (i, j) — .A—continuous.

Proof. Let f be an (i, ) — semi—continuous and (7, j) — LC—continuous and V' € mj..
Then f_l(v) S (Zv.]) - SO(X7m£(7mA2X) and f_l(v) € (Zuj) - E’C(X7m£(7m2 )
By Theorem 3.2.12, thus f~'(V) € (4,7) — A(X, mk,m%). Therefore, f is (i,j) —

A—continuous. O]

Definition 3.2.37. Let (X, m}, m%) and (Y, m},, m%) be biminimal structure spaces.
A function f : (X, mk,m%) — (Y,mi,, m%) is said to be (i,j) — C — continuous if

YV € (i,7) — C(X,mk,m%) forall V € mi,.

Example 3.2.38. Let X = {1,2,3} and Y = {a,b, c}.

Consider m—structures on X and Y as follows :
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mk = {0,{1},{2},{2,3}, X} and m% = {0, {1}, {3}, {2,3}, X}

my = {0, {a}, {0}, {a, b}, {b,c}, Y} and mi. = {0, {a}, {0}, Y}.

Let f 1 (X, my,m%) — (Y,my,mi) and f(0) =0, f({1}) = {a}, f({2}) = {b},
F{3}) =A{c} f(X) =Y.

Consider 0, {a}, {b}, {a, b}, {b,c},Y € mi, we get f~1(0) =0, f1({a}) = {1},
Ao = {25 1 {a, o) = {12} 71 ({b,c}) = {23}, f71(Y) = Xare (1, 2)mx —

C—sets. Thus f is (1,2) — C—continuous.

Definition 3.2.39. Let (X, m, m%) and (Y, ml, m?) be biminimal structure spaces.
A function f : (X, mk,m%) — (Y,m},m}) is said to be (i,j) — B — continuous if

7Y V) e (i,5) — B(X,mk,m%) forall V € mi,.

We can see thatif f is an (¢, j) —.A—continuous, then f is an (7, j)—B—continuous.

But the converse is not true.

Example 3.2.40. Let X = {1,2,3} and Y = {a, b, c}.

Consider m—structures on X and Y as follows :

mk = {0,{1},{2},{2,3}, X} and m% = {0, {1}, {3}, {2,3}, X}

mi = {0, {a}, {b},{a, b}, {b,c}, Y} and m3 = {0, {a, b}, {b,c}, Y}.

Let f : (X, my,m%) = (Y,my,mi) and f(0) =0, f({1}) = {a}, F({2}) = {b},
F{3}) =A{ch, (X)) =Y.

Consider (), {a}, {b}, {a, b}, {b,c},Y € ml, we get f~1(0) =0, f'({a}) = {1},
7B =28 7 ({a,0}) = {12}, f71({b,e}) = {2,3}, f7H(Y) = Xare (1, 2)mx —

B—sets. Thus f is (1,2) — B—continuous.

Theorem 3.2.41. Let (X, mY,m%) and (Y, m},, m3.) be biminimal structure spaces. If
a mapping f : (X, mk,m%) — (Y,my,m}) is (4,5) — semi—continuous and (z,5) —

C—continuous then f is (7, j) — .A—continuous.

Proof. Let f be (i,j) — semi—continuous and (¢, j) — C—continuous, and let V' € m},.

Then f~Y(V) € (i,7)—SO(X, m%k,m%)and f~1(V) € (4, 5)—C(X, m%, m%). By Theo-

rem 3.2.32, thus f~1(V) € (4, ) —A(X, mk, m%). Therefore, f is (4, j) —.A—continuous.
0




CHAPTER 4

A—CONNECTED SETS IN BIMINIMAL STRUCTURE SPACES

In this section, we introduce the concept of A—connected sets in biminimal struc-
ture spaces and study some fundamental properties of .A—connected sets in biminimal

structure spaces.

4.1 A-—separated sets in biminimal structure spaces

In this section, we will introduce the notion of .4—separated sets in biminimal

structure spaces and investigate some of their properties.

Definition 4.1.1. Let (X, m};, m%) be a biminimal structure space and let M/ C X. Then
M isan (i,j)mx — AY — set if X \ M is an (i, j)myx — A — set.
The family of all (4, j)m x —A® —sets in a biminimal structure space (X, m},, m%)

is denoted by (i, j) — A (X, m%, m%).

Example 4.1.2. Let X = {1,2,3}. Define m-structures m}; and m3% on X as follows:
my = {0, {1}, X} and m% = {0,{1},{2},{1,3}, X}. Thus (3,5) — A(X,mk,m%) =
{0,{1},{2},{1,3}, X}. Then (i, j) — A“ (X, mi, m¥) = {0,{2,3},{1,3}, {2}, X}.

Definition 4.1.3. Let (X, m}, m%) be a biminimal structure space and let M C X. Then
the A — closure of M and the A — interior of M, denoted by Acl(M) and Aint(M),
respectively, are denoted as the following:

Acd(M)=n{F: M C F,F € (i,j) — A° (X, m},m%)};

Aint(M) =U{G : G C M,G € (i,j) — A(X,mk,m%)}.

Example 4.1.4. Let X = {1,2,3}. Define m-structures m?, and m% on X as follows:
mi = {0, {1}, X} and m% = {0, {1}, {2}, {1, 3}, X}. Then (1,2) — A(X,mL, m%) =
{0,{1,3}, {2}, {1}, X} and (4, j) — A (X, mk,m%) = {0,{2}.{1,3},{2,3}, X}. Let
M = {1} C X. Then Acl(M) = {1,3} and Aint(M) = {1}.

Proposition 4.1.5. Let (X, m%,m%) be a biminimal structure space and M C X.

Then Acl(X \ M) = X \ Aint(M) and Aint(X \ M) = X \ Acl(M).
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Proof. Let M C X.

Then X \ Aint(M) =X \U{G : G C M,G € (i,5) — A(X, mk,m%)}
="{X\G:GC MG e (i,j) — AX,mx, m%)}
={X\G: X\ MCX\G X\G e (i,j)— A°(X,mL,m%)}
= Acl(X \ M).

Consequently, we have Aint(X \ M) =X \ Acl(M). O

Proposition 4.1.6. Let (X, m%,m%) be a biminimal structure space and M C X. Then
(1) Aint(M) C M;
(2) If M C K, then Aint(M) C Aint(K);
(3) If M is (4, j)mx — A—set then Aint(M) = M.

Proof. (1) Since U{G : G C M, G € (i,7) — A(X,mk,m%)} C M.

Then Aint(M) C M.

(2) Let M C K, then U{G : G C M,G € (i,j) — A(X,m%,m%)} CU{H : H C
K, H € (i,j) — A(X,mk,m%)}. Hence Aint(M) C Aint(K).

(3) Let M is an (i, j)myx — A—set. Since M C M and M € {G: G C M,G € (i,j) —
A(X,m,m%)}. Then M CU{G: G C M,G € (i,j)— A(X,mk,m%)} = Aint(M).
By (1), Aint(M) C M. Hence Aint(M) = M. O

Proposition 4.1.7. Let (X, m%,m%) be a biminimal structure space and M C X .Then
(1) M C Acl(M).
(2)If M C K, then Acl(M) C Acl(K);
(3) If M is (i, 7)mx — A —set, then Acl(M) = M

Proof. (1) Since Aint(X — M) C X \ M. Then M C X — Aint(X \ M).

By Proposition 4.1.5, M C Acl(M).

(QLet M C K,thenN{F : M C F,F € (i,j) — A°(X,mk,m%)} C{E: K C
E,E € (i,j) — A%(X,m%, m%)}. Hence Acl(M) C Acl(K).

(3) Let M is an (i, j)myx — A —set. It follows that X \ M is an (i, j)mx — A—set.

By Proposition4.1.6, Aint( X\ M) = X\ M. By Proposition4.1.5, X\ Acl(M) = X\ M.
Then Acl(M) = M. O

Proposition 4.1.8. Let (X, m%,m%) be a biminimal structure space and M C X. Then

(D) z € Acl(M) ifand only if M NV # ¢ for every (i, j)mx — A—set V
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containing .
(2) x € Aint(M) if and only if there exists an (7, j)mx — A—set U such that
UCMandzx €U.

Proof. (1) (=) Suppose there is an (7, j)mx —.A—set V containing  such that M NV = ().
Then X \ V is an (i, j)mx — A“—setsuch that M C X \ V and x ¢ X \ V. It follows
that = ¢ Acl(M).

(<) Suppose = ¢ Acl(M). Then there exists £ such that M C E € (i,j) —
AC(X,mk, m%) butx ¢ E. It follows that X \ E is an (4, j)mx — A—set containing x
such that M N (X \ E) = 0.

(2) It obvious, by Definition 4.1.3. ]

Definition 4.1.9. Let (X, m}, m%) be a biminimal structure space and let Y C X and
M C Y. Then an Ay — closure of M is defined as follows:
Acly (M) = Acl(M)NY.

Example 4.1.10. Let X = {1,2,3} and Y = {2,3}. Define m-structures m} and m%
on X as follows: m% = {0, {1}, X} and m% = {0, {1},{2},{1,3}, X}. Let M = {3},
then Acl(M) = {3}. Hence Acly (M) = Ac(M)NY = {3} N {2,3} = {3}. Thus
Acl(M) = {3}. Then Acly (M) = {3}.

Definition 4.1.11. Let (X, m}, m3%) be a biminimal structure space and let K, M C X.
Then K and M are (i, j).A — separated if and only if Acl(K)NM =0 = Acd(M)NK,
where (i,7) = 1,2 and i # j.

Moreover, if (Y, my,,m3 ) be a biminimal subspace of X, then U,V C Y be
(i, j)A—separated in Y if Acly (U) NV = 0 and Acly (V)N U = ().

Example 4.1.12. Let X = {1,2,3}. Define m-structures m} and m3% on X as follows:
mk = {0, {1}, X} and m% = {0, {1},{2},{1,3}, X}. Thus (1,2) — A (X, mL, m%) =
(0, {1},42}, {1,3}, X}. Then (1,2) — A° (X, m},m%) = {0,{2,3}, {1.3}, {2}, X}.
Let K = {1} and M = {2}. It follows that Acl(K) = {1,3} and Acl(M) = {2}. Thus
Acl(K)N'M = § and Acl(M) N K = (). Therefore, K and M are (1,2).A—separated.

Theorem 4.1.13. Let (X, m}, m%) be a biminimal structure space and (Y, m3,, m3.) be

a biminimal subspace of X and let U,V C Y. Then U,V be (i, j).A—separated in X iff
U and V be (i, j).A—separated in Y.
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Proof.  (=)Let U and V be (i,j)A—separated in X. Then Acl(U) NV = () and
Acl(VYNU = 0,s0 (Acl(U)NY)NV = Pand (Acl(V)NY)NU = (. Thus Acly (U)N
V =0 and Acly(V)NU = 0. Hence U and V be (i, j).A—separated in Y.

(<) Let U and V be (i, j).A—separated in Y. Then Acly(U) NV = () and
Acly (V)NU = 0. Thus (Ac(U)NY)NV = Qand (Ac(V)NY)NU = (. Since
U,V CYsoAcd(U)NV = Dand Acl(V)NU = (). Hence U and V be (4, j).A—separated
in X. ]

Proposition 4.1.14. Let (X, m%, m%) be a biminimal structure space and K, M C X.
If K and M are (i, j).A—separated then K and M are disjoint.

Proof. Let K and M be (i, j)A—separated. Then Acl(K)NM = = Acl(M)N K. By
Proposition 4.1.7, K C Acl(K) and M C Acl(M). Then K N M = (). Thus K and M

are disjoint. [

Remark. Let (X, m%, m%) be a biminimal structure space and K, M C X. By Propo-
sition 4.1.14, if K and M are (i,j) — A—separated then K and M are disjoint. But
the converse is not true, i.e. if K and M are disjoint, then K and M does not need be

(4, j).A—separated as can be seen from the following example.

Example 4.1.15. Let X = {1, 2, 3}. Define m—structures m} and m% on X as follows:
mk = {0,{1}, X} and m3% = {0,{1},{2},{1,3},X}. Let K = {1,2} and M =
{3}. Then Acl(K) = X and Acl(M) = {1,3}. Thus Acl(K) N M = {3} # 0 and
Acl(M) N K = {1} # 0. Hence K and M are not (i, j).A—separated.

Proposition 4.1.16. Let (X, m%, m%) be a biminimal structure space and K, M C X.
If K and M are (i, j).A—separated, then D and F are (i, j).A—separated, where D C K
and £ C M.

Proof. Let K and M are (i, j).A—separated. Then Acl(K)NM =0 = Acl(M) N K.
Since D C K and E C M. Then Acl(D) N E = () = Acl(E) N D. Therefore, D and E
are (4, j).A—separated. O

Definition 4.1.17. Let (X, m},, m%) be a biminimal structure space. Then (X, m%, m%)

is said to be a T4 — space if the arbitary union of (7, j)mx —A—setsisan (i, j)my —.A—set.
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Example 4.1.18. Let X = {1,2,3}. Define m-structures m} and m% on X as follows:
mk ={0,{1,2},{1,3}, X} andm% = {0, {2}, {1, 2}, X}. Then (1,2)—A(X,m%,m%)
={0,{1,2},{1,3}, X}. Thus (1,2) — A(X, m},m%) is T,y —space.

Remark. By Definition 4.1.17, if (X, m}, m%) is a T4—space, then every intersection

of (i,7)mx — A% —sets is (i, j)mx — A”—sets as well.

Proposition 4.1.19. Let (X, m%, m%) be a biminimal structure space and K, M C X.
If (X, m%,m%) is a T4—space, then the following statements are equivalent:

(1) K and M are (7, j).A—separated.

(2) There are (i, j)mx — A —sets Fi and F); such that K C Fr C (X \ M)
and M C Fy C(X\ K);

(3) There are (i, j)my — A—sets Gx and G, such that K C G C (X \ M)
and M C Gy C (X \ K).

Proof.  (1)=(2) Let K and M are (i,j)A—separated. Then Acl(K) N M = § =
Acl(M) N K. Since (X, m%,m%) is T4— space, Acl(K) and Acl(M) are (i,5)myx —
A€ —sets. It follows that K C Acl(K) C (X \ M)and M C Acl(M) C (X \ K).

Q=) Let K C Fx C (X \M)and M C Fy C (X \ K) for some
Fg,Fy € (i,7) — A9(X, mk, m%). It follows that Fx N M = () = Fy, N K. Since
K C Fxand M C Fyy, Acl(K) C Acl(Fk) and Acl(M) C Acl(Fy). By Proposition
4.1.16, Acl(Fx) = Fx and Acl(Fy) = Fy and Acl(K) C Fi and Acl(M) C Fy,.
Thus Acl(K) N M = 0 = Acl(M) N K. Therefore, K and M are (i, j).A—separated.

(2)=-(3) Suppose that K C Fx C (X \ M)and M C Fy; C (X \ K) for some
Fy, Fy € (i, §) — A9 (X, m%,m%). Hence X \ Fi and X \ F); are (i, j)my — A—sets.
Thus M C (X \ Fg) C (X \K)and K C (X \ Fy) C (X \ M). SetGx = X \ Fu
and Gy = X \ Fk. Therefore, K C Gx C (X \ M)and M C Gy, C (X \ K).

(3)=(2) Suppose that K C Gx C (X \ M)and M C Gy C (X \ K) for some
Gr,Gu € (i,7) — A(X,m%,m%). Hence X \ G and X \ Gy are (i, j)mx — A —sets.
Thus M C (X \Gg) C(X\K)and K C (X \Guy) C (X \M). Set Fix = X\ Gu
and F); = X \ Gk. Therefore, K C Fiy C (X \ M)and M C F); C (X \ K).
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4.2 A—connected sets in biminimal structure spaces

In this section, we will introduce the notion of .A—connected sets in biminimal

structure spaces and investigate some of their properties.

Definition 4.2.1. Let C' be a nonempty subset of a biminimal structure space (X, m%, m%).
Then C'is an (i, j).A—connected set of X if and only if for any two subsets K and M such
that C = K U M, K and M are (i, j).A—separated sets imply either K = () or M = ().
The space X is said to be an (i, j).A—connected set iff it is an (¢, j).A—connected subset

of itself, where (i, j) = 1,2 and ¢ # j.

Example 4.2.2. Let X = {1,2,3}. Define m-structures m?} and m3% on X as follows:
mk = {0,{1}, X} andm% = {0, {1},{2}, {1,3}, X}. Wehave (1,2) — A (X, m},m%)
= {0,{1},{2},{1,3}, X} and (1,2) — A° (X, mk,m%) = {0,{2,3},{1,3}, {2}, X}.
Let C = {1,2} C X. We can see that {1}and {2} are (1,2).A—separated such that
C = {1} U {2} but {1} # 0 # {2}. It follows that C' is not (i, j).A—connected in
(X, mk,m%).

Consider {1,3} € X. We can see that for every subset M and K. Such that
{1,3} = KUM, K and M are (1,2)A—separated imply K = () or M = ().

Proposition 4.2.3. Let (X, m}, m%) be a biminimal structure space and (X, m%, m%) is
a T'y—space, then the following statements are equivalent:
(1) The space X is (i, j).A—connected sets;
Q) If X = G1 UGy, G1 NGy =0, Gy and G5, are (i, j)mx — A—set then either
G,y =0orGy=0;
QG UX=FUF FFNF,=0F and F, are (i, j)myx — A —set, then either
Fi=0or F, =10
(4) If H C X is both (i, j)mx — A—set and (i, j)mx — A —set, then either
H=0orH=X.

Proof. (1)=(2) Assume that X is (7, j).A—connected. Let X = Gy UGy, G1 NGy = ()
and G1, G5 € (1,7) — A(X, mk,m%). Then Gy and G are (4, j)my — A—sets such that
G1 C Gy C (X \Gy)and Gy € Gy C (X \ Gy). By Proposition 4.1.19, G and G5 are
(i, j)A—separated sets. Since X is (7, j).A—connected and X # () thus either G; = () or
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Gy = 0.

Q=) Let X = UFR, FiNFy,=0and Fy, Fy € (i,7) — A% (X, m%, m%).
Set Gy = X\ Fy and Gy = X \ Fy. It follows that G1, Gy € (i,7) — A(X, m%, m%).
Since G1 UGy, = (X \FH)UX\ ) =X\(FANFkK)=(X\0)=XadG NGy =
(X\F)NX\F) =X\ (FFUF) =X\ X = (. By the assumption, either
X\ Fy,=Gy=0or X\ F; = G, = (). By the assumption, either '} = () or F;, = (.

(3)=(4)Let H C X and H be bothan (i, j)my—A—setand (i, j)my —A —set.
Then X\ H is both an (i, j)mx —.A—setand (i, j)my —A° —set. Since X = HU(X\ H),
HN(X\H)=0and H, X \ H € (i,j)mx — A°(X, m},m%). By the assumption,
either H = () or X \ H = (). Hence either H = ) or H = X.

@)=2)Let X = G1 UG, G1 NGy = Dand Gy, Gs € (i, 5) — A(X, mL, m%).
Since G; = X \ Go, Gy is an (4, j)my — A —set. By the assumption, either G; = () or
G = X. Hence either G; = () or G5 = 0.

(2)=(1) Let X = KU M and K, M are (i, j)A—separated. Set G; = X \
Acl(K) and Gy = X \ Acl(M). Since X is T 4—space, G and G are (i, j)mx — A—set.
Then M C X \ Acl(K) and K C X \ Acl(M). Thus M C G; and K C G5. Hence
Gi=Mand Gy, = K,G; NGy = (. Therefore, G, = M =P and Gy, = K = (. O

Lemma 4.2.4. Let (X, m%, m%) be a biminimal structure space and K, M C X. If C'is
an (i, j)A—connected C C K U M, K and M are (i, j).A—separated, then either C C K
orC CV.

Proof. Let C be an (i, j)A—connected, C C K U M,K and M be (i, 7).A—separated.
ThenC =CN(KUM)=(CNK)U(CNM). Since K and M are (i, j).A—separated.
Then Acl(K)NM =0 = Acl(M)NK. Since Acl(CNK) C Acl(K)andCNM C M.
Hence Acl(CNK)N(CNM) C Acl(K)NM = (). Similary Acl(CNM)N(CNK) = (.
Consequently (CNK') and (CNM) are (i, j) A—separated. Since C' = (CNK)U(CNM)
is (7,7).A—connected, either C N K = 0 or C N M = (. It follows that either C =
pU(CNM)orS=(CnK)UD. Hence either C C M or C C K. O

Theorem 4.2.5. Let (X, m},m%) be a biminimal structure space.

If C'is an (4, j).A—connected set, C C B C Acl(C)then C'is an (i, j).A—connected set.

Proof. Let B= KUM, K and M be (i, j). A—separated. Consequently Acl(K)NM = ()
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and Acl(M) N K = (. It follows that Acl(K) C (X \ M) and Acl(M) C (X \ K).
Since C C B = K U M and by Lemma 4.2.4, either C' C K or C' C M. So either
B C Acl(C) C Acl(K) C (X \ M) or BC Acl(C) C Acl(M) C (X \ K). Therefore,
either M = () or K = . O

Corollary 4.2.6. Let (X, m}, m%) be a biminimal structure space.

If C'is (4, j).A—connected sets, then Acl(C) is (7, j).A—connected sets.

Lemma 4.2.7. Let (X, mY, m%) be a biminimal structure space.
If C, is (i, j)A—connected for all & € J and for 5,7 € J, 8 # =, Cg and C,, are not
(1, 7). A—separated, then U Cl, is (i, 7). A—connected as well.

aed

Proof. Let U Co = KUM, K and M are (i, j) A—separated. It follows that KN M = ().
acJ
Since C,, C U C, and by Lemma 4.2.4, either C,, C K or C, C M forall « € J. Since

acJ
Cp and C,, are not (¢, j).A—separated for all 5,y € J and 3 # ~, then there does not exist

B,7 € J such that Cg C K and C;, € M. Then either C, C K, Vo € JorC, C M,
Vo € J. In the first case U C, C K and M = (). In the second one U C, € M and

acJ acJ

K =0. O

Corollary 4.2.8. Let (X, m}, m%) be a biminimal structure space and C' = U Cy. If
acJ

Cy is (i,7)A—connected for all @« € Jand Cs N C, # 0 forall 8,y € J then C is

(i, 7). A—connected.

Corollary 4.2.9. Let (X, m%, m%) be a biminimal structure spaces and C' = U Co. If
acJ

Cy isan (i, j).A—connected forall &« € J and ﬂ C, # 0 then C'is an (4, j).A—connected.

aeJ

Definition 4.2.10. Let (X, m}, m%) and (Y, m},, m?) be biminimal structure spaces.
Let f : X — Y, we will say that f is (7, 7)(Ax, Ay)—continuous iff f~1(W) € (i,5) —
A(X, mi,m%) forall W € (4,5) — A(Y,m}, m%).

Remark. By Definition 4.2.10, if f is (i,j)(Ax, Ay)—continuous, then f is (z,7) —

A—continuous as well.

Example 4.2.11. Let X = {1,2,3} =Y. Consider m—structures on X and Y as follows:
my = {0, {1}, X} and m% = {0, {1}, {2}, {1, 3}, X}.
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my = {0,{1},{2},{2,3}, Y} and m} = {0, {1}, {3},{2,3}, Y'}.
By definition 4.2.10, consider 0, {1}, {2}, {2,3} € (1,2)—A(Y,m}, m%), we get f~1(()
=0, f71({1}) = {1,3}, f71({2}) = {1}, f1({2,3}) = {2} are (1,2)mx — A—sets.

Thus f is (Ax, Ay)— continuous.

Lemma 4.2.12. Let (X, m}, m%) and (Y, m},, m?) be T,— spaces.
If fis (i, j)(Ax, Ay)—continuous and V, W C Y are (i, j).A—separated then f~1 (V') and
f~H(W) are (i, 7). A—separated.

Proof. By Proposition4.1.19, there exist Gy and Gy are (i, j)my —A—sets such that V' C
Gy C(Y\W)and W C Gy C (Y \ V). Then f~1(V) C f~HGy) C (X \ fLH(W))
and [71(W) € f1(Guw) (X \ f71(V)), with [~1(Gy) and f~1(Guy) ae (i, j)myx —
A—sets. By Proposition 4.1.19, f~*(V') and f~*(W) are (i, j).A—separated. O

Theorem 4.2.13. Let (X, m},m%) and (Y, mi-,m?) be T4—spaces. If C' C X is
(1, 7)A—connected and f is (i, j)(Ax, Ay )— continuous then f(C) is (i, j).A—connected.

Proof. Suppose f(C) =V UW,V and W be (i, j).A—separated. Since f(C) =V UW,
then C C (f~Y(V)U f~1(W)). By the hypothesis f~!(V') and f~'(W) are (i, j).A—sets.
By Lemma 4.2.12, f~(V) and f~'(W) are (i, j).A—separated. By Lemma 4.2.4, either
CCf Y V)orCC f~Y(W),i.eeither f(C) C Vor f(C) C W. It follows that W = ()
or V' = (). Hence f(C) is (i, j).A—connected. O




CHAPTER 5

CONCLUSIONS

The aim of this thesis is to introduce the concepts of A—sets in biminimal struc-
ture spaces. And we study some properties of (4, j).A—continuous on the space. Moreover,
we introduce the concepts of some .A—connected by using .A—separated and study rela-
tionships other types of .A—connected on biminimal structure spaces and study some of

their properties. The results are follows:

1) Let (X, mx) be an m—space. A subset M of X is said to be an my — A—set if there

exist G and R such that M = G N R when G is open and R is a m y —regular closed.

2) Let (X, mx) be an m—space and A C X, then A is said to be an my — t—set if
mxInt(A) = mxInt(mxCI(A)).

3) Let (X, mx) be an m—space and R C X. If R is mx— regular closed then R is

mx — t—set.

4) A subset A of abiminimal structure space (X, m}., m%) is said to be (i, j)m x —locally closed
if there exist G and F' such that A = G N F when G is an m’—open set G and F is
an m])‘(—closed set, where 7, 7 = 1,2 and 7 # j.

From the above definitions, I have the following theorems are derived:

4.1) Let S be a subset of a biminimal stucture space (X, m%, m%) and let i, j =
1,2and i # j. If S is an (4, j)mx —locally closed set then there exists an

m’ —open set U such that S = U Nm?.C1(S) .

4.2) Let S be a subset of a biminimal stucture space (X, m%, m%) and let m?
has property 8, where i, 7 = 1,2 and i # j. Then S is an (4, j)mx —locally

closed set iff there exists an m’ —open set U such that S = U Nm? CI(S).

4.3) Let (X, mk,m%) be abiminimal structure space 1’ has the property 8. If
asubset M of X isan (i, j)mx—.A—set, then M is (i, j)mx —locally closed,
where 7,7 = 1,2 and i # j.
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4.4) Let (X,mk,m%) be a biminimal structure space and m’ C m} has the
property *B. If asubset M of X is both (i, j)mx—semi—openand (7, j)mx—
locally closed, then M is an (¢, j)mx — A—set, where ¢, j = 1,2 and i # j.

4.5) Let (X, ml, m%) be a biminimal structure space and M be a subset of X.
If mg( has the property B and M is an (i, j)my—locally closed set, then it

is also an (i, j)my — B—set, where i, j = 1,2 and i # j.

4.6) Let (X, mk,m%) be a biminimal structure space and M be a subset of X.
If m’, has the property B and M is an (i, j)mx—locally closed set, then it

is also an (i, j)mx — C—set, where i, 7 = 1,2 and 7 # j.

5) Let (X, m},m%) be a biminimal structure space. A subset M of X is said to be an
(i, j)mx — A—set if there exists G and R, such that M = G N R when G € m’; and
Ris mj)'(—regular closed, where 7, 7 = 1,2 and i # j.

From the above definitions, I have the following theorems are derived:

5.1) The intersection of two (7, j)mx —.A—sets may notbe an (7, j)m y —A—set.
5.2) The union of two (i, j)mx — A—sets may not be an (i, j)myx — A—set.

5.3) Let (X, m}, m%) be a biminimal structure space and A C X.
If Aisan (i, j)myx — A—set, then Ais an (i, j)myx — B—set forall ¢, j= 1,
2andi # j.

5.4) Let (X, mk, m%) be a biminimal structure space and A C X.
If Aisan (i,j)myx — A—set then it is an (i, j)myx — C—set forall 7, j = 1,
2and ¢ # j.

6) Let (X, m%, m%) be a biminimal structure space and A C X.
Then A is said to be an (i, j)mx — t—set if mi Int(A) = mi Int(m’ CI(A)), where
ij=1,2andi # j.

From the above definitions, I have the following theorems are derived:

6.1) Let (X, m},m%) be a biminimal structure space and A C X.

Then A is an (i, j)mx — t—set if and only if A is (4, j)mx —semi—closed .
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7) Let (X, m%, m%) be a biminimal structure space and A C X.
Then A is said to be an (4, j)mx — B—setif A= U NT,when U is an m’ —open set

and 7" is an mg( — t—set, where i, j = 1,2 and ¢ # j.

8) Let (X, mL,m%) be a biminimal structure space and A C X.
Then A is said to be (i, j)mx — C—set if A = U N B, when U is an m’—open and B

is mg(— preclosed, where 7, 7 = 1,2 and i # j.

From the above definitions, I have the following theorems are derived:

8.1) Let A be a subset of a biminimal stucture space (X, m,m3) and m’ has
the property B. Then A is an (i,5) — C—set iff A = U N m’pcl(A) for
some U € m’, wherei,j = 1,2 and i # j.

8.2) Let (X, m%, m%) be a biminimal structure space and m& has the property

8. If a subset M of X is an m’, —semi—open set and (7, j)my — C—set,

then it is an (7, j)myx — A—set.

9) Let A be a subset of a biminimal stucture space (X, mk, m%) and m’ has the property
B. Then A = U N, Cl(m’ Int(A)) for some U € mi if and only if A is an

m’, —semi—open set and (i, j)mx — C—set.

10) Let (X, m%,m%) and (Y, mi-, m%) be biminimal structure spaces. A function f :

(X, mL,m%) — (Y, mi, m?) is said to be

(1) an (i, j) — semi—continuous if f~1(V') € (i,j) — SO(X, m}, m%)
forall V € mi,.

(2) an (i,j) — LC—continuous if f~1(V) € (i,7) — LC(X, mL, m%)
forall Ve mi,.

(3) an (i, j) — A—continuous if f~1(V) € (1,7) — A(X, m}, m%)
forall V. e mi,.

From the above definitions, I have the following theorems are derived:

10.1) Let (X, m%,m%) and (Y, ml m3) be biminimal structure spaces and
let f: (X,mk,m%) — (Y,ml,m?) be a mapping. If f is (i,7) —

A—continuous then f is (i, j) — LC—continuous.
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10.2) Let (X, mk,m%) and (Y, mi, m?) be biminimal structure spaces and
m’, has the property B. If a mapping f : (X, mk,m%) — (Y, mL, m?)
is (4, j) — semi—continuous and (i, j ) — LC—continuous then f is (4, j) —

A—continuous.

11) Let (X, mk,m%) and (Y, m},, m3.) be biminimal structure spaces. A function f :
(X, mk,m%) — (Y, mi, m¥)issaidtobe (i, j)—C—continuous if f~1 (V) € (i,5)—
C(X,mk,m%) forall V e mi.

From the above definitions, I have the following theorems are derived:

11.1) Let (X, mk,m%) and (Y, m;-, m?) be biminimal structure spaces. If a
mapping f : (X, mY, m%) — (Y, ml m3)isan (i, j)—semi—continuous

and (7, j) — C—continuous then f is (i, j) — .A—continuous.

12) Let (X, m%,m%) and (Y, mi-,m?) be biminimal structure spaces. A function f :
(X, mk,m%) — (Y,m},m?) is said to be (i,7) — B—continuous if f~1(V) €

(i,7) — B(X,m%,m%) forall V € m,.

13) Let (X, m%, m%) be a biminimal structure space and let M/ C X. Then M is an
(i, j)mx — A®—setif X \ Aisan (i, j)mx — A—set.

14) Let (X, m},m%) beabiminimal structure space and let M/ C X. Then the A—closure
of M and the A—interior of M, denoted by Acl(M) and Aint(M), respectively, are
denoted as the following :

Acd(M)=n{F: M C F,F € (i,j) — A% (X, m},m%)}.
Aint(M) =U{G : G C M,G € (i,j) — A(X,mk,m%)}.

From the above definitions, I have the following theorems are derived:

14.1) Let (X, m}, m%) be a biminimal structure space and M C X.

Then Acl(X \ M) = X \ Aint(M) and Aint(X \ M) = X \ Acl(M)

14.2) Let (X, m}, m%) be a biminimal structure space and M C X.
Then (1) Aint(M) C M.
() If M C K, then Aint(M) C Aint(K).
(3) If M is (i, j)mx — A—set then Aint(M) = M.
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15) Let (X, m%, m%) be a biminimal structure space and M C X.
Then (1) x € Acl(M) if and only if M NV # ¢ for every (i, j)mx — A—set V

containing x

16) Let (X, m%, m%) be a biminimal structure space and let Y C X and M C Y. Then
an Ay —closure of M is defined as follows : Acly (M) = Acl(M)NY.

17) Let (X, m}, m%) be a biminimal structure space and let K, M C X. Then K and
M are (i, j).A—separated if and only if Acl(K) N M = () = Acl(M) N K, where
(1,7) =1,2and i # j.

From the above definitions, I have the following theorems are derived:

17.1) Let (X, mY, m%) be a biminimal structure space and (Y, m3,, m%) be a
biminimal subspace of X andletU, V' C Y. ThenU, V be (i, j).A—separated
in X iff U and V be (4, j).A—separated in Y.

17.2) Let (X, m}, m%) be a biminimal structure space and K, M C X.
If K and M are (i, j).A—separated then K and M are disjoint.

17.3) Let (X, mk, m%) be a biminimal structure space and K, M C X.
If K and M are (i, j).A—separated, then D and E are (7, j).A—separated,
where D C K and £ C M.

18) Let (X, m%,m%) be a biminimal structure space. Then (X, mY, m%) is said to be a

T s—space if the arbitary union of (i, j)mx — A—sets is an (i, j)mx — A—set.

19) Let (X, m%,m%) be a biminimal structure space and K, M C X.
If (X, m%,m%) is a T4—space, then the following statements are equivalent:
(1) K and M are (7, j).A—separated.
(2) There are (i, j)myx — A°—sets F and Fj; such that K C Fr C (X \ M)
and M C Fyy C (X \ K);
(3) There are (i, j)mx — A—sets Gk and Gy such that K C G C (X \ M)
and M C Gy C (X \ K).

20) Let C' be a nonempty subset of a biminimal structure space (X, m},, m%). Then C'is

an (i, j).A—connected set of X if and only if for any two subsets K and M such that
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C = KUM, K and M are (i, j).A—separated sets imply either K = () or M = ().
The space X is said to be an (7, j).A—connected set iff it is an (7, j).A—connected
subset of itself, where (i, j) = 1,2 and i # j.

From the above definitions, I have the following theorems are derived:

20.1) Let (X, mY, m%) be a biminimal structure space and K, M C X. If C
is an (4, j).A—connected C' C K U M, K and M are (i, j).A—separated,
then either C C K orC' C V.

20.2) Let (X, m}, m%) be a biminimal structure space.
If C is an (i,j)A—connected set, C C B C Acl(C) then C is an

(1, 7). A—connected set.

20.3) Let (X, m},m%) be a biminimal structure space.

If C'is (i, 7).A—connected sets then Acl(C) is (i, j).A—connected sets.

20.4) Let (X, mk,m%) be a biminimal structure space.
If C, is (i, j)A—connected for all &« € J and for 3,7y € J, 5 # ~, Cj

and C, are not (7, j).A—separated then U C, is (4, j).A—connected as

acJ
well.

20.5) Let (X, m%, m%) be a biminimal structure space and C' = U Co. IfC,

acd

is (4, j)A—connected for all « € Jand Cs N C,, # O forall B,y € J
then C'is (7, j).A—connected.

20.6) Let (X, m%, m%) be a biminimal structure spaces and C' = U Cy. If
acJ
Cy is an (7, j).A—connected for all o« € J and ﬂ Co # () then C is an

acJ
(7, 7). A—connected.
21) Let (X, m},m%) be a biminimal structure space and (X, m%, m%) is a T4 —space,
then the following statements are equivalent:
(1) The space X is (i, j).A—connected sets;
Q) IfX = G1UGy, Gi1NGy = 0, Gy and G are (i, j)myx — A—set then either

Gl = @ or G2 = (Z);
QIfX = FLUF, FiNF, =0, F, and F} are (i, j)mx — A® —set then either
Fy=0or Fy, =0;
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(4)If H C X isboth (i,7)my — A—set and (i, j)mx — A —set then either
H=0orH=X.

22) Let (X, m%,m%) and (Y, m}-, m?) be biminimal structure spaces. Let f : X — Y,
we will say that f is (¢, j)(Ax, Ay )—continuous iff f =1 (W) € (i, j)—A(X, mk, m%)
forall W € (i,7) — A(Y,my, m3).

From the above definitions, I have the following theorems are derived:

22.1) Let (X, mk,m%) and (Y, mi-,m?) be T4— spaces.
If fis (i, 7)(Ax, Ay)—continuous and V, W C Y are (i, j).A—separated
then f~1 (V) and f~!(WW) are (i, j).A—separated.

22.2) Let(X,mk,m%)and (Y, m}, m%)be T —spaces. If C' C X is (4, j).A—connected
and f is (i, j)(Ax, Ay)— continuous then f(C') is (i, j).A—connected.
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