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ชื่อเรื่อง ปริภูมิโครงสราง r เล็กสุดแบบเรียบสามัญ
ผูวิจัย นางสาวอรทัย ศรีคูณแสน
ปริญญา วิทยาศาสตรมหาบัณฑิต สาขา คณิตศาสตร
อาจารยที่ปรึกษา ผูชวยศาสตราจารย ดร.ดรุณี บุญชารี
มหาวิทยาลัย มหาวิทยาลัยมหาสารคาม ปที่พิมพ 2560

บทคัดยอ
ในงานวิจัยนี้ ผู วิจัยไดนำเสนอปริภูมิ ใหมสองปริภูมิคือปริภูมิ โครงสราง r เล็กสุดแบบเรียบ

สามัญ ซึ่งไดศึกษาสมบัติของเซตเปด เซตปด ตัวดำเนินการปดคลุม ตัวดำเนินการภายใน ความตอเนื่อง
ของฟงกชันและความกระชับ นอกจากนั้น เรายังไดศึกษาเซตปดวางนัยทั่วไปแบบ b ความสัมพันธแบบ
ตางๆ และลักษณะเฉพาะของ extremely disconnected, Tgs และอีกปริภูมิหนึ่งคือ ปริภูมิโครงสราง
r วิภัชนัยอยางออน และศึกษาสมบัติบางประการของเซตเปด เซตเปด α เซตกึ่งเปดและความตอเนื่อง
ของฟงกชันบางชนิด

คำสำคัญ : ปริภูมิโครงสราง r เล็กสุดแบบเรียบสามัญ; ฟงกชันตอเนื่อง r-M; ความกระชับ r-OSM;
เซตปด r-mgb; extremely disconnected; ปริภูมิ Tgs; ปริภูมิโครงสราง r วิภัชนัย
อยางออน; เซตเปด α; ฟงกชันตอเนื่อง α
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CHAPTER 1

INTRODUCTION

In 1965, Zadeh [11] introduced the concept of fuzzy set. Chang [1] define fuzzy

topological space using fuzzy set. In [2, 9], Chattopadhyay, Hazra and Samanta introdued

smooth fuzzy topological spaces which are a generalization of fuzzy topological space.

In 2009, Kim, Min and Yoo [3] introduced the concept of fuzzy r-minimal space

which is an extension of the smooth fuzzy topological space and study fuzzy r-m conti-

nuity, fuzzy r-M open maps and fuzzy r-M closed maps. In 2009, Min and Kim [10]

introduced the concept of fuzzy r-minimal compactness, almost fuzzy r-minimal com-

pactness and nearly fuzzy r-minimal compactness on fuzzy r-minimal spaces and inves-

tigate the relationships between fuzzy r-M continuous mappings and such types of fuzzy

r-minimal compactness. In 2010, Min [6] introduced the concept of a fuzzy weakly r-M

continuous mapping on fuzzy r-minimal structure. After that, [8] notion of fuzzy almost

r-M continuous mapping on fuzzy r-minimal structure and investigate and properties for

mapping. The concept of fuzzy r-minimal α-open set on a fuzzy r-minimal space and

some basic properties and also introduce the concepts of fuzzy r-M α-continuous and

fuzzy r-M (M∗) α-open mappings and characterization for such mappings by Min [7].

In 2012 [5], Lim, Ryoo and Hur introduce the concept of ordinary smooth topol-

ogy on a setX the mapping τ : 2X → I satisfying three axioms, where 2 denotes the two

points set {0, 1} is called ordinary smooth topological spaces in short ost onX also stud-

ied some properties of ordinary smooth continuous. In [4], Lee, Lim and Hur redefined

the notions of ordinary smooth closure and ordinary smooth interior. Also they introduced

and studied some properties of compact in an ordinary smooth topological space, and re-

define a new definitions of ordinary smooth closure and ordinary smooth interior.

For our purpose, we introduce the concepts of ordinary smooth r-minimal spaces

which is an extension the concepts of open set, closed set, closure and interior it intersects

on such. The studied properties of opens mapping, continuous mapping and compactness.

And the study properties of α-open set, α-continuous in fuzzy r-weakly structure spaces.

In Chapter 1, is an introduction.
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2

In Chapter 2, we presents some basic concepts and results of fuzzy r-minimal

structure and ordinary smooth topology their proofs in the subsequent chapters.

In Chapter 3, we mention the concept of open set, closed set, closure and in-

terior in ordinary smooth r-minimal spaces, study the relationships and ordinary smooth

r-M continuous mappings and such types of ordinary smooth r-minimal compactness and

introduced many relationships between some known types of generalized closed sets and

r-mb generalized closed sets, Also we studied characterizations of extremely disconnected

space and Tgs space on ordinary smooth r-minimal spaces.

In Chapter 4, we mention the concept of α-open set, α-continuity and α-open

mappings in fuzzy r-weakly structure spaces.

In the last Chapter, is a conclusions.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will recall some definitions, notations, dealing with some pre-

liminaries and some useful results that will be duplicated in later chapter.

2.1 Fuzzy Topological Spaces and Smooth Fuzzy Topological Spaces

Definition 2.1.1 [11] A fuzzy set on X is a mapping µ : X → [0, 1] and IX will denote

the family of all fuzzy sets in X .

Definition 2.1.2 [1] A fuzzy point xα, α ∈ (0, 1], is an element of IX such that

xα(y) =

α if y = x

0 if y ̸= x.

A fuzzy point xα ∈ µ iff α ≤ µ(x).

Let X = {x} be a space of points. A fuzzy set A in X is characterized by a

membership mapping µA(x) from X to the unit interval [0, 1].

Definition 2.1.3 [1] Let A and B be fuzzy sets in a spaces X , Then:

A = B ⇔ µA(x) = µB(x) for all x ∈ X

A ⊆ B ⇔ µA(x) ≤ µB(x) for all x ∈ X

C = A ∪B ⇔ µC(x) = max[µA(x), µB(x)] for all x ∈ X

D = A ∩B ⇔ µD(x) = min[µA(x), µB(x)] for all x ∈ X

A
′ ⇔ 1− µA(x) for all x ∈ X.

For a family of fuzzy sets,A = {Ai : i ∈ I}, the union,
∪
i∈I

Ai, and the intersection,
∩
i∈I

Ai,

are defined by

∪
i∈I

Ai(x) = sup
i∈I

{µAi
(x)} for allx ∈ X
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∩
i∈I

Ai(x) = inf
i∈I

{µAi
(x)} for allx ∈ X.

Definition 2.1.4 [1] Let f : X → Y be a mapping, µ ∈ IX and ν ∈ IY . We define

f(µ)(y) =

sup{µ(x) : x ∈ f−1({y})}, if f−1({y}) ̸= ∅,

0 if f−1({y}) ̸= ∅.

and f−1(ν)(x) = ν(f(x)) for all x ∈ X .

Definition 2.1.5 [1] A fuzzy topology is a family T of fuzzy sets in X which satisfies

the following conditions:

1 ∅, X ∈ T .

2 If A,B ∈ T , then A ∩B ∈ T .

3 If Ai ∈ T for each i ∈ I , then
∪
i∈I

Ai ∈ T .

The pair (X, T ) is a fuzzy topological spaces, or fts for short. Every member of T is called

a T -open fuzzy set. A fuzzy set is T -closed if and only if its complement is T -open.

Let I be the unit interval [0,1] of the real line. A member µ of IX is called a

fuzzy set ofX . By 0̃ and 1̃,we denote constant maps onX with value 0 and 1, respectively.

For any µ ∈ IX , µC denotes the comlement 1̃− µ.

Definition 2.1.6 [9] A smooth fuzzy topology onX is a map τ : IX → I which satisfies

the following properties:

1 τ(0̃) = τ(1̃) = 1.

2 τ(µ1 ∩ µ2) ≥ τ(µ1) ∧ τ(µ2).

3 τ(∪µi) ≥ ∧τ(µi) for each i ∈ I .

The pair (X, τ) is called a smooth fuzzy topological spaces.
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2.2 Fuzzy r-Minimal Spaces and Fuzzy r-Minimal compactness

Definition 2.2.1 [10] Let X be a nonempty set and r ∈ (0, 1]. A fuzzy family M :

IX → I on X is said to have a fuzzy r-minimal structure if the family

Mr = {A ∈ IX : M(A) ≥ r}

contains 0̃ and 1̃.

Then the (X,M) is called a fuzzy r-minimal space (simply, r-FMS). Every mem-

ber ofMr is called a fuzzy r-minimal open set. A fuzzy set A is called a fuzzy r-minimal

closed set if the complement of A (simply, AC) is a fuzzy r-minimal open set.

Let (X,M) be an r-FMS and r ∈ (0, 1]. the fuzzy r-minimal closure and the

fuzzy r-minimal interior of A, denoted by mC(A, r) and mI(A, r), respectively, are de-

fined as

mC(A, r) = ∩{B ∈ IX : BC ∈ Mr and A ⊆ B},

mI(A, r) = ∪{B ∈ IX : B ∈ Mr and B ⊆ A}.

Theorem 2.2.2 [10] Let (X,M) be an r-FMS and A,B in IX .

1 mI(A, r) ⊆ A and if A ∈ Mr, thenmI(A, r) = A.

2 A ⊆ mC(A, r) and if AC ∈ Mr, thenmC(A, r) = A.

3 If A ⊆ B, thenmI(A, r) ⊆ mI(B, r) andmC(A, r) ⊆ mC(B, r).

4 mI(A, r)∩mI(B, r) ⊇ mI(A∩B, r) andmC(A, r)∪mC(B, r) ⊆ mC(A∪

B, r).

5 mI(mI(A, r), r) = mI(A, r) andmC(mC(A, r), r) = mC(A, r).

6 1̃−mC(A, r) = mI(1̃− A, r) and 1̃−mI(A, r) = mC(1̃− A, r).

Definition 2.2.3 [10] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

f is said to be

1 fuzzy r-M continuous mapping if for every A ∈ Nr, f−1(A) is inMr,

2 fuzzy r-M open mapping if for every A ∈ Mr, f(A) is in Nr.
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Definition 2.2.4 [3] Let (X,M) be an r-FMS and {Ai ∈ IX : i ∈ J}. A is called a

fuzzy r-minimal cover if ∪{Ai : i ∈ J} = X . It is a fuzzy r-minimal open cover if each

Ai is a fuzzy r-minimal open set. A subcover of a fuzzy r-minimal coverA is a subfamily

of it which also is a fuzzy r-minimal cover.

Definition 2.2.5 [3] Let (X,M) be an r-FMS. A fuzzy set A of X is said to be fuzzy

r-minimal compact if every fuzzy r-minimal open cover {Ai ∈ Mr : i ∈ J} of A has a

finite subcover.

Theorem 2.2.6 [3] Let f : (X,M) → (Y,N ) be a fuzzy r-M continuous mapping on

two r-FMS’s. If A is a fuzzy r-minimal compact set, then f(A) is also a fuzzy r-minimal

compact set.

Definition 2.2.7 [3] Let (X,M) be an r-FMS. A fuzzy set A in X is said to be almost

fuzzy r-minimal compact if for every fuzzy r-minimal open cover {Ai ∈ IX : i ∈ J} of

A, there exists J0 = {j1, j2, ..., jn} ⊆ J such that A ⊆
∪
i∈J0

mC(Ai, r).

Theorem 2.2.8 [3] Let (X,M) be an r-FMS. If a fuzzy set A in X is fuzzy r-minimal

compact, then it is also almost fuzzy r-minimal compact.

Theorem 2.2.9 [10] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. If

1 f is fuzzy r-M continuous.

2 f−1(B) is a fuzzy r-minimal closed set, for each fuzzy r-minimal closed set

B in Y .

3 f(mC(A, r)) ⊆ mC(f(A), r) for all A ∈ IX .

4 mC(f−1(B), r) ⊆ f−1(mC(B, r)) for all B ∈ IY .

5 f−1(mI(B, r)) ⊆ mI(f−1(B), r) for all B ∈ IY .

Then 1⇔ 2⇒ 3⇔ 4⇔ 5.

Theorem 2.2.10 [3] Let f : (X,M) → (Y,N ) be a fuzzy r-M continuous mapping on

two r-FMS’s. If A is an almost fuzzy r-minimal compact set, then f(A) is also an almost

fuzzy r-minimal compact set.
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Definition 2.2.11 [3] Let (X,M) be an r-FMS. A fuzzy set A inX is said to be nearly

fuzzy r-minimal compact if for every fuzzy r-minimal open cover {Ai : i ∈ J} ofA, there

exists J0 = {j1, j2, ..., jn} ⊆ J such that A ⊆
∪
i∈j0

mI(mC(Ai, r), r).

Theorem 2.2.12 [3] Let (X,M) be an r-FMS. If a fuzzy setA inX is a fuzzy r-minimal

compact, then it is a nearly fuzzy r-minimal compact.

Theorem 2.2.13 [10] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. If

1 f is fuzzy r-M open.

2 f(mI(A, r)) ⊆ mI(f(A), r) for all A ∈ IX .

3 mI(f−1(B), r) ⊆ f−1(mI(B, r)) for all B ∈ IY .

Then 1⇒ 2⇔ 3.

Theorem 2.2.14 [3] Let f : (X,M) → (Y,N ) be a fuzzy r-M continuous and fuzzy

r-M open on two r-FMS’s. If A is a nearly fuzzy r-minimal compact set, then f(A) is a

nearly fuzzy r-minimal compact set.

Definition 2.2.15 [3] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

f is said to be fuzzy weakly r-M continuous if for fuzzy point xα of X and each fuzzy

r-minimal open set V containing f(xα), there is a fuzzy r-minimal open set U containing

xα such that f(U) ⊆ mC(V, r).

Theorem 2.2.16 [3] Let f : (X,M) → (Y,N ) be a fuzzy r-M continuous mapping on

two r-FMS’s. Then the following statements are equivalent:

1 f is fuzzy weakly r-M continuous.

2 f−1(V ) ⊆ mI(f−1(mC(V, r)), r) for each fuzzy r-minimal open set V in Y .

3 mC(f−1(B), r) ⊆ f−1(mC(B, r)) for each fuzzy r-minimal closed set B in

Y .

4 mC(f−1(V ), r) ⊆ f−1(mC(V, r)) for each fuzzy r-minimal open set V in Y .

Definition 2.2.17 [10] LetX be a nonempty set andM : IX → I a fuzzy family onX .

Then fuzzy familyM has the property (U) if for Ai ∈ M(i ∈ J),

M(∪Ai) ≥ ∧M(Ai).
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Theorem 2.2.18 [10] Let (X,M) be an r-FMS andM has the property (U). Then

1 mI(A, r) = A if and only if A ∈ Mr for all A ∈ IX .

2 mC(A, r) = A if and only if AC ∈ Mr for all A ∈ IX .

Theorem 2.2.19 [6] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s and

A ∈ IY . If f is fuzzy weakly r-M continuous, then the following statements are hold:

1 f−1(A) ⊆ mI(f−1(mC(A, r)), r) for all A = mI(A, r).

2 mC(f−1(mI(A, r)), r) ⊆ f−1(A) for all A = mC(A, r).

Theorem 2.2.20 [6] Let f : (X,M) → (Y,N ) be a fuzzy weakly r-M continuous

mapping on two r-FMS’s. IfA is a fuzzy r-minimal compact set inX andM has property

(U), then f(A) is an almost fuzzy r-minimal compact set.

Theorem 2.2.21 [6] Let f : (X,M) → (Y,N ) be a fuzzy weakly r-M continuous and

fuzzy r-M open mapping on two r-FMS’s. If A is an almost fuzzy r-minimal compact

set andM has property (U), then f(A) is an almost fuzzy r-minimal compact set.

Theorem 2.2.22 [6] Let f : (X,M) → (Y,N ) be a fuzzy weakly r-M continuous and

fuzzy r-M open mapping on two r-FMS’s. If A is a nearly fuzzy r-minimal compact set

andM has property (U), then f(A) is a nearly fuzzy r-minimal compact set.

Definition 2.2.23 [8] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

f is said to be fuzzy almost r-M continuous if for fuzzy point xα of X and each fuzzy

r-minimal open set V containing f(xα), there is a fuzzy r-minimal open set U containing

xα such that f(U) ⊆ mI(mC(V, r), r).

Theorem 2.2.24 [8] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

the following statements are equivalent:

1 f is fuzzy almost r-M continuous.

2 f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r) for each fuzzy r-minimal open set

B in Y .
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3 mC(f−1(mC(mI(F, r), r)), r) ⊆ f−1(F ) for each fuzzy r-minimal closed

set F in Y .

Theorem 2.2.25 [8] Let f : (X,M) → (Y,N ) be a fuzzy almost r-M continuous

mapping on two r-FMS’s. IfA is a fuzzy r-minimal compact set inX andM has property

(U), then f(A) is an nearly fuzzy r-minimal compact set.

Theorem 2.2.26 [8] Let f : (X,M) → (Y,N ) be a fuzzy r-M continuous and fuzzy

r-M open mapping on two r-FMS’s. If A is an almost fuzzy r-minimal compact set and

M has property (U), then f(A) is an almost fuzzy r-minimal compact set.

Theorem 2.2.27 [8] Let f : (X,M) → (Y,N ) be a fuzzy almost r-M continuous and

fuzzy r-M open mapping on two r-FMS’s. If A is a nearly fuzzy r-minimal compact set

andM has property (U), then f(A) is a nearly fuzzy r-minimal compact set.

2.3 Ordinary Smooth Topological Spaces

For any setX , let 2 = {0, 1} and let 2X denoted the set of all ordinary subsets of

X . And union and intersections of ordinary subsets are denoted by ∧ and ∨, respectively,

and defined by

∨Ai(x) = sup{Ai(x) : i ∈ J}.

∧Ai(x) = inf{Ai(x) : i ∈ J}.

Definition 2.3.1 [5] Let X be a nonempty set. Then a mapping τ : 2X → I is called

an ordinary smooth topology (in short, ost) on X or a gradation of openness of ordinary

subsets of X if satisfies the following axioms:

1 τ(∅) = τ(X) = 1,

2 τ(A ∩B) ≥ τ(A) ∧ τ(B) for all A,B ∈ 2X ,

3 τ(
∪
α∈Γ

Aα) ≥
∧
α∈Γ

τ(Aα) for all {Aα} ⊆ 2X .

The pair (X, τ ) is called an ordinary smooth topological space (in short, osts). We

denote the set of all ost’s on X as OST (X).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



10

Definition 2.3.2 [4] Let (X, τ ) be an osts and letA ∈ 2X . Then ordinary smooth closure

[resp. ordinary smooth interior] of A in X , denoted by Ar [resp. A◦] is defined by

A =
∩
{F ∈ 2X : A ⊆ F and Cτ (F ) > 0}

[resp. A◦ =
∪
{U ∈ 2X : U ⊆ A and τ(U) > 0}].

Proposition 2.3.3 [4] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:

1 If A ⊆ B, then A◦ ⊆ B◦ and A ⊆ B,

2 (A◦)◦ = (AC),

3 A◦ = ((AC))C ,

4 A = ((AC)◦)C ,

5 (A)C = (AC)◦.

Proposition 2.3.4 [4] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:

1 X◦ = X ,

2 A◦ ⊆ A,

3 (A◦)◦ = A◦,

4 (A ∩B)◦ ⊆ A◦ ∩B◦.

Proposition 2.3.5 [4] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:

1 ∅ = ∅,

2 A ⊆ A,

3 (A) = A,

4 A ∪B ⊆ A ∪B.

Proposition 2.3.6 [4] Let (X, τ ) be an osts and let A,B ∈ 2X .

1 If τ(A) > 0, then A = A◦.
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2 If τ(AC) > 0, then A = A.

3 If r ∈ I0 such that A = Ar, then A = A.

4 If r ∈ I0 such that A = (Ar)
◦, then A = A◦.

Definition 2.3.7 [5] Let f : (X, τ1) → (Y, τ2) be a mapping on two osts’s. Then f is

said to be:

1 ordinary smooth continuous if τ2(A) ≤ τ1(f
−1(A)), for all A ∈ 2X .

2 ordinary smoothweakly continuous if for eachA ∈ 2Y , τ2(A) > 0 ⇒ τ1(f
−1(A)) >

0, for all A ∈ 2X .

Proposition 2.3.8 [5] Let f : (X, τ1) → (Y, τ2) be a mapping on two osts’s and let f be

ordinary smooth weakly continuous. Then:

1 f (A) ⊆ f(A), for all A ∈ 2X .

2 f−1(B) ⊆ f−1(B), for all B ∈ 2Y .

3 f−1(B◦) ⊆ (f−1(B))◦, for all B ∈ 2Y .

Corollary 2.3.9 [5] Let f : (X, τ1) → (Y, τ2) be a mapping on two osts’s and let f be

ordinary smooth continuous. Then:

1 f (A) ⊆ f(A), for all A ∈ 2X .

2 f−1(B) ⊆ f−1(B), for all B ∈ 2X .

3 f−1(B◦) ⊆ (f−1(B))◦, for all B ∈ 2X .

Definition 2.3.10 [5] Let f : (X, τ1) → (Y, τ2) be a mapping on two osts’s and let f is

said to be:

1 ordinary smooth open if τ1(A) ≤ τ2(f(A)), for all A ∈ 2X .

2 ordinary smooth closed if τ1(Ac) ≤ τ2(f(A
c)), for all A ∈ 2X .

For an osts (X, τ), let us define S(τ) = {A ∈ 2X : τ(A) > 0} and S(τ) will be

called the support of τ .
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Definition 2.3.11 [4] Let (X, τ) be an osts. A subsetes A in X is said to be:

1 ordinary smooth compact if for every family {Aα}α∈Γ in S(τ) covering X ,

there is a finite subset Γ0 of Γ such that
∪
α∈Γ0

Aα = X .

2 ordinary smooth almost compact if for every family {Aα}α∈Γ in S(τ) covering

X , there is a finite subset Γ0 of Γ such that
∪
α∈Γ0

Aα = X .

3 ordinary smooth nearly compact if for every family {Aα}α∈Γ in S(τ) covering

X , there is a finite subset Γ0 of Γ such that
∪
α∈Γ0

(Aα)
◦ = X .

Proposition 2.3.12 [4] Let f : (X, τ1) → (Y, τ2) be a mapping on two osts’s and let f be

surjective and ordinary smooth weakly continuous. If (X, τ1) is ordinary smooth almost

compact, then so is (Y, τ2).

Corollary 2.3.13 [4] Let f : (X, τ1) → (Y, τ2) be a mapping on two osts’s and let f be

surjective and ordinary smooth weakly continuous. If (X, τ1) is ordinary smooth nearly

compact, then (Y, τ2) is ordinary smooth almost compact.

2.4 Fuzzy r-Minimal α - open Sets on Fuzzy Minimal Spaces

Definition 2.4.1 [7] Let (X,M) be an r-FMS andA ∈ IX . Then a fuzzy setA is called

a fuzzy r-minimal semiopen set in X if

A ⊆ mC(mI(A, r), r).

A fuzzy set A is called a fuzzy r-minimal semiclosed set if the complement of A is fuzzy

r-minimal semiopen.

Definition 2.4.2 [7] Let (X,M) be an r-FMS andA ∈ IX . Then a fuzzy setA is called

a fuzzy r-minimal α-open set in X if

A ⊆ mI(mC(mI(A, r), r), r).

A fuzzy set A is called a fuzzy r-minimal α-closed set if the complement of A is fuzzy

r-minimal α-open.

Lemma 2.4.3 [7] Let (X,M) be an r-FMS. Then a fuzzy set A is fuzzy r-minimal

α-closed set if and only ifmC(mI(mC(A, r), r), r) ⊆ A.
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Theorem 2.4.4 [7] Let (X,M) be an r-FMS. Then any union of fuzzy r-minimal α-

open set is fuzzy r-minimal α-open.

Definition 2.4.5 [7] Let (X,M) be an r-FMS. For any A ∈ IX , mαC(A, r) and

mαI(A, r), respectively, are defined as the follows

mαC(A, r) = ∩{F ∈ IX : A ⊆ F, F is fuzzy r-minimal α-closed };

mαI(A, r) = ∪{U ∈ IX : U ⊆ A,U is fuzzy r-minimal α-open }.

Theorem 2.4.6 [7] Let (X,M) be an r-FMS andA ∈ IX . Then the following statments

are hold.

1 mαI(A, r) ⊆ A.

2 If A ⊆ B, thenmαI(A, r) ⊆ mαI(B, r).

3 A is fuzzy r-minimal α-open if and only ifmαI(A, r) = (A, r).

4 mαI(mαI(A, r), r) = mαI(A, r).

5 mαC(1̃− A, r) = 1̃−mαI(A, r) andmαI(1̃− A, r) = 1̃−mαC(A, r).

Theorem 2.4.7 [7] Let (X,M) be an r-FMS and A ∈ IX . Then

1 A ⊆ mαC(A, r).

2 If A ⊆ B, thenmαC(A, r) ⊆ mαC(B, r).

3 A is fuzzy r-minimal α-closed if and only ifmαC(A, r) = (A, r).

4 mαC(mαI(A, r), r) = mαC(A, r).

2.5 Fuzzy r-M α-continuity and Fuzzy r-M α-open mappings

Definition 2.5.1 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then f

is said to be fuzzy r-M α-continuous if for each point xα and each fuzzy r-minimal open

set V containing f(xα), there exists a fuzzy r-minimal α-open set U containing xα such

that f(U) ⊆ V .
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Definition 2.5.2 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

f is said to be fuzzy r-M semicontinuous if for each point xα and each fuzzy r-minimal

open set V containing f(xα), there exists a fuzzy r-minimal semiopen set U containing

xα such that f(U) ⊆ V .

Theorem 2.5.3 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then the

following statements are equivalent:

1 f is fuzzy r-M α-continuous.

2 f−1(V ) is a fuzzy r-minimal α-open set for each fuzzy r-minimal open set V

in Y .

3 f−1(B) is a fuzzy r-minimal α-closed set for each fuzzy r-minimal closed set

B in Y .

4 f(mαC(A, r)) ⊆ mC(f(A), r) for A ∈ IX .

5 mαC(f−1(B), r) ⊆ f−1(mC(B, r)) for B ∈ IY .

6 f−1(mI(B, r)) ⊆ mαI(f−1(B), r) for B ∈ IY .

Definition 2.5.4 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

1 f is said to be fuzzy r-M α-open if for fuzzy r-minimal open setA inX , f(A)

is fuzzy r-minimal α-open in Y ;

2 f is said to be fuzzy r-M α-closed if for fuzzy r-minimal closed set A in X ,

f(A) is fuzzy r-minimal α-closed in Y .

Theorem 2.5.5 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then the

following statements are equivalent:

1 f is fuzzy r-M α-open.

2 f(mI(A, r)) ⊆ mαI(f(A), r) for all A ∈ IX .

3 mI(f−1(B), r) ⊆ f−1(mαI(B, r)) for all B ∈ IY .
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Theorem 2.5.6 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then the

following statements are equivalent:

1 f is fuzzy r-M α-closed.

2 mαC(f(A), r) ⊆ f(mC(A, r)) for all A ∈ IX .

3 f−1(mαC(B, r)) ⊆ mC(f−1(B), r) for all B ∈ IY .

Definition 2.5.7 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. Then

1 f is said to be fuzzy r-M∗α-open if for fuzzy r-minimal open setA inX , f(A)

is fuzzy r-minimal open in Y ;

2 f is said to be fuzzy r-M∗α-closed if for fuzzy r-minimal closed set A in X ,

f(A) is fuzzy r-minimal closed in Y .

Theorem 2.5.8 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. If

1 f is fuzzy r-M∗α-open.

2 f(mαI(A, r)) ⊆ mI(f(A), r) for all A ∈ IX .

3 mαI(f−1(B), r) ⊆ f−1(mI(B, r)) for all B ∈ IY .

Then 1⇒ 2⇔ 3.

Theorem 2.5.9 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. If

1 f is fuzzy r-M∗ α-closed.

2 mC(f(A), r) ⊆ f(mαC(A, r)) for all A ∈ IX .

3 f−1(mC(B), r)) ⊆ mαC(f−1(B), r) for all B ∈ IY .

Then 1⇒ 2⇔ 3.

Corollary 2.5.10 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. If N

has the property (U), then the following statements are equivalent:

1 f is fuzzy r-M∗α-open.

2 f(mαI(A, r)) ⊆ mI(f(A), r) for all A ∈ IX .
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3 mαI(f−1(B), r) ⊆ f−1(mI(B, r)) for all B ∈ IY .

Corollary 2.5.11 [7] Let f : (X,M) → (Y,N ) be a mapping on two r-FMS’s. If N

has the property (U), then the following statements are equivalent:

1 f is fuzzy r-M∗α-closed.

2 mC(f(A), r) ⊆ f(mαC(A, r) for all A ∈ IX .

3 f−1(mC(B), r)) ⊆ mαC(f−1(B), r) for all B ∈ IY .
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CHAPTER 3

ORDINARY SMOOTH r-MINIMAL STRUCTURE SPACES

In this chapter, we define the ordinary smooth r-minimal structure spaces which

study the concepts of open set, closed set, closure and interior it intersects on such. The

study properties of opens mapping, continuous mapping and compactness. And intro-

duced many relationships between some types of generalized closed sets and r-mb gen-

eralized closed sets, Also we study characterization of extremely disconnected and Tgs

spaces on ordinary smooth r-minimal spaces.

3.1 Ordinary Smooth r-Minimal Compactness

First, we define the open set, closed set, closure, interior, continuousmapping and

opens mapping in ordinary smooth r-minimal structure spaces and some basic properties.

For each a nonempty set X , let 2X the set of all subsets of a set X .

Definition 3.1.1 Let X be a nonempty set and r ∈ (0, 1]. A mapping M : 2X → I is

said to have an ordinary smooth r-minimal structure if the family

Mr = {A ∈ 2X : M(A) ≥ r}

contains ∅ and X .

Then the (X,M) is called an ordinary smooth r-minimal structure space (simply,

r-OSMS). Every member ofMr is called an ordinary smooth r-minimal open set (simply,

r-OSM open set). A subset A of X is called an ordinary smooth r-minimal closed set

(simply, r-OSM closed set) if the complement of A (simply, AC) is an ordinary smooth

r-minimal open set.
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Example 3.1.2 Let X = {a, b, c, d} andM : 2X → I .

Let A ∈ 2X . Then

M(A) =



0.9, ifA = X,A = ∅,

0.8, ifA = {c}, {c, d}, {d},

0.7, ifA = {b}, {b, d}, {b, c}, {b, c, d},

0.4, ifA = {a, b, c}, {a, b, d}, {a, c, d},

0.2, ifA = {a}, {a, d}, {a, b}, {a, c}.

Let r = 1
4
, we get thatM 1

4
= {A ∈ 2X : M(A) ≥ 1

4
}.

M 1
4
= {{b}, {b, d}, {b, c}, {b, c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {c}, {c, d}, {d}, ∅, X}.

Thus (X,M) is 1
4
-OSMS. Then {b}, {b, d}, {b, c}, {b, c, d}, {a, b, c}, {a, b, d}, {a, c, d},

{c}, {c, d}, {d}, ∅, X are 1
4
-OSMopen sets and {a, c, d}, {a, c}, {a, d}, {a}, {d}, {c}, {b},

{a, b, d}, {a, b}, {a, b, c}, ∅, X are 1
4
-OSM closed sets.

Definition 3.1.3 Let (X,M) be an r-OSMS and r ∈ (0, 1]. The r-OSM closure and the

r-OSM interior of A, denote bymC(A, r) andmI(A, r), respectively, are define as

mC(A, r) = ∩{B ∈ 2X : BC ∈ Mr and A ⊆ B},

mI(A, r) = ∪{B ∈ 2X : B ∈ Mr and B ⊆ A}.

Example 3.1.4 From Example 3.1.2.

Let r = 1
4
andM 1

4
. Let A = {b, c},

mC({b, c}, 1
4
) = ∩{B ∈ 2X : BC ∈ M 1

4
and {b, c} ⊆ B}

= ∩{{a, b, c}, X} = {a, b, c}.

Let A = {a, c},

mI({a, c}, 1
4
) = ∪{B ∈ 2X : B ∈ M 1

4
and B ⊆ {a, c}}

= ∪{{c}, ∅} = {c}.

Theorem 3.1.5 Let (X,M) be an r-OSMS and A,B ∈ 2X .

1 mI(A, r) ⊆ A.

2 If A is r-OSM open, thenmI(A, r) = A.
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3 A ⊆ mC(A, r).

4 If A is r-OSM closed, thenmC(A, r) = A.

5 If A ⊆ B, thenmI(A, r) ⊆ mI(B, r) andmC(A, r) ⊆ mC(B, r).

6 mI(A, r)∩mI(B, r) ⊇ mI(A∩B, r) andmC(A, r)∪mC(B, r) ⊆ mC(A∪

B, r).

7 mI(mI(A, r), r) = mI(A, r) andmC(mC(A, r), r) = mC(A, r).

8 X −mC(A, r) = mI(X − A, r) and X −mI(A, r) = mC(X − A, r).

Proof. (1) Let x ∈ mI(A, r). There exists B ∈ Mr, such that B ⊆ A

and x ∈ B. Thus x ∈ A. ThereforemI(A, r) ⊆ A.

(2) Let A be r-OSM open. Since A ⊆ A and A ∈ Mr,

then A ⊆ mI(A, r). This implies thatmI(A, r) = A.

(3) Let x ∈ A, then x ∈ ∩{B ∈ 2X : BC ∈ Mr and A ⊆ B} = mC(A, r).

Thus A ⊆ mC(A, r).

(4) Let A be r-OSM closed. Since A ⊆ A and AC ∈ Mr,

we havemC(A, r) ⊆ A. ThusmC(A, r) = A.

(5) Assume A ⊆ B, we have to show thatmI(A, r) ⊆ mI(B, r).

Let A ⊆ B and let x ∈ mI(A, r), there exists U ∈ Mr such that x ∈ U which

U ⊆ A. Since A ⊆ B, we have U ⊆ B. Thus x ∈ ∪{U ′ ∈ 2X : U ⊆ B and

U
′ ∈ Mr} = mI(B, r). HencemI(A, r) ⊆ mI(B, r).

Now to show that suppose x /∈ mC(B, r), there exists FC ∈ Mr which B ⊆ F but

x /∈ F . Since A ⊆ B, we have A ⊆ F . Hence x /∈ mC(A, r).

ThereforemC(A, r) ⊆ mC(B, r).

(6) Since A ∩B ⊆ A, A ∩B ⊆ B and by (5),

we havemI(A ∩B, r) ⊆ mI(A, r) andmI(A ∩B, r) ⊆ mI(B, r).

SomI(A ∩B, r) ⊆ mI(A, r) ∩mI(B, r).

And since A ⊆ A ∪B, B ⊆ A ∪B and by (5),
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we get thatmC(A, r) ⊆ mC(A ∪B, r) andmC(B, r) ⊆ mC(A ∪B, r).

ThusmC(A, r) ∪mC(B, r) ⊆ mC(A ∪B, r).

(7) Let x ∈ X −mC(A, r) Then x /∈ mC(A, r), there exists FC ∈ Mr which A ⊆ F

but x /∈ F . So x ∈ X − F such that X − F ⊆ X − A. Then x ∈ ∪{FC ∈

2X : X − F ⊆ X − A and FC ∈ Mr}. Thus x ∈ mI(X − A, r). Therefore

X−mC(A, r) ⊆ mI(X−A, r). Now to show that let x ∈ mI(X−A, r), there exists

F ∈ Mr such that x ∈ F which F ⊆ X − A. Thus x /∈ X − F for all FC ∈ Mr.

Then x /∈ ∩{FC ∈ 2X : A ⊆ X − F and FC ∈ Mr}. Hence x /∈ mC(A, r).

Therefore x ∈ X −mC(A, r). This implies that X −mC(A, r) = mI(X − A, r).

Now to show that X −mI(A, r) = mC(X − A, r). We have

X −mI(A, r) = X −mI(X − (X − A), r)

= X − (X −mC(X − A, r)

= mC(X − A, r).

Hence X −mI(A, r) = mC(X − A, r).

(8) Let x ∈ mI(A, r). SincemI(A, r) ⊆ {B : B ⊆ mI(A, r), B ∈ Mr}.

Thus x ∈ ∪{B : B ⊆ mI(A, r), B ∈ Mr}. So x ∈ mI(mI(A, r), r).

HencemI(A, r) ⊆ mI(mI(A, r), r). And since by (1),mI(A, r) ⊆ A.

By (5),mI(mI(A, r), r) ⊆ mI(A, r). ThereforemI(mI(A, r) = mI(A, r).

Now to show thatmC(mC(A, r) = mC(A, r). Consider

mC(mC(A, r), r) = mC(mC(X − (X − A), r), r)

= mC(X −mI(X − A, r)), r)

= X −mI(X − A, r)

= mC(A, r).

HencemC(mC(A, r) = mC(A, r).

Definition 3.1.6 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then f is

said to be

1 ordinary smooth r-M continuous mapping (simply, r-M continuous) if for

every A ∈ Nr, f−1(A) is inMr.
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2 ordinary smooth r-M open mapping (simply, r-M open) if for everyA ∈ Mr,

f(A) is in Nr.

Example 3.1.7 Let X = {a, b, c, d} andM : 2X → I . Define

M(A) =



0.9, ifA = X,A = ∅,

0.7, ifA = {c}, {c, d}, {d},

0.6, ifA = {b}, {b, d}, {b, c}, {b, c, d},

0.4, ifA = {a, b, c}, {a, b, d}, {a, c, d},

0.2, ifA = {a}, {a, d}, {a, b}, {a, c}.

Let Y = {x, y, z} and N : 2Y → I . Define

N (A) =



1, ifA = Y,A = ∅,

1
2
, ifA = {z},

1
3
, ifA = {y}, {y, z},

1
4
, ifA = {x}, {x, y}, {x, z}.

Let r = 1
2
, we have

N 1
2
= {∅, Y, {z}} andM 1

2
= {∅, X, {b}, {b, d}, {b, c}, {b, c, d}, {c}, {c, d}, {d}}.

Define f : X → Y , by f(a) = x, f(b) = y, f(c) = f(d) = z.

From Definition 3.1.6 (1), then f is 1
2
-M continuous. But f is not 1

2
-M open.

Let r = 1
4
, we have

M 1
4
= {∅, X, {b}, {b, d}, {b, c}, {b, c, d}, {c}, {c, d}, {d}, {a, b, c}, {a, b, d}, {a, c, d}} and

N 1
4
= {∅, Y, {x}, {x, y}, {x, z}, {y}, {y, z}, {z}}.

Define f : X → Y , by f(a) = x, f(b) = y, f(c) = f(d) = z.

From Definition 3.1.6 (2), then f is 1
4
-M open. But f is not 1

4
-M continuous.

Later, we will define the concepts of r-OSM compact, r-OSM almost compact

and r-OSM nearly compact on r-OSMS and investigate the relationships between r-M

continuous and such types of r-OSM compact.

Definition 3.1.8 Let (X,M) be an r-OSMS and {Ai ∈ 2X : i ∈ J}. A is called an
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ordinary smooth r-minimal cover (simply, r-OSM cover) of X if
∪
i∈J

Ai = X . It is an

ordinary smooth r-minimal open cover (simply, r-OSM open cover) if each Ai is an r-

OSM set. {Bi ∈ 2X : i ∈ J} is called an ordinary smooth r-minimal open cover of

B ⊆ X if B ⊆ ∪{Bi ∈ 2X : i ∈ J}.

Definition 3.1.9 Let (X,M) be an r-OSMS. A subset A of X is said to be an ordinary

smooth r-minimal compact (simply, r-OSM compact) if every r-OSM open cover {Ai ∈

Mr : i ∈ J} of A has a finite subcover.

Theorem 3.1.10 Let f : (X,M) → (Y,N ) be an r-M continuous mapping on two

r-OSMS’s. If A is an r-OSM compact set, then f(A) is also an r-OSM compact set.

Proof. Let A be r-OSM compact and {Bi ∈ 2Y : i ∈ J} be r-OSM open cover of f(A)

in Y , then {f−1(Bi) : i ∈ J} is r-OSM open cover of A in X .

Since A is an r-OSM compact set, there exists J0 = {j1, j2, ..., jn} ⊆ J such that

A ⊆
∪
i∈J0

f−1(Bi), thus f(A) ⊆ f(
∪
i∈J0

f−1(Bi)) =
∪
i∈J0

f(f−1(Bi)) ⊆
∪
i∈J0

Bi.

Hence f(A) is an r-OSM compact set.

Definition 3.1.11 Let (X,M) be an r-OSMS. A subset A in X is said to be an ordinary

smooth r-minimal almost compact (simply, r-OSM almost compact) if for every r-OSM

open cover {Ai ∈ 2X : i ∈ J} of A, there exists J0 = {j1, j2, ..., jn} ⊆ J such that

A ⊆
∪
i∈J0

mC(Ai, r).

Theorem 3.1.12 Let (X,M) be an r-OSMS. If a subset A inX is r-OSM compact, then

it is also r-OSM almost compact.

Proof. Let A be r-OSM compact and {Bi ∈ 2X : i ∈ J} be r-OSM open cover of A.

Since A is r-OSM compact, there exists J0 = {j1, j2, ..., jn} ⊆ J such that A ⊆
∪
i∈J0

Bi.

By Theorem 3.1.5 (3), we have
∪
i∈J0

Bi ⊆
∪
i∈J0

mC(Bi, r). HenceA ⊆
∪
i∈J0

mC(Bi, r).

Example 3.1.13 Let X = (0, 1) and n ∈ N.
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Let An = (0, 1
n
) and Bn = ( 1

n
, n−1

n
) which n = 3, 4, . . .

M(A) =



1, ifA = X,A = ∅,

0.8, ifA = (0, 1
n
);n = 3, 4, . . .

0.6, ifA = ( 1
n
, n−1

n
);n = 3, 4, . . .

0, if otherwise

Let A = {An ∈ 2X : n ∈ N} is 1
2
-OSM open cover, then there exists J0 = {A3, B3} ⊆ N

such that A ⊆
∪
n∈J0

{mC(A3,
1

2
),mC(B3,

1

2
)} =

∪
n∈J0

{(0, 1
3
), [

2

3
, 1], [

1

3
, 1]} = (0, 1) =

X . Thus X is 1
2
-OSM almost compact. Since {An : n ∈ N} is 1

2
-OSM open cover, then

not finite subcover of A, and so X not is 1
2
-OSM compact.

Definition 3.1.14 LetX be a nonempty set andM : 2X → I a family onX . The family

M has the property (U) if for Ai ∈ Mr(i ∈ J),

M(∪Ai) ≥ ∧M(Ai).

Theorem 3.1.15 Let (X,M) be an r-OSMS andM has the property (U). Then

1 mI(A, r) = A if and only if A ∈ Mr for A ∈ 2X .

2 mC(A, r) = A if and only if AC ∈ Mr for A ∈ 2X .

Proof. (1) Let A ∈ 2X be such that mI(A, r) = A. By M has the property (U), we

haveA ∈ Mr. Conversely, let A ∈ Mr, then A is an r-OSM open set. By Theorem

3.1.5 (2),mI(A, r) = A.

(2) Let A ∈ 2X be such that mC(A, r) = A. By M has the property (U), we have

AC ∈ Mr. Conversely, let AC ∈ Mr, then A is an r-OSM closed set. By Theorem

3.1.5 (4),mC(A, r) = A.

Theorem 3.1.16 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are equivalent:

1 f is r-M continuous.

2 f−1(B) is an r-OSM closed set, for each r-OSM closed set B in Y .

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



24

Proof. (1)⇒ (2) LetB be an r-OSM closed set. Then Y −B is an r-OSM open set. Since

f is an r-M continuous, X − f−1(B) = f−1(Y − B) is an r-OSM open set. Therefore

f−1(B) is an r-OSM closed set.

(2)⇒ (1) Let B ∈ 2Y and let B be an r-OSM closed set. Then Y −B is an r-OSM open

set. Then f−1(Y −B) is an r-OSM open set in X . Thus f is r-M continuous.

Theorem 3.1.17 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are hold:

1 If f is r-M continuous, then f(mC(A, r)) ⊆ mC(f(A), r) for all A ∈ 2X .

2 If f−1(mI(B, r)) ⊆ mI(f−1(B), r), for all B ∈ 2Y is true and M has the

property (U), then f is r-M continuous.

Proof. (1) Let f be r-M continuous and let A ∈ 2X , then f−1(A) ∈ 2X . Consider

f−1(mC(f(A), r) = f−1(∩{F ∈ 2X : f(A) ⊆ F, FC ∈ Mr})

= ∩{f−1(F ) ∈ 2X : A ⊆ f−1(f(A)) ⊆ f−1(F ), FC ∈ Mr}

⊇ ∩{K ∈ 2X : A ⊆ K,KC ∈ Mr}

= mC(A, r).

ThenmC(A, r) ⊆ f−1(mC(f(A), r). Thus f(mC(A, r)) ⊆ f(f−1(mC(f(A), r)))

⊆ mC(f(A), r). Hence f(mC(A, r)) ⊆ mC(f(A), r).

(2) Let B be r-OSM open in Y . Then f−1(B) = f−1(mI(B, r)) ⊆ mI(f−1(B), r).

Thus f−1(B) ⊆ mI(f−1(B), r) ⊆ f−1(B). This implies that f−1(B) = mI(f−1(B), r).

SinceM has the property (U) and Theorem 3.1.15 (1), f−1(B) is r-OSM open inX .

Hence f is r-M continuous.

Theorem 3.1.18 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are equivalent:

1 f(mC(A, r)) ⊆ mC(f(A), r) for A ∈ 2X .

2 mC(f−1(B), r) ⊆ f−1(mC(B, r)) for B ∈ 2Y .

3 f−1(mI(B, r)) ⊆ mI(f−1(B), r) for B ∈ 2Y .
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Proof. (1)⇒ (2) Let B ∈ 2Y , then f−1(B) ∈ 2X .

By assumption, then f(mC(f−1(B), r)) ⊆ mC(f(f−1(B)), r).

ButmC(f(f−1(B)), r) ⊆ mC(B, r). So f(mC(f−1(B), r)) ⊆ mC(B, r).

ThusmC(f−1(B), r) ⊆ f−1(f(mC(f−1(B), r))) ⊆ f−1(mC(B, r)).

HencemC(f−1(B), r) ⊆ f−1(mC(B, r)).

(2)⇒ (3) For B ∈ 2Y . SincemI(B, r) = Y −mC(Y −B, r)

f−1(mI(B, r)) = f−1(Y −mC(Y −B, r))

= f−1(Y )− f−1(mC(Y −B, r))

= X − f−1(mC(Y −B, r))

⊆ X −mC(f−1(Y −B), r)

= mI(f−1(B), r).

Hence f−1(mI(B, r)) ⊆ mI(f−1(B), r).

(3)⇒ (1) For A ∈ 2X . Consider,

mC(A, r) ⊆ mC(f−1(f(A)), r)

⊆ mC(f−1(Y − f(X − A)), r)

= mC(X − f−1(f(X − A)), r)

= X −mI(f−1(f(X − A)), r)

⊆ X − f−1(mI(f(X − A), r))

= f−1(Y −mI(f(X − A), r))

= f−1(mC(Y − f(X − A), r))

= f−1(mC(f(A), r)).

Thus f(mC(A, r)) ⊆ f(f−1(mC(f(A), r)) ⊆ mC(f(A), r).

Hence f(mC(A, r)) ⊆ mC(f(A), r).

Theorem 3.1.19 Let f : (X,M) → (Y,N ) be an r-M continuous mapping on two

r-OSMS’s. If A is an r-OSM almost compact set, then f(A) is also an r-OSM almost

compact set.

Proof. Let A is an r-OSM almost compact set and {Bi ∈ 2Y : i ∈ J} be r-OSM

open cover of f(A) in Y. Then {f−1(Bi) ∈ 2X : i ∈ J} is r-OSM open cover of A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



26

in X. By A is an r-OSM almost compact set, there exists J0 = {j1, j2, ..., jn} ⊆ J ,

such that A ⊆
∪
i∈J0

mC(f−1(Bi), r). From Theorem 3.1.17 and Theorem 3.1.18 (2),

we have
∪
i∈J0

mC(f−1(Bi), r) ⊆
∪
i∈J0

f−1(mC(Bi, r)) = f−1(
∪
i∈J0

mC(Bi, r)). And so

A ⊆ f−1(
∪
i∈J0

mC(Bi, r)). Thus f(A) ⊆
∪
i∈J0

mC(Bi, r). Hence f(A) is an r-OSM

almost compact set.

Definition 3.1.20 Let (X,M) be an r-OSMS. A subset A inX is said to be an ordinary

smooth r-minimal nearly compact (simply, r-OSM nearly compact) if for every r-OSM

open cover {Ai : i ∈ J} of A, there exists J0 = {j1, j2, ..., jn} ⊆ J such that A ⊆∪
i∈J0

mI(mC(Ai, r), r).

Theorem 3.1.21 Let (X,M) be an r-OSMS. If a subset A in X is an r-OSM compact,

then it is an r-OSM nearly compact.

Proof. Let A be r-OSM compact and {Bi ∈ 2X : i ∈ J} be an r-OSM open cover of A.

SinceA is an r-OSM compact, there exists J0 = {j1, j2, ..., jn} ⊆ J such thatA ⊆
∪
i∈J0

Bi.

By Theorem 3.1.5 (3), we have
∪
i∈J0

Bi ⊆
∪
i∈J0

mC(Bi, r). and by Theorem 3.1.5 (5),∪
i∈J0

Bi =
∪
i∈J0

mI(Bi, r) ⊆
∪
i∈J0

mI(mC(Bi, r), r). Hence A ⊆
∪
i∈J0

mI(mC(Bi, r), r).

Hence A is an r-OSM nearly compact.

Theorem 3.1.22 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are equivalent:

1 f(mI(A, r)) ⊆ mI(f(A), r) for A ∈ 2X .

2 mI(f−1(B), r) ⊆ f−1(mI(B, r)) for B ∈ 2Y .

Proof. (1) ⇒ (2) For B ∈ 2Y . It follow from (2), we have f−1(B) ∈ 2X . Since

f(mI(f−1(B), r)) ⊆ mI(f(f−1(B), r)) ⊆ mI(B, r). Thus f(mI(f−1(B), r)) ⊆ mI(B, r).

HencemI(f−1(B), r) ⊆ f−1(f(mI(f−1(B), r))) ⊆ f−1(mI(B, r)).

ThereforemI(f−1(B), r) ⊆ f−1(mI(B, r)).

(2) ⇒ (1) For A ∈ 2X , we have f(A) ∈ 2Y . Since mI(A, r) ⊆ mI(f−1(f(A)), r) ⊆

f−1(mI(f(A), r)). Hence f(mI(A, r)) ⊆ f(f−1(mI(f(A), r))) ⊆ mI(f(A), r).

Therefore f(mI(A, r)) ⊆ mI(f(A), r).
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Theorem 3.1.23 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are equivalent:

1 If f is r-M open, then f(mI(A, r)) ⊆ mI(f(A), r) for A ∈ 2X .

2 If mI(f−1(B), r) ⊆ f−1(mI(B, r)) for B ∈ 2Y and N has the property (U),

then f is r-M open.

Proof. (1) Let f be r-M open and let A ∈ 2X . Consider,

f(mI(A, r)) = f(∪{G ∈ 2X : G ⊆ A and G ∈ Mr})

= ∪{f(G) ∈ 2Y : f(G) ⊆ f(A) and f(G) ∈ Mr})

⊆ ∪{U ∈ 2X : U ⊆ f(A) and U ∈ Mr})

= mI(f(A), r).

Hence f(mI(A, r)) ⊆ mI(f(A), r).

(2) Let B be r-OSM open in X . Then

f(B) = f(mI(B, r))

⊆ f(mI(f−1(f(B)), r))

⊆ f(f−1(mI(f(B), r)))

⊆ mI(f(B), r)

ThusmI(f(B), r) = f(B). By N has the property (U) and Theorem 3.1.15 (1),

f is r-M open.

Theorem 3.1.24 Let f : (X,M) → (Y,N ) be an r-M continuous and r-M open map-

ping on two r-OSMS’s. If A is an r-OSM nearly compact set, then f(A) is an r-OSM

nearly compact set.

Proof. Let A is an r-OSM nearly compact set and {Bi ∈ 2X : i ∈ J} be r-OSM open

cover of f(A) in Y , then {f−1(Bi) : i ∈ J} is r-OSM open cover of A in X .

By r-OSM nearly compact set, there exists J0 = {j1, j2, ..., jn} ⊆ J such that

A ⊆
∪
i∈J0

mI(mC(f−1(Bi), r), r). From Theorem 3.1.18 and Theorem 3.1.23 (1), it that
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follows

f(A) ⊆
∪
i∈J0

f(mI(mC(f−1(Bi), r), r))

⊆
∪
i∈J0

mI(f(mC(f−1(Bi), r)), r)

⊆
∪
i∈J0

mI(mC(f(f−1(Bi)), r), r)

⊆
∪
i∈J0

mI(mC(Bi, r), r),

and so f(A) ⊆
∪
i∈J0

mI(mC(Bi, r), r). Hence f(A) is an r-OSM nearly compact set.

Definition 3.1.25 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then f is

said to be an ordinary smooth weakly r-M continuous (simply, r-M weak continuous) if

for x ∈ X and each r-OSM open set V containing f(x), then there is an r-OSM open set

U containing x such that f(U) ⊆ mC(V, r).

Example 3.1.26 Let X = {a, b, c} andM : 2X → I . Define

M(A) =



0.8, ifA = X,A = ∅,

0.6, ifA = {c}, {b}, {b, c},

0.4, ifA = {a, b}, {a, c},

0.2, ifA = {a}.

Let Y = {x, y, z} and N : 2Y → I . Define

N (A) =



1, ifA = Y,A = ∅,

0.7, ifA = {y}, {z}, {y, z}

0.4, ifA = {x, y}, {x, z},

0.1, ifA = {x}.

Let f : (X,M) → (Y,N ) and r = 1
4
define as follows : f(a) = x, f(b) = y, f(c) = z.

ThenM 1
4
= {{a, b}, {a, c}, {c}, {b}, {b, c}, ∅, X},N 1

4
= {{x, y}, {x, z}, {y}, {z}, {y, z}, ∅, Y }.

Consider a ∈ X , f(a) = x is a member of 1
4
-OSM open set {x, z}, {x, y}, Y .
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• If V = {x, y} then, we choose U = {b} ∈ M 1
4
such that f(U) = f({b}) = {y} ⊆

{x, y} = mC({x, y}, 1
4
).

• If V = {x, z} then , we choose U = {a, c} ∈ M 1
4
such that f(U) = f({a, c}) =

{x, z} ⊆ {x, z} = mC({x, z}, 1
4
).

• If V = Y then, we choose U = {a, c} ∈ M 1
4
such that f(U) = f({a, c}) =

{y, z} ⊆ Y = mC(Y, 1
4
).

Consider b ∈ X , f(b) = y is a member of 1
4
-OSM open set {y}, {x, y}, {y, z}, Y .

• If V = {y} then, we choose U = {a, b} ∈ M 1
4
such that f(U) = f({a, b}) =

{y} ⊆ Y = mC({y}, 1
4
).

• If V = {x, y} then, we choose U = {b} ∈ M 1
4
such that f(U) = f({b}) = {y} ⊆

{x, y} = mC({x, y}, 1
4
).

• If V = {y, z} then, we choose U = {b, c} ∈ M 1
4
such that f(U) = f({b, c}) =

{y, z} ⊆ Y = mC({y, z}, 1
4
).

• If V = Y then, we choose U = {a, c} ∈ M 1
4
such that f(U) = f({a, c}) =

{y, z} ⊆ Y = mC(Y, 1
4
).

Consider c ∈ X , f(c) = z is a member of 1
4
-OSM open set {x, z}, {y, z}, {z}, Y .

• If V = {x, z} then, we choose U = {c} ∈ M 1
4
such that f(U) = f({c}) = {z} ⊆

{x, z} = mC({{x, z}, 1
4
).

• If V = {y, z} then, we choose U = {b} ∈ M 1
4
such that f(U) = f({b}) = {y} ⊆

Y = mC({y, z}, 1
4
).

• If V = {z} then, we choose U = {c} ∈ M 1
4
such that f(U) = f({c}) = {z} ⊆

{z} = mC({z}, 1
4
).

• If V = Y then, we choose U = {b, c} ∈ M 1
4
such that f(U) = f({b, c}) =

{y, z} ⊆ Y = mC(Y, 1
4
).

From definition, f is 1
4
-M weak continuous.
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Theorem 3.1.27 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are equivalent:

1 f−1(V ) ⊆ mI(f−1(mC(V, r)), r) for each r-OSM open set V in Y .

2 mC(f−1(mI(B, r), r) ⊆ f−1(B) for each r-OSM closed set B in Y .

Proof. (1)⇒ (2) Let B be r-OSM closed in Y. By (2) and Theorem 3.1.5 (6),

X − f−1(B) = f−1(Y −B)

⊆ mI(f−1(mC(Y −B, r)), r)

= mI(f−1(Y −mI(B, r)), r)

= mI(X − f−1(mI(B, r)), r)

= X −mC(f−1(mI(B, r)), r).

Thus X − f−1(B) ⊆ X −mC(f−1(mI(B, r)), r).

HencemC(f−1(mI(B, r)), r) ⊆ f−1(B).

(2)⇒ (1) Let V be r-OSM open in Y.

Then Y − V is an r-OSM closed set in Y. Therefore

mC(f−1(mI(Y − V, r)), r) = mC(f−1(Y −mC(V, r)), r)

= mC(X − f−1(mC(V, r)), r)

= X −mI(f−1(mC(V, r)), r)

⊆ f−1(Y − V )

= X − f−1(V ).

Thus X −mI(f−1(mC(V, r)), r) ⊆ X − f−1(V ).

Hence f−1(V ) ⊆ mI(f−1(mC(V, r)), r).

Theorem 3.1.28 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are hold:

1 If f is r-M weak continuous, then f−1(V ) ⊆ mI(f−1(mC(V, r)), r) for each

r-OSM open set V in Y .

2 IfmC(f−1(mI(B, r), r) ⊆ f−1(B) for each r-OSM closed set B in Y , then

mC(f−1(B), r) ⊆ f−1(mC(B, r)) for each r-OSM open set B in Y .
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3 IfmC(f−1(B), r) ⊆ f−1(mC(B, r)) for each r-OSM open set B in Y is true

and N has the property (U), then f is r-M weak continuous.

Proof. (1) Let V be r-OSM open in Y , and x ∈ f−1(V ). Then f(x) ∈ V . By f is r-M

weak continuous, there exists an r-OSM open set U containing x such that f(U) ⊆

mC(V, r). So x ∈ U ⊆ f−1(f(U)) ⊆ f−1(mC(V, r)) and this implies that x ∈

mI(f−1mC(V, r)), r). Hence f−1(V ) ⊆ mI(f−1(mC(V, r)), r).

(2) Let B be r-OSM open in Y . By Theorem 3.1.5 (2), mI(B, r) = B, and by (3), we

have mC(f−1(B), r) = mC(f−1(mI(B, r)), r) ⊆ f−1(B). Thus by Theorem 3.1.5

(3), f−1(B) ⊆ f−1(mC(B, r)). HencemC(f−1(B), r) ⊆ f−1(mC(B, r)).

(3) Let x be a point set in X and V an r-OSM open set in Y containing f(x) and N has

the property (U). For each x ∈ f−1(V ),

x ∈ f−1(V ) ⊆ f−1(mI(mC(V, r), r))

= X − f−1(mC(Y −mC(V, r), r))

⊆ X −mC(f−1(Y −mC(V, r)), r)

= mI(f−1(mC(V, r)), r).

Since x ∈ mI(f−1(mC(V, r)), r), there exists an r-OSM open set U containing x

such that U ⊆ f−1(mC(V, r)). Hencef(U) ⊆ f(f−1(mC(V, r))) ⊆ mC(V, r).

Therefore f is r-M weak continuous.

Theorem 3.1.29 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s andA ∈ 2Y .

If f is r-M weak continuous, then the following statements hold:

1 f−1(A) ⊆ mI(f−1(mC(A, r)), r) for A = mI(A, r).

2 mC(f−1(mI(A, r)), r) ⊆ f−1(A) for A = mC(A, r).

Proof. (1) LetA be a subset inY such thatA = mI(A, r). Then for eachx ∈ f−1(A), f(x) ∈

A = mI(A, r). Thus there exists an r-OSM open set V containing f(x) such that

f(x) ∈ V ⊆ A. Since f is an r-M weak continuous, there exists an r-OSM open

set U containing x such that f(U) ⊆ mC(V, r). Thus x ∈ U ⊆ f−1(f(U)) ⊆

f−1(mC(A, r). It implies thatx ∈ mI(f−1(mC(V, r)), r) ⊆ mI(f−1(mC(A, r)), r).

Hence f−1(A) ⊆ mI(f−1(mC(A, r)), r).
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(2) Let A = mC(A, r). Then Y − A = Y −mC(A, r) = mI(Y − A, r).

By (1), we have

X − f−1(A) = f−1(Y − A)

⊆ mI(f−1(mC(Y − A, r), r))

= mI(f−1(Y −mI(A, r)), r)

= mI(X − f−1(mI(A, r), r))

= X −mC(f−1(mI(A, r), r)).

ThusmC(f−1(mI(A, r), r)) ⊆ f−1(A).

Theorem 3.1.30 Let f : (X,M) → (Y,N ) be an r-M weak continuous mapping on two

r-OSMS’s. If A is an r-OSM compact set in X and M has the property (U), then f(A)

is an r-OSM almost compact set.

Proof. Let A be an r-OSM compact set in X andM has property (U) and

let {Bi ∈ 2Y : i ∈ J} be an r-OSM open cover of f(A) in Y . Then from r-M weak

continuity, f−1(Bi) ⊆ mI(f−1(mC(Bi, r)), r) for each i ∈ J and by Theorem 3.1.15

and M has the property (U), then {mI(f−1(mC(Bi, r)), r) : i ∈ J} is an r-OSM open

cover of A inX . By r-OSM compactness, there exists J0 = {j1, j2, ..., jn} ⊆ J such that

A ⊆
∪
i∈J0

mI(f−1(mC(Bi, r)), r) ⊆ f−1(mC(Bi, r)). Hence f(A) ⊆
∪
i∈J0

mC(Bi, r).

Therefore f(A) is an r-OSM almost compact set.

Theorem 3.1.31 Let f : (X,M) → (Y,N ) be an r-M weak continuous and r-M open

mapping on two r-OSMS’s. IfA is an r-OSM almost compact set andM has the property

(U), then f(A) is an r-OSM almost compact set.

Proof. Let A is an r-OSM almost compact set andM has the property (U) and

let {Bi ∈ 2Y : i ∈ J} be an r-OSMS open cover of f(A) in Y . Then by the property (U),

{mI(f−1(mC(Bi, r)), r) : i ∈ J} is an r-OSM open cover of A in X . So there exists a

finite subset J0 = {j1, j2, ..., jn} ⊆ J such that A ⊆
∪
i∈J0

mC(mI(f−1(mC(Bi, r)), r, r).

From Theorems 3.1.29, 3.1.23 and 3.1.22 , it follows that

A ⊆
∪
i∈J0

mC(mI(f−1(mC(Bi, r)), r, r)
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⊆
∪
i∈J0

mC(f−1(mI(mC(Bi, r), r)), r)

⊆
∪
i∈J0

f−1(mC(Bi, r)).

Hence f(A) ⊆
∪
i∈Jo

mC(Bi, r). Therefore f(A) is an r-OSM almost compact set.

Theorem 3.1.32 Let f : (X,M) → (Y,N ) be an r-M weak continuous and r-M open

mapping on two r-OSMS’s. If A is an r-OSM nearly r-minimal compact set and M has

property (U), then f(A) is an r-OSM nearly compact set.

Proof. Let A is an r-OSM nearly r-minimal compact set andM has property (U) and

let {Bi ∈ 2Y : i ∈ J} be an r-OSMS open cover of f(A) in Y .

Then {mI(f−1(mC(Bi, r)), r) : i ∈ J} is an r-OSM open cover of A in X . By the

r-OSM nearly compactness there exists a finite subset J0 = {j1, j2, ..., jn} ⊆ J

such that A ⊆
∪
i∈J0

mI(mC(mI(f−1(mC(Bi, r)), r, r, r), from Theorems 3.1.29, 3.1.23

and 3.1.22 , it follows

A ⊆
∪
i∈J0

mI(mC(mI(f−1(mC(Bi, r)), r, r, r)

⊆
∪
i∈J0

mI(mC(f−1(mI(mC(Bi, r), r)), r, r)

⊆
∪
i∈J0

mI(f−1(mC(mI(mC(Bi, r), r), r))

⊆
∪
i∈Jo

mI(f−1(mC(Bi, r), r)).

Hence f(A) ⊆
∪
i∈Jo

mI(mC(Bi, r), r). Therefore f(A) is an r-OSM nearly compact

set.

Definition 3.1.33 Let (X,M) and (Y,N ) be a mapping two r-OSMS’s. Then f is said

to be an ordinary smooth almost r − M continuous (simply, r-M almost continuous) if

for x ∈ X and each r-OSM open set V containing f(x), there is an r-OSM open set U

containing x such that f(U) ⊆ mI(mC(V, r), r).

Example 3.1.34 Form Example 3.1.26.

Let f : (X,M) → (Y,N ) and r = 1
2
define as follows: f(a) = y = f(b), f(c) = z.
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ThenM 1
2
= {{c}, {b}, {b, c}, ∅, X}, N 1

2
= {{y}, {z}, {y, z}, ∅, X}.

Consider a ∈ X , f(a) = y is a member of 1
2
-OSM open set {y}, {y, z}, Y .

• If V = {y} then, we choose U = {b} ∈ M 1
2
such that f(U) = f({b}) = {y} ⊆

{y} = mI(mC({y}, 1
2
), 1

2
).

• If V = {y, z} then, we choose U = {c} ∈ M 1
2
. such that f(U) = f({c}) = {z} ⊆

Y = mI(mC({y, z}, 1
2
), 1

2
).

• If V = Y then, we choose U = {b, c} ∈ M 1
2
such that f(U) = f({b, c}) =

{y, z} ⊆ Y = mI(mC(Y, 1
2
), 1

2
).

Consider b ∈ X , f(b) = y is a member of 1
2
-OSM open set {y}, {y, z}, Y .

• If V = {y} then, we choose U = {b} ∈ M 1
2
such that f(U) = f({b}) = {y} ⊆

{y} = mI(mC({y}, 1
2
), 1

2
).

• If V = {y, z} then , we choose U = {c} ∈ M 1
2
such that f(U) = f({c}) = {z} ⊆

Y = mI(mC({y, z}, 1
2
), 1

2
).

• If V = Y then, we choose U = {b, c} ∈ M 1
2
. such that f(U) = f({b, c}) =

{y, z} ⊆ Y = mI(mC(Y, 1
2
), 1

2
).

Consider c ∈ X , f(c) = z is a member of 1
2
-OSM open set {y, z}, {z}, Y .

• If V = {y, z} then, we choose U = {b} ∈ M 1
2
such that f(U) = f({b}) = {y} ⊆

Y = mI(mC({y, z}, 1
2
), 1

2
).

• If V = {z} then, we choose U = {c} ∈ M 1
2
such that f(U) = f({c}) = {z} ⊆

{x, z} = mI(mC({z}, 1
2
), 1

2
).

• If V = Y then, we choose U = {b, c} ∈ M 1
2
such that f(U) = f({b, c}) =

{y, z} ⊆ Y = mI(mC(Y, 1
2
), 1

2
).

From definition, f is an r-M almost continuous.

Theorem 3.1.35 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are equivalent:
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1 f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r) for each r-OSM open set B in Y ,

2 mC(f−1(mC(mI(F, r), r)), r) ⊆ f−1(F ) for each r-OSM closed set F in Y .

Proof. (1)⇒ (2) Let F be r-OSM open set in Y . By (2) and Theorem 3.1.5 (6),

X − f−1(F ) = f−1(Y − F )

⊆ mI(f−1(mI(mC(Y − F ), r), r)), r)

= mI(f−1(mI(Y −mC(mI(F, r), r), r)), r)

= mI(X − f−1(mC(mI(F, r), r)), r)

= X −mC(f−1(mC(mI(F, r), r)), r).

HencemC(f−1(mC(mI(F, r), r)), r) ⊆ f−1(F ).

(2)⇒ (1) Let B be r-OSM open set in Y . By (3) and Theorem 3.1.5 (6),

X − f−1(B) = f−1(Y −B) ⊇ mC(f−1(mC(mI(Y −B, r), r)), r)

= mC(f−1(mC(Y −mC(B, r), r)), r)

= mC(f−1(Y −mI(mC(B, r), r)), r)

= mC(X − f−1(mI(mC(B, r), r)), r)

= X −mI(f−1(mI(mC(B, r), r)), r).

Hence f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r).

Theorem 3.1.36 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then the

following statements are hold:

1 If f is r-M almost continuous, then f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r)

for each r-OSM open set B in Y ,

2 If f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r) for each r-OSM open set B in Y

andM has the property (U), then f is r-M almost continuous.

Proof. 1. Let B be r-OSM open set in Y , and x ∈ f−1(B), there exists an r-OSM

open set U containing x such that f(U) ⊆ mI(mC(B, r), r). So x ∈ U ⊆

f−1(mI(mC(B, r), r). This implies that x ∈ mI(f−1(mI(mC(B, r), r)), r).

Hence f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



36

2. Let x ∈ X and V an r-OSM open set containing f(x) andM has the property (U).

Then by (2), x ∈ mI(f−1(mI(mC(V, r), r)), r), and so there exists an r-OSM open

set U containing x such that U ⊆ f−1(mI(mC(V, r), r)). we have the following

f(U) ⊆ f(f−1(mI(mC(V, r), r))) ⊆ mI(mC(V, r), r).

Hence f is r-M almost continuous.

Theorem 3.1.37 Let f : (X,M) → (Y,N ) be an r-M almost continuous mapping on

two r-OSMS’s. If A is an r-OSM compact set in X and M has property (U), then f(A)

is an r-OSM nearly compact set.

Proof. Let A is an r-OSM compact set in X and M has the property (U). Let {Bi ∈

2Y : i ∈ J} be an r-OSM open cover of f(A) in Y . Then from r-M almost continuity,

we have f−1(Bi) ⊆ mI(f−1(mI(mC(Bi, r), r)), r) for each i ∈ J . And by Theorem

3.1.5 (1), {mI(f−1(mI(mC(Bi, r), r)), r) : i ∈ J} is an r-OSM open cover of A in

X . By the r-OSM compactness, there exists J0 = {j1, j2, ..., jn} ⊆ J . such that A ⊆∪
i∈j0

mI(f−1(mI(mC(Bi, r), r)), r) ⊆
∪
i∈J0

f−1(mI(mC(Bi, r), r)).

Hence f(A) ⊆
∪
i∈j0

mI(mC(Bi, r), r).

Theorem 3.1.38 Let f : (X,M) → (Y,N ) be an r-M almost continuous and r-M open

mapping on two r-OSMS’s. If A is an r-OSM almost compact set and M has property

(U), then f(A) is an r-OSM almost compact set.

Proof. Let A is an r-OSM almost compact set and M has property (U). Let {Bi ∈ 2Y :

i ∈ J} be r-OSM open cover of f(A) in Y . Then {mI(f−1(mI(mC(Bi, r)r)), r) : i ∈

J} is r-OSM open cover ofA inX . So there exists a finite subset J0 = {j1, j2, ..., jn} ⊆ J

such that A ⊆
∪
i∈J0

mC(mI(f−1(mI(mC(Bi, r)r)), r, r). From Theorems 3.1.23 and

3.1.22, it follows

f(A) ⊆
∪
i∈J0

f(mC(mI(f−1(mI(mC(Bi, r)r)), r), r))

⊆
∪
i∈J0

mC(f−1(mI(mC(Bi, r)r)), r)

⊆
∪
i∈J0

f−1(mC(mI(mC(Bi, r), r)r))
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⊆
∪
i∈J0

f−1(mC(Bi, r).

Hence f(A) ⊆
∪
i∈Jo

mC(Bi, r).

Theorem 3.1.39 Let f : (X,M) → (Y,N ) be an r-M almost continuous and r-M open

mapping on two r-OSMS’s. If A is an r-OSM compact set andM has property (U), then

f(A) is an r-OSM compact set.

Proof. Let A is an r-OSM compact set andM has property (U) and

let {Bi ∈ 2Y : i ∈ J} be an r-OSM open cover of f(A) in Y .

Then {mI(f−1(mI(mC(Bi, r)r)), r) : i ∈ J} is an r-OSM open cover of A in X .

So there exists J0 = {j1, j2, ..., jn} ⊆ J

such that A ⊆
∪
i∈J0

mI(mC(mI(f−1(mI(mC(Bi, r), r)), r, r, r). By the r-OSM nearly

compactness. From Theorem 3.1.23 and Theorem 3.1.22, it follows that

A ⊆
∪
i∈J0

mI(mC(mI(f−1(mI(mC(Bi, r)r)), r), r), r)

⊆
∪
i∈J0

mI(mC(f−1(mI(mI(mC(Bi, r), r), r)), r), r)

⊆
∪
i∈J0

mI(f−1(mC(mI(mC(Bi, r), r), r))

⊆
∪
i∈Jo

mI(f−1(mC(Bi, r)), r)

⊆
∪
i∈Jo

f−1(mI(mC(Bi, r), r)).

Hence f(A) ⊆
∪
i∈Jo

mI(mC(Bi, r), r).

3.2 On Generalized r-mb closed Sets

In this section, we introduce the concept of r-ms closed, r-mpre closed, r-mb

closed and r-msp closed in ordinary smooth r-minimal spaces. Characterization some of

extremely disconnected spaces and Tgs spaces.

Definition 3.2.1 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called:
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1 ordinary smooth r-minimal semi-closed (briefly r-ms closed)

ifmI(mC(A, r), r) ⊆ A,

2 ordinary smooth r-minimal pre-closed (briefly r-mpre closed)

ifmC(mI(A, r), r) ⊆ A,

3 ordinary smooth r-minimal b-closed (briefly r-mb closed)

if (mC(mI(A, r), r) ∩mI(mC(A, r), r)) ⊆ A,

4 ordinary smooth r-minimal semi-preclosed (briefly r-msp closed)

ifmI(mC(mI(A, r), r), r) ⊆ A.

The complement of an r-ms closed (resp. r-mpre closed, r-mb closed, r-

msp closed) set is called ordinary smooth r-minimal semi-open (r-ms open) (resp. r-

mpre open, r-mb open, r-msp open).

Example 3.2.2 Let X = {a, b, c}, andM : 2X → I .

Let us consider an ordinary smooth r-minimal structure as follws

M(A) =



3
4
, ifA = X,A = ∅;

2
3
, ifA = {c};

1
2
, ifA = {b}, {b, c};

1
4
, ifA = {a}, {a, b}, {a, c}.

Let r = 1
2
, thenM 1

2
= {A ∈ 2X : M(A) ≥ 1

2
}. ThusM 1

2
= {∅, {b}, {b, c}, {c}, X}.

(1) Let A = {a, b}. Then

mC({a, b}, 1
2
}) = {a, b},mI(mC({a, b}, 1

2
), 1

2
) = {b},

somI(mC({a, b}, 1
2
), 1

2
) = {b} ⊆ {a, b}. Therefore {a, b} is 1

2
-ms closed set.

(2) Let A = {a, c}. Then

mI({a, c}, 1
2
}) = {c},mC(mI({a, c}, 1

2
), 1

2
) = {a, c},

somC(mI({a, c}, 1
2
), 1

2
) = {a, c} ⊆ {a, c}. therefore {a, c} is 1

2
-mpre closed set.

(3) Let A = {b}. Then

mC(mI({b}, 1
2
), 1

2
) ∩mI(mC({b}, 1

2
), 1

2
) = {a, b} ∩ {b} = {b},
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so mC(mI({b}, 1
2
), 1

2
) ∩ mI(mC({b}, 1

2
), 1

2
) = {b} ⊆ {b}. Therefore {b} is 1

2
-mb

closed set.

(4) Let A = {a, b}. then

mC(mI({a, b}, 1
2
), 1

2
) = {a, b},mI(mC(mI({a, b}, 1

2
), 1

2
), 1

2
) = {b},

so mI(mC(mI({a, b}, 1
2
), 1

2
), 1

2
) = {b} ⊆ {a, b}. Therefore {a, b} is 1

2
-msp closed

set.

It is well-known that:

r-mpre closed

r-ms closed r-mb closed r-msp closed
?

- -

Lemma 3.2.3 If F is r-mpre closed, then F is r-mb closed.

Proof. Let F be r-mpre closed. ThenmC(mI(F, r), r) ⊆ F .

SincemC(mI(F, r), r) ∩mI(mC(F, r), r) ⊆ mC(mI(F, r), r), we get that

mC(mI(F, r), r) ∩mI(mC(F, r), r) ⊆ F . Hence F is r-mb closed.

Lemma 3.2.4 If F is r-ms closed, then F is r-mb closed.

Proof. Let F be r-ms closed. ThenmI(mC(F, r), r) ⊆ F .

SincemC(mI(F, r), r) ∩mI(mC(F, r), r) ⊆ mI(mC(F, r), r), we get that

mC(mI(F, r), r) ∩mI(mC(F, r), r) ⊆ F . Hence F is r-mb closed.

Lemma 3.2.5 If F is r-mb closed. Then F is r-msp closed.

Proof. Let F be r-mb closed, thenmC(mI(F, r), r) ∩mI(mC(F, r), r) ⊆ F .

SincemI(mC(mI(F, r), r), r) ⊆ mC(mI(F, r), r) andmI(mC(mI(F, r), r), r)

⊆ mI(mC(F, r), r), we get thatmI(mC(mI(F, r), r), r) ⊆ mC(mI(F, r), r)

∩mI(mC(A, r), r). HencemI(mC(mI(F, r), r), r) ⊆ F . Therefore F is r-msp closed.

Lemma 3.2.6 If F is r-mpre closed, then F is r-msp closed.

Proof. Let F be r-mpre closed. ThenmC(mI(F, r), r) ⊆ F .

SincemI(mC(mI(F, r), r), r) ⊆ mC(mI(F, r), r), we get thatmI(mC(mI(F, r), r), r)

⊆ F . Hence F is r-msp closed.
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Lemma 3.2.7 If F is r-ms closed, then F is r-msp closed.

Proof. Let F be r-ms closed. ThenmI(mC(F, r), r) ⊆ F .

SincemI(mC(mI(F, r), r), r) ⊆ mI(mC(F, r), r), we get thatmI(mC(mI(F, r), r), r)

⊆ F . Hence F is r-msp closed.

Definition 3.2.8 Let (X,M) be an r-OSMS and r ∈ (0, 1]. We denote the following

notatiors:

1 smC(A, r) = ∩{B ∈ 2X : B is r-ms closed and A ⊆ B}

2 pmC(A, r) = ∩{B ∈ 2X : B is r-mpre closed and A ⊆ B}

3 bmC(A, r) = ∩{B ∈ 2X : B is r-mb closed and A ⊆ B}

4 spmC(A, r) = ∩{B ∈ 2X : B is r-msp closed and A ⊆ B}

Example 3.2.9 (1) LetM 1
2
= {∅, {b}, {b, c}, {c}, X}.

Then {a}, {b}, {a, b}, {a, c}, {c} are 1
2
-ms closed.

Let A = {b}, consider,

mC({b}, 1
2
) = ∩{B ∈ 2X : B is 1

2
-ms closed and {b} ⊆ B}

= ∩{{a, b}, {b}}

= {b}.

(2) LetM 1
2
= {∅, {b}, {b, c}, {c}, X}.

Then {a}, {a, b}, {a, c} are 1
2
-mpre closed.

Let A = {a, b}, consider,

mC({a, b}, 1
2
) = ∩{B ∈ 2X : B is 1

2
-mpre closed and {a, b} ⊆ B}

= ∩{{a, b}}

= {a, b}.

(3) LetM 1
2
= {∅, {b}, {b, c}, {c}, X}.

Then {a}, {b}, {c}, {a, b}, {a, c} are 1
2
-mb closed.

Let A = {a}, consider,

mC({a}, 1
2
) = ∩{B ∈ 2X : B is 1

2
-mb closed and {a} ⊆ B}

= ∩{{a}, {a, b}, {a, c}}

= {a}.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



41

(4) LetM 1
2
= {∅, {b}, {b, c}, {c}, X}.

Then {a}, {b}, {c}, {a, b}, {a, c} are 1
2
-msp closed.

Let A = {c}, consider,

mC({c}, 1
2
) = ∩{B ∈ 2X : B is 1

2
-msp closed and {c} ⊆ B}

= ∩{{a, c}, {c}}

= {c}.

The collection of all r-ms open (resp. r-mpre open, r-mb open, r-msp open) sets

of X is denote by r-mSO(X) (resp. r-mPO(X), r-mBO(X), r-mSPO(X)) and the

collection of all r-ms closed (resp. r-mpre closed, r-mb closed, r-msp closed) sets is

denoted by r-mSC(X) (resp. r-mPC(X), r-mBC(X), r-mSPC(X)).

Definition 3.2.10 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called:

1 r-mgb closed if bmC(A, r) ⊆ U whenever A ⊆ U and U ∈ Mr.

2 r-msg closed if smC(A, r) ⊆ U whenever A ⊆ U and U ∈ r-mSO(X).

3 r-mgs closed if smC(A, r) ⊆ U whenever A ⊆ U and U ∈ Mr.

4 r-mgp closed if pmC(A, r) ⊆ U whenever A ⊆ U and U ∈ Mr.

5 r-mgsp closed if spmC(A, r) ⊆ U whenever A ⊆ U and U ∈ Mr.

Example 3.2.11 From Example 3.2.2.

(1) Let r = 1
2
and let U ∈ M 1

2
= {∅, {b}, {c}, {b, c}, X}.

Then ∅, {a}, {b}, {c}, {a, b}, {a, c}, X are 1
2
-mb closed.

Let A = {b}. Then A = {b} ⊆ {b, c} = U .

Consider,

bmC({b}, 1
2
) = ∩{F : F is

1

2
−mb closed and {b} ⊆ F}

= ∩{{b}, {a, b}, X}

= {b}

⊆ U.

Therefore A is 1
2
-mgb closed.
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(2) Let r = 1
2
and let U ∈ 1

2
-mSO(X) = {∅, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

Then ∅, {a}, {b}, {c}, {a, b}, {a, c}, X are 1
2
-ms closed.

Let A = {c}. Then A = {c} ⊆ {b, c} = U .

Consider,

smC({c}, 1
2
) = ∩{F : F is

1

2
−ms closed and {c} ⊆ F}

= ∩{{c}, {a, c}, X}

= {c}

⊆ U.

Therefore A is 1
2
-msg closed.

(3) Let r = 1
2
and let U ∈ M 1

2
= {∅, {b}, {c}, {b, c}, X}.

Then ∅, {a}, {b}, {c}, {a, b}, {a, c}, X are 1
2
-ms closed.

Let A = {b}. Then A = {b} ⊆ {b, c} = U .

Consider,

smC({b}, 1
2
) = ∩{F : F is

1

2
−ms closed and {b} ⊆ F}

= ∩{{b}, {a, b}, X}

= {b}

⊆ U.

Therefore A is 1
2
-mgs closed.

(4) Let r = 1
2
and let U ∈ M 1

2
= {∅, {b}, {c}, {b, c}, X}.

Then ∅, {a}, {a, b}, {a, c}, X are 1
2
-mpre closed.

Let A = {c}. Then A = {c} ⊆ X = U .

Consider,

bmC({c}, 1
2
) = ∩{F : F is

1

2
−mpre closed and {c} ⊆ F}

= ∩{{a, c}, X}

= {a, c}

⊆ U.

Therefore A is 1
2
-mgp closed.

(5) Let r = 1
2
and let U ∈ M 1

2
= {∅, {b}, {c}, {b, c}, X}.
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Then ∅, {a}, {b}, {c}, {a, b}, {a, c}, X are 1
2
-msp closed.

Let A = {c}. Then A = {c} ⊆ {b, c} = U .

Consider,

bmC({c}, 1
2
) = ∩{F : F is

1

2
−mb closed and {c} ⊆ F}

= ∩{{c}, {a, c}, X}

= {c}

⊆ U.

Therefore A is 1
2
-mgsp closed.

Definition 3.2.12 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called nowhere

dense if and only ifmI(mC(A, r), r) = ∅.

Example 3.2.13 From Example 3.2.2.

Let A = {a}, consider, mC({a}, 1
2
) = {a}, mI(mC({a}, 1

2
), 1

2
) = ∅, therefore {a} is

nowhere dense.

Definition 3.2.14 Let (X,M) be an r-OSMS and D ∈ 2X . Then D is called dense if

and only ifmC(D, r) = X .

Example 3.2.15 From Example 3.2.2.

Let D = {b, c}, consider,mC({b, c}, 1
2
) = X , therefore {b, c} is dense.

Definition 3.2.16 Let (X,M) be an r-OSMS and E ∈ 2X . Then E is called codense if

and only ifmI(E, r) = ∅.

Example 3.2.17 From Example 3.2.2.

Let E = {a}, consider,mI({a}, 1
2
) = ∅, therefore {a} is codense.

Definition 3.2.18 An r-OSMS (X,M) is said to be:

1 Tgs if every r-mgs closed subset of X is r-msg closed.

2 Extremely disconnected if the r-OSM closure of each r-OSM open subsets of

X is r-OSM open.

Example 3.2.19 (1) From Example 3.2.2. Let A ∈ 2X and r = 1
2
,

thenM 1
2
= {∅, {b}, {c}, {b, c}, X}.
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From definition 3.2.1 (1), then {a}, {b}, {a, b}, {a, c} and {c} are 1
2
-ms closed.

So 1
2
-mSO(X) = {{b, c}, {a, c}, {c}, {b}, {a, b}}.

Thus {c} and {b} is 1
2
-mgs closed. And {c}, {b}, {a, c} and {a, b} are 1

2
-msg closed.

Hence every 1
2
-mgs closed subset X is 1

2
-msg closed. Therefore X is Tgs.

(2) Let X = {a, b, c, d}, andM : 2X → I .

Let us consider an ordinary smooth 1
2
-minimal structure

M(A) =



4
5
, ifA = X,A = ∅;

2
3
, ifA = {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d};

1
2
, ifA = {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d};

1
4
, ifA = {a}, {b}, {c}, {d}.

Let r = 1
2
, thenM 1

2
= {A ∈ 2X : M(A) ≥ 1

2
}.

ThusM 1
2
= {∅, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}, X}.

Let A is 1
2
-OSM open.

Let A = {a, b},mC({a, b}, 1
2
) = {a, b}, somC({a, b}, 1

2
) is 1

2
-OSM open.

Let A = {a, c},mC({a, c}, 1
2
) = {a, c}, somC({a, c}, 1

2
) is 1

2
-OSM open.

Let A = {a, d},mC({a, d}, 1
2
) = {a, d}, somC({a, d}, 1

2
) is 1

2
-OSM open.

Let A = {b, c},mC({b, c}, 1
2
) = {b, c}, somC({b, c}, 1

2
) is 1

2
-OSM open.

Let A = {c, d},mC({c, d}, 1
2
) = {c, d}, somC({c, d}, 1

2
) is 1

2
-OSM open.

Let A = {a, b, c},mC({a, b, c}, 1
2
) = X , somC({a, b, c}, 1

2
) is 1

2
-OSM open.

Let A = {a, b, d},mC({a, b, d}, 1
2
) = X , somC({a, b, d}, 1

2
) is 1

2
-OSM open.

Let A = {b, c, d},mC({b, c, d}, 1
2
) = X , somC({b, c, d}, 1

2
) is 1

2
-OSM open.

Let A = {a, c, d},mC({a, c, d}, 1
2
) = X , somC({a, c, d}, 1

2
) is 1

2
-OSM open.

Therefore X is Extremely disconnected.

Definition 3.2.20 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called :

1 ordinary smooth r-minimal semi-open (briefly r-ms open)

if A ⊆ mC(mI(A, r), r),

2 ordinary smooth r-minimal regular open (briefly r-mrg open)
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if A = mI(mC(A, r), r),

3 ordinary smooth r-minimal pre-open (briefly r-mpre open)

if A ⊆ mI(mC(A, r), r).

The complement of an r-ms open (resp. r-mpre open, r-mrg open) set is called or-

dinary smooth r-minimal semi-open (r-ms closed) (resp. r-mpre closed, r-mrg closed).

Example 3.2.21 From Example 3.2.2.

(1) Since Example 3.2.2(1), then {a, b} is 1
2
-ms closed, thus {c} is r-ms open.

(2) Let A = {b}. Consider,mC({b}, 1
2
}) = {a, b},mI(mC({b}, 1

2
), 1

2
) = {b}.

So {b} ⊆ mI(mC({b}, 1
2
), 1

2
). Therefore {b} is 1

2
-mrg open.

(3) Since Example 3.2.2(2), {a, c} is r-mpre closed. Thus {b} is 1
2
-mpre open.

Lemma 3.2.22 If Aα is r-ms closed for all α ∈ Λ, then
∩
α∈Λ

Aα is r-ms closed.

Proof. For α ∈ Λ, let Aα be r-ms closed. Thus mI(mC(Aα, r), r) ⊆ Aα for all α ∈ Λ.

Therefore,mI(mC(
∩
α∈Λ

Aα, r), r) ⊆ mI(mC(Aα, r), r) ⊆ Aα for all α ∈ Λ.

ThusmI(mC(
∩
α∈Λ

Aα, r), r) ⊆
∩
α∈Λ

Aα. Hence
∩
α∈Λ

Aα is r-msp closed.

Lemma 3.2.23 If Aα is an r-mb closed set for α ∈ Λ, then
∩
α∈Λ

Aα is r-mb closed.

Proof. For α ∈ Λ, let Aα be an r-mb closed set.

ThusmC(mI(Aα, r), r) ∩mI(mC(Aα, r), r) ⊆ Aα for all α ∈ Λ.

Therefore, for α ∈ Λ,mC(mI(
∩
α∈Λ

Aα, r), r) ∩mI(mC(
∩
α∈Λ

Aα, r), r)

⊆ mC(mI(Aα, r), r) ∩mI(mC(Aα, r), r). And somC(mI(
∩
α∈Λ

Aα, r), r)

∩mI(mC(
∩
α∈Λ

Aα, r), r) ⊆ Aα for all α ∈ Λ. ThusmC(mI(
∩
α∈Λ

Aα, r), r)

∩mI(mC(
∩
α∈Λ

Aα, r), r) ⊆
∩
α∈Λ

Aα. Hence
∩
α∈Λ

Aα is r-mb closed.

Lemma 3.2.24 If Aα is r-msp closed for all α ∈ Λ, then
∩
α∈Λ

Aα is r-msp closed.
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Proof. For α ∈ Λ, let Aα be r-msp closed. ThusmI(mC(mI(Aα, r), r), r) ⊆ Aα for all

α ∈ Λ. Therefore,mI(mC(mI(
∩
α∈Λ

Aα, r), r), r) ⊆ mI(mC(mI(Aα, r), r), r) ⊆ Aα

for all α ∈ Λ. This implies thatmI(mC(mI(
∩
α∈Λ

Aα, r), r), r) ⊆
∩
α∈Λ

Aα.

Hence
∩
α∈Λ

Aα is r-msp closed.

Lemma 3.2.25 If Aα is r-mpre closed for all α ∈ Λ, then
∩
α∈Λ

Aα is r-mpre closed.

Proof. LetAα is r-mpre closed for allα ∈ Λ. For anyα ∈ Λ, we havemC(mI(Aα, r), r)

⊆ Aα. ThereforemC(mI(
∩
α∈Λ

Aα, r), r) ⊆ mC(mI(Aα, r), r) for all α ∈ Λ.

And so mC(mI(
∩
α∈Λ

Aα, r), r) ⊆ Aα for all α ∈ Λ, then mC(mI(
∩
α∈Λ

Aα, r), r) ⊆∩
α∈Λ

Aα. Hence
∩
α∈Λ

Aα is r-mpre closed.

Lemma 3.2.26 If A ⊆ B, then pmC(A, r) ⊆ pmC(B, r).

Proof. Let A ⊆ B. Suppose x /∈ pmC(B, r), there exists F is r-mpre closed which

B ⊆ F but x /∈ F . Since A ⊆ B, we have A ⊆ F . Therefore x /∈ pmC(A, r).

Hence pmC(A, r) ⊆ pmC(B, r).

Lemma 3.2.27 Let (X,M) be an r-OSMS and A ∈ 2X . Then the following statements

are hold:

1 pmC(A, r) = A ∪mC(mI(A, r), r),

2 smC(A, r) = A ∪mI(mC(A, r), r).

Proof. (1) Since by Lemma 3.2.25, pmC(A, r) is r-mpre closed.

ThenmC(mI(pmC(A, r), r), r) ⊆ pmC(A, r).

ThereforemC(mI(A, r), r) ⊆ pmC(A, r),

and so A ∪mC(mI(A, r), r) ⊆ pmC(A, r).

We show that pmC(A, r) ⊆ A ∪mC(mI(A, r), r). Consider,

mC(mI(A ∪mC(mI(A, r), r), r), r)

= mC(mI(A, r) ∪mI(mC(mI(A, r), r), r), r)

⊆ mC(mI(A, r), r) ∪mC(mI(mC(mI(A, r), r), r), r)

= mC(mI(A, r), r).
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ThusmC(mI(A ∪mC(mI(A, r), r), r), r) ⊆ mC(mI(A, r), r) ⊆

A ∪mC(mI(A, r), r). Hence A ∪mC(mI(A, r), r) is r-mpre closed, and so

pmC(A, r) ⊆ pmC(A ∪mC(mI(A, r), r), r) = A ∪mC(mI(A, r), r).

Therefore pmC(A, r) = A ∪mC(mI(A, r), r).

(2) Since by Lemma 3.2.22, smC(A, r) is r-ms closed.

ThenmI(mC(smC(A, r), r), r) ⊆ smC(A, r).

ThereforemI(mC(A, r), r) ⊆ smC(A, r),

and so A ∪mI(mC(A, r), r) ⊆ smC(A, r).

We show that smC(A, r) ⊆ A ∪mI(mC(A, r), r). Consider,

mI(mC(A ∪mI(mC(A, r), r), r), r)

= mI(mC(A, r) ∪mC(mI(mC(A, r), r), r), r)

⊆ mI(mC(A, r), r) ∪mI(mC(mI(mC(A, r), r), r), r)

= mI(mC(A, r), r) ∪mI(mC(A, r), r)

= mI(mC(A, r), r).

ThusmI(mC(A ∪mI(mC(A, r), r), r), r) ⊆ mI(mC(A, r), r) ⊆

A ∪mI(mC(A, r), r). Hence A ∪mI(mC(A, r), r) is r-ms closed, and so

smC(A, r) ⊆ smC(A ∪mI(mC(A, r), r), r) = A ∪mI(mC(A, r), r).

Therefore smC(A, r) = A ∪mI(mC(A, r), r).

Lemma 3.2.28 If G is an r-OSM open set, then G is r-ms open.

Proof. Let G be r-OSM open, then G = mI(G, r)

Since G ⊆ mC(G, r), we have G ⊆ mC(mI(G, r), r).

Therefore G is r-ms open.

Lemma 3.2.29 IfG is r-mrg open andmI(G, r) is r-OSM open, thenG is r-OSM open.

Proof. Let G be r-mrg open, then G = mI(mC(G, r), r).

ThusmI(G, r) = mI(mI(mC(G, r), r), r) = mI(mC(G, r), r) = G.

This implies that G is r-OSM open.

3.3 r-mgb Closed Sets and Their Relationships

The relationships between various types of generalized closed sets have been summarized

in the following diagram. None of the implications shown in this diagram can be reversed
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in general.
r-msg closed r-mpre closed

r-mb closed r-mgs closed r-mgp closed

r-msp closed r-mgb closed

r-mgsp closed

?

HHHHHHj

�������

HHHHHHj

?

HHHHHHj ?

�������

?

�������

Lemma 3.3.1 Every r-msg closed set is r-mgs closed.

Proof. Let A be r-msg closed and let U ∈ Mr be such that A ⊆ U . By Lemma 3.2.28,

we have U is r-ms open. Since A is r-msg closed, we get that smC(A, r) ⊆ U .

Therefore A is r-mgs closed. Hence every r-msg closed set is r-mgs closed.

Lemma 3.3.2 Every r-mpre closed set is r-mgp closed.

Proof. Let A be r-mpre closed and let U ∈ Mr be such that A ⊆ U .

Then pmC(A, r) = ∩{F ∈ 2X : F is r-mpre closed and A ⊆ F} = A.

Thus pmC(A, r) ⊆ U . Therefore A is r-mgp closed.

Hence every r-mpre closed set is r-mgp closed.

Lemma 3.3.3 Every r-mb closed set is r-mgb closed.

Proof. Let A be r-mb closed and let U ∈ Mr be such that A ⊆ U .

Then bmC(A, r) = ∩{F ∈ 2X : F is r-mb closed and A ⊆ F} = A.

Thus bmC(A, r) ⊆ U . Therefore A is r-mgb closed.

Hence every r-mb closed set is r-mgb closed.

Lemma 3.3.4 Every r-msp closed set is r-mgsp closed.

Proof. Let A be r-msp closed and let U ∈ Mr be such that A ⊆ U .

Then spmC(A, r) = ∩{F ∈ 2X : F is r-msp closed and A ⊆ F} = A.

Thus spmC(A, r) ⊆ U . Therefore A is r-mgsp closed.

Hence every r-msp closed set is r-mgsp closed.

Lemma 3.3.5 Every r-mgs closed set is r-mgb closed.
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Proof. Let A be r-mgs closed and let U ∈ Mr be such that A ⊆ U .

Since A is r-mgs closed, we have

smC(A, r) = ∩{F ∈ 2X : F is r −ms closed and A ⊆ F},

⊇ ∩{F ∈ 2X : F is r −mb closed and A ⊆ F},

= bmC(A, r),

⊆ U.

Thus bmC(A, r) ⊆ U . Therefore A is r-mgb closed

Lemma 3.3.6 Every r-mgb closed set is r-mgsp closed.

Proof. Let A be r-mgb closed and let U ∈ Mr be such that A ⊆ U .

Since A is r-mgb closed, we have

bmC(A, r) = ∩{F ∈ 2X : F is r −mb closed and A ⊆ F},

⊇ ∩{F ∈ 2X : F is r −msp closed and A ⊆ F},

= spmC(A, r),

⊆ U.

Thus spmC(A, r) ⊆ U . Therefore A is r-mgsp closed

Lemma 3.3.7 Every r-mgp closed set is r-mgb closed.

Proof. Let A be r-mgp closed and let U ∈ Mr be such that A ⊆ U .

Since A is r-mgp closed, we have

pmC(A, r) = ∩{F ∈ 2X : F is r −mpre closed and A ⊆ F},

⊇ ∩{F ∈ 2X : F is r −mb closed and A ⊆ F},

= bmC(A, r),

⊆ U.

Thus bmC(A, r) ⊆ U . Therefore A is r-mgb closed

Lemma 3.3.8 Every r-ms closed set is r-msg closed.

Proof. Let A be r-ms closed and let U ∈ r-mSO(X) be such that A ⊆ U .

Then smC(A, r) = ∩{F ∈ 2X : F is r-ms closed and A ⊆ F} = A.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



50

Thus smC(A, r) ⊆ U . Therefore A is r-msg closed.

Hence every r-ms closed set is r-msg closed.

Lemma 3.3.9 Every r-mgp closed set is r-mgsp closed.

Proof. Let A be r-mgp closed and let U ∈ Mr be such that A ⊆ U .

Then pmC(A, r) ⊆ U . Thus by Lemma 3.2.25, pmC(A, r) is r-mpre closed.

By Lemma 3.2.6, pmC(A, r) is r-msp closed. And by Lemma 3.3.4, pmC(A, r)

is r-mgsp closed. Hence every r-mgp closed set is r-mgsp closed.

Lemma 3.3.10 Every r-ms closed set is r-mgs closed.

Proof. Let A be r-ms closed and let U ∈ Mr be such that A ⊆ U .

Then smC(A, r) = A ⊆ U . Therefore A is r-mgs closed

The main aim of our paper is to investigate more characterizations and properties

of the classes of space where the converses hold.

Theorem 3.3.11 Let (X,M) be an r-OSMS. Then the following statements are equiva-

lent:

1 Every r-mgb closed set is r-mgp closed.

2 Every r-mb closed set is r-mgp closed.

Proof. (1) ⇒ (2) Let A be r-mb closed, then by Lemma 3.3.3, A is r-mgb closed, and

so by (1), A is r-mgp closed. Therefore every r-mb closed is r-mgp closed.

(2)⇒ (1) LetA be r-mgb closed and letU ∈ Mr be such thatA ⊆ U . Then bmC(A, r) ⊆

U . Thus, by Lemma 3.2.23, bmC(A, r) is r-mb closed, and so by (2), bmC(A, r) is r-mgp

closed, so pmC(A, r) ⊆ pmC(bmC(A, r), r) ⊆ U . Thus pmC(A, r) ⊆ U . Hence A is

r-mgp closed. Therefore every r-mgb closed is r-mgp closed.

Lemma 3.3.12 Let (X,M) be r-OSMS andM has the property (U). Then the following

statements are equivalent:

1 X is extremely disconnected,

2 If G is r-mrg open, then G is r-OSM closed.
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Proof. (1) ⇒ (2) Let G be r-mrg open, by Lemma 3.2.29, G = mI(mC(G, r), r) is

r-OSM open. By (1),mC(mI(mC(G, r), r), r) is r-OSM open. Then

mC(G, r) = mC(mI(mC(G, r), r), r)

= mI(mC(mI(mC(G, r), r), r), r)

= mI(mC(G, r), r)

= G.

Therefore G is r-OSM closed.

(2)⇒ (1) Let G be r-OSM open andmI(G, r) = G,

then G ⊆ mC(G, r),mI(G, r) ⊆ mI(mC(G, r), r) and G ⊆ mI(mC(G, r), r).

ThusmC(G, r) ⊆ mC(mI(mC(G, r), r), r).

So X −mC(mI(mC(G, r), r), r) ⊆ X −mC(G, r). (*)

And frommC(mI(mC(A, r), r), r) ⊆ mC(mC(mC(G, r), r), r) = mC(G, r).

Then X −mC(G, r) ⊆ X −mC(mI(mC(G, r), r), r). (**)

Form (*) and (**), then X −mC(G, r) = X −mC(mI(mC(G, r), r), r). Therefore

mI(X −G, r) = mI(X −mI(mC(G, r), r), r)

= mI(mC(X −mC(G, r), r), r)

= mI(mC(mI(X −G, r), r), r).

ThusmI(X −G, r) is r-mrg open. By (2),mI(X −G, r) is r-OSM closed.

This implies X −mC(G, r) = mI(X −G, r) is r-OSM closed.

And somC(G, r) is r-OSM open. Hence X is extremely disconnected.

Theorem 3.3.13 Let (X,M) be r-OSMS andM has the property (U). Then the follow-

ing statements are equivalent:

1 Every r-mgsp closed set is r-mgp closed.

2 Every r-msp closed set is r-mgp closed.

3 Every r-mgs closed set is r-mgp closed.

4 Every r-msg closed set is r-mgp closed.

5 Every r-msp closed is r-mpre closed.
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6 Every r-mgb closed set is r-mgp closed.

7 Every r-mb closed set is r-mgp closed.

8 X is extremely disconnnected.

Proof. (1)⇒ (2) Let A be r-msp closed,

then by Lemma 3.3.4, A is r-mgsp closed, and so by (1) , A is r-mgp closed.

Therefore every r-msp closed set is r-mgp closed.

(2)⇒ (1) Let A be r-mgsp closed and let U ∈ Mr be such that A ⊆ U .

Then spmC(A, r) ⊆ U . Thus by Lemma 3.2.24, spmC(A, r) is r-msp closed,

and so by (2), spmC(A, r) is r-mgp closed.

This implies pmC(A, r) ⊆ pmC(spmC(A, r), r) ⊆ U .

Therefore A is r-mgp closed.

(2)⇒ (3) Let A be r-mgs closed and let U ∈ Mr be such that A ⊆ U .

Then smC(A, r) ⊆ U . Thus by Lemma 3.2.22, smC(A, r) is r-ms closed.

By Lemma 3.2.7, smC(A, r) is r-msp closed,

and so by (2), smC(A, r) is r-mgp closed. This implies,

pmC(A, r) ⊆ pmC(smC(A, r), r) ⊆ U . Hence A is r-mgp closed.

(3)⇒ (4) Let A be r-msg closed, then by Lemma 3.3.1, A is r-mgs closed.

By (3), A is r-mgp closed.

(4)⇒ (8) Let A be r-mrg open. Then A = mI(mC(A, r), r).

Therefore A is r-ms closed. By Lemma 3.3.8, A is r-msg closed.

And so by (4), A is r-mgp closed. Since A = mI(mC(A, r), r) and mI(mC(A, r), r)

is r-OSM open set. Then pmC(A, r) ⊆ mI(mC(A, r), r) = A. This implies, A ⊆

A ∪mC(mI(A, r), r) = pmC(A, r) ⊆ A, and somC(mI(A, r), r) ⊆ A. Consider,

A ⊆ mC(A, r)

= mC(mI(mC(A, r), r), r)

= mC(mI(mI(mC(A, r), r), r), r)

= mC(mI(A, r), r)

⊆ A.

ThusA = mC(A, r). HenceA is r-OSMclosed. ThereforeX is extremely disconnnected.
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(8)⇒ (2) LetA be r-msp closed, thenmI(mC(mI(A, r), r), r) ⊆ A. SincemI(A, r) is

r-OSM open andX is extremely disconnected, we havemC(mI(A, r), r) is r-OSM open.

Since mI(mC(mI(A, r), r), r) = mC(mI(A, r), r) and mI(mC(mI(A, r), r), r) ⊆ A,

we get that mC(mI(A, r), r) ⊆ A. Hence A is r-mpre closed. Therefore by Lemma

3.3.2, A is r-mgp closed.

(5)⇒ (8) Let A be r-mrg open. Then A = mI(mC(A, r), r). Since A ⊆ mC(A, r),

we havemI(mC(mI(A, r), r), r) ⊆ mI(mC(mI(mC(A, r), r), r), r) = mI(mC(A, r), r)

= A. So A is r-msp closed. By (5), A is r-mpre closed. Thus mC(mI(A, r), r) ⊆ A.

Therefore

mC(mI(A, r), r) = mC(mI(mI(mC(A, r), r), r), r)

= mC(mI(mC(A, r), r), r)

= mC(A, r).

SincemC(mI(A, r), r) ⊆ A, we havemC(A, r) ⊆ A andmC(A, r) = A.

Hence A is r-OSM closed. Therefore X is extremely disconnected.

(8)⇒ (5) Let A be r-msp closed, thenmI(mC(mI(A, r), r), r) ⊆ A.

SincemI(A, r) is r-OSM open and X is extremely disconnected, thenmC(mI(A, r), r)

is r-OSM open, we get thatmI(mC(mI(A, r), r), r) = mC(mI(A, r), r).

SomC(mI(A, r), r) ⊆ A. Hence A is r-mpre closed.

(6)⇔ (7) Proved in Theorem 3.3.11.

(6)⇒ (8) Let A be r-mrg open. Then A = mI(mC(A, r), r).

SincemI(mC(A, r), r) ∩mC(mI(A, r), r) ⊆ mI(mC(A, r), r) = A,

we have A is r-mb closed, By Lemma 3.3.3, A is r-mgb closed, and by (6), A is r-mgp

closed. SinceA = mI(mC(A, r), r), pmC(A, r) ⊆ mI(mC(A, r), r) = A. This implies

A ⊆ A∪mC(mI(A, r), r) = pmC(A, r) ⊆ A and somC(mI(A, r), r) ⊆ A. Consider,

A ⊆ mC(A, r)

= mC(mI(mC(A, r), r), r)

= mC(mI(mI(mC(A, r), r), r), r)

= mC(mI(A, r), r)

⊆ A
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Thus A = mC(A, r). Hence A is r-OSM closed.

Therefore X is extremely disconnected.

(8)⇒ (7) Let A be r-mb closed. SincemI(mC(A, r), r) is r-OSM open,

and X is extremely disconnected, we have mC(mI(mC(A, r), r), r) is r-OSM open.

ThusmI(mC(mI(mC(A, r), r), r), r) = mC(mI(mC(A, r), r), r). Consider,

mI(A, r) ⊆ mC(A, r)

mI(mI(A, r), r) ⊆ mI(mC(A, r), r)

mI(A, r) ⊆ mI(mC(A, r), r)

mC(mI(A, r), r) ⊆ mC(mI(mC(A, r), r), r)

= mI(mC(mI(mI(mC(A, r), r), r), r), r)

⊆ mI(mC(mC(mC(A, r), r), r), r)

= mI(mC(A, r), r).

SinceA is r-mb closed, we havemC(mI(A, r), r) = mC(mI(A, r), r)∩mI(mC(A, r), r)

⊆ A. Thus A is r-mpre closed, and so by Lemma 3.3.2, A is r-mgp closed.

Definition 3.3.14 Let (X,M) be r-OSMS and let X1, X2 ⊆ X defined by

X1 = {x ∈ X : {x} is nowhere dense} and X2 = {x ∈ X : {x} is r-mpre open}.

It is easy to see that {X1, X2} is a decomposition of X (i.e. X = X1 ∪X2).

Example 3.3.15 From Example 3.2.13, then {a} is nowhere dense, so X1 = {a}.

And from Example 3.2.2, then {b, c} is r-mpre open, so X2 = {b, c}.

Hence X = {a, b, c} = X1 ∪X2. Therefore {a, b, c} is a decomposition of X .

Theorem 3.3.16 Let (X,M) be r-OSMS and A ∈ 2X .

Then A is r-msg closed if and only if X1 ∩ smC(A, r) ⊆ A.

Proof. (⇒) Let x ∈ X1 ∩ smC(A, r), then {x} is r-ms closed.

Assume that x /∈ A, then A ⊆ X − {x}. Thus smC(A, r) ⊆ X − {x}, contradicts.

Therefore x ∈ A. Hence X1 ∩ smC(A, r) ⊆ A.

(⇐) Suppose that X1 ∩ smC(A, r) ⊆ A. Let U ∈ r-mSO(X) be such that A ⊆ U and

let x ∈ smC(A, r).

If x ∈ X1, then x ∈ X1 ∩ smC(A, r) ⊆ A. So smC(A, r) ⊆ A ⊆ U .
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If x ∈ X2, then suppose that x /∈ U . This implies that X − U is r-ms closed

and x ∈ X − U . Since {x} is r-mpre open, we have

smC({x}, r) = {x} ∪mI(mC({x}, r), r)

= mI(mC({x}, r), r), r)

⊆ mI(mC(X − U, r), r)

⊆ X − U

⊆ X − A.

SomI(mC({x}, r), r) ∩ A = ∅ and A ⊆ X −mI(mC({x}, r), r) =

mC(mI(X − {x}, r), r). Consider

mI(mC(X −mI(mC({x}, r), r), r), r) = X −mC(mI(mI(mC({x}, r), r), r), r)

= X −mC(mI(mC({x}, r), r), r)

⊆ X −mC({x}, r)

⊆ X −mI(mC({x}, r), r).

Thus X −mI(mC({x}, r), r) is r-ms closed.

Since x ∈ smC(A, r), we have x ∈ X −mI(mC({x}, r), r) ⊆ X − {x}, contradition.

Thus x ∈ U and smC(A, r) ⊆ U . Hence A is r-msg closed.

Lemma 3.3.17 Let (X,M) be an r-OSMS, X is Tgs if and only if every singleton is

either r-mpre open or r-OSM closed.

Proof. (⇒) Let x ∈ X , then x ∈ X1 or x ∈ X2.

If x ∈ X1. Assume that {x} is not r-OSM closed.

ThenX−{x} is not r-OSM open, andX−{x} is r-mgs closed. If follows from x ∈ X1

thatX−{x} is dense and smC(X−{x}, r) = X . SinceX is Tgs, thenX−{x} is r-msg

closed. By Theorem 3.3.16, thenX1 = X1 ∩ smC(X − {x}, r) ⊆ X − {x}, contradicts.

Hence {x} is r-OSM closed.

If x ∈ X2, then X is r-mpre open.

(⇐) LetA be r-mgs closed. We show thatX1∩smC(A, r) ⊆ A. Let x ∈ X1∩smC(A, r),

then {x} is r-OSM closed. Assume that x /∈ A, then A ⊆ X − {x}. Thus smC(A, r) ⊆

X − {x}, contradicts. Hence x ∈ A. ThereforeA is a r-msg closed.
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Lemma 3.3.18 Let (X,M) be an r-OSMS, every singleton is either r-mpre open or

nowhere dense.

Proof. Let x ∈ X . Assume that {x} is not nowhere dense, thenmI(mC({x}, r), r) ̸= ∅.

Assume that x /∈ mI(mC({x}, r), r), x /∈ Gα for all α ∈ Λ which Gα ∈ Mr and

Gα ⊆ mC({x}, r). Therefore Gα ⊆ mC({x}, r) ⊆ mC(X − Gα, r) = X − Gα for all

α ∈ Λ, contradicts. Thus x ∈ mI(mC({x}, r), r). So {x} ⊆ mI(mC({x}, r), r).

Hence {x} is r-mpre open.

Theorem 3.3.19 Let (X,M) be an r-OSMS, the following statements are equivalent:

1 Every r-mgb closed set is r-mb closed.

2 Every r-mgs closed set is r-mb closed.

3 Every r-mgb closed set is r-msp closed.

4 Every r-mgp closed set is r-mpre closed.

5 Every r-mgsp closed set is r-msp closed.

6 Every r-mgp closed set is r-msp closed.

7 X is Tgs.

Proof. (1) ⇒ (2) Let A be r-mgs closed and U ∈ Mr be such that A ⊆ U , then

smC(A, r) ⊆ U . By Lemma 3.2.22, smC(A, r) is r-ms closed, and by Lemma 3.2.4,

smC(A, r) is r-mb closed, and so by Lemma 3.3.3, smC(A, r) is r-mgb closed. Therefore

bmC(A, r) ⊆ bmC(smC(A, r), r) ⊆ U . Thus A is r-mgb closed. Hence by (1), A is

r-mb closed.

(2) ⇒ (7) Let x ∈ X , then by Lemma 3.3.18, {x} is either r-mpre open or nowhere

dense.

Case 1 : If {x} is r-mpre open, then by Lemma 3.3.17, X is Tgs.

Case 2 : If {x} is nowhere dense.

We show that {x} is r-OSM closed.

Assume that {x} is not r-OSM closed, then X − {x} is not r-OSM open.

Thus X is only r-OSM open which X − {x} ⊆ X . So smC(X − {x}, r) ⊆ X .
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Implies that X − {x} is r-mgs closed, then by (2), X − {x} is r-mb closed.

ThereforemC(mI(X − {x}, r), r) ∩mI(mC(X − {x}, r), r) ⊆ X − {x}.

Then X − (mI(mC({x}, r), r) ∪mC(mI({x}, r), r))

= (X −mI(mC({x}, r), r)) ∩ (X −mC(mI({x}, r), r))

= mC(X −mC({x}, r), r) ∩mI(X −mI({x}, r), r)

⊆ X − {x}.

Using the properties of nowhere dense of {x}, we have

{x} ⊆ mI(mC({x}, r), r) ∪mC(mI({x}, r), r)

⊆ mI(mC({x}, r), r) ∪mC(mI(mC({x}, r), r), r)

= mI(mC({x}, r), r) ∪mC(∅, r)

= mI(mC({x}, r), r) ∪ ∅

= mI(mC({x}, r), r).

Thus {x} ⊆ mI(mC({x}, r), r) = ∅, contradicts.

This implies that {x} is r-OSM closed. Therefore X is Tgs by Lemma 3.3.17.

(7)⇒ (1) Let A be r-mgb closed.

Assume that x ∈ bmC(A, r), but x /∈ A, then A ⊆ X − {x}.

From Lemma 3.3.17, {x} is either r-mpre open or r-OSM closed.

Case 1 : If {x} is r-OSM closed, then X − {x} is r-OSM open.

Since A is r-mgb closed, bmC(A, r) ⊆ X − {x}. Thus x /∈ bmC(A, r), contradicts.

This implies that x ∈ A, bmC(A, r) ⊆ A ⊆ bmC(A, r).

Hence bmC(A, r) = A. Therefore by Lemma 3.2.23, A is r-mb closed.

Case 2 : If {x} is r-mpre open, then X − {x} is r-mpre closed.

Thus by Lemma 3.2.26 pmC(A, r) ⊆ pmC(X − {x}, r) = X − {x}.

and by Lemma 3.2.3,

bmC(A, r) = ∩{F : F is r −mb closed and A ⊆ F}

⊆ ∩{F : F is r −mpre closed and A ⊆ F}

= pmC(A, r)

⊆ X − {x}.

Then x /∈ bmC(A, r), contradicts.
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This implies that x ∈ A, bmC(A, r) ⊆ A ⊆ bmC(A, r).

Hence bmC(A, r) = A. Therefore by Lemma 3.2.23, A is r-mb closed.

(3) ⇒ (7) Let x ∈ X , then by Lemma 3.3.18, {x} is either r-mpre open or nowhere

dense.

Case 1 : If {x} is r-mpre open, then by Lemma 3.3.17, X is Tgs.

Case 2 : If {x} is nowhere dense.

We show that {x} is r-OSM closed.

Assume that {x} is not r-OSM closed, then X − {x} is not r-OSM open.

Thus X is only r-OSM open such that X − {x} ⊆ X .

Therefore bmC(X − {x}, r) ⊆ X , and so X − {x} is r-mgb closed.

Thus by (3), X − {x} is r-msp closed, so mI(mC(mI(X − {x}, r), r), r) ⊆ X − {x}.

Then

X −mC(mI(mC({x}, r), r), r) = mI(X −mI(mC({x}, r), r), r)

= mI(mC(X −mC({x}, r), r), r)

= mI(mC(mI(X − {x}, r), r), r)

⊆ X − {x}.

SincemI(mC({x}, r), r) = ∅, thus {x} ⊆ mC(mI(mC({x}, r), r), r) =

mC(∅, r) = ∅, contradicts. This implies that, {x} is r-OSM closed. Hence X is Tgs by

Lemma 3.3.17.

(7)⇒ (3) Let A be r-mgb closed.

Assume that x ∈ bmC(A, r), but x /∈ A, then A ⊆ X − {x}.

Thus by Lemma 3.3.17, {x} is either r-mpre open or r-OSM closed.

Case 1 : If {x} is r-OSM closed, then X − {x} is r-OSM open.

Since A is r-mgb closed, then bmC(A, r) ⊆ X − {x}.

Thus x /∈ bmC(A, r), contradicts. Implies, x ∈ A, then bmC(A, r) ⊆ A ⊆ bmC(A, r),

and so bmC(A, r) = A. Therefore by Lemma 3.2.23, A is r-mb closed.

Hence by Lemma 3.2.5, A is r-msp closed.

Case 2 : If {x} be r-mpre open, thenX −{x} is r-mpre closed. Thus by Lemma 3.2.26,

pmC(A, r) ⊆ pmC(X − {x}) = X − {x}, and by Lemma 3.2.3,

bmC(A, r) = ∩{F : F is r −mb closed and A ⊆ F}
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⊆ ∩{F : F is r −mpre closed and A ⊆ F}

= pmC(A, r)

⊆ X − {x},

and so x /∈ bmC(A, r), contradicts. Implies, x ∈ A, bmC(A, r) ⊆ A ⊆ bmC(A, r),

so bmC(A, r) = A. Hence by Lemma 3.2.23, A is r-mb closed.

Therefore by Lemma 3.2.5, A is r-msp closed.

(7)⇒ (4) Let A be r-mgp closed.

Assume that x ∈ pmC(A, r), but x /∈ A, then A ⊆ X − {x}.

From by Lemma 3.3.17, {x} is either r-mpre open or r-OSM closed.

Case 1: If {x} is r-OSM closed, then X − {x} is r-OSM open.

Since A is r-mgp closed, we get that pmC(A, r) ⊆ X − {x}.

Thus x /∈ pmC(A, r), contradicts. Implies, x ∈ A and so pmC(A, r) ⊆ A ⊆ pmC(A, r).

Hence pmC(A, r) = A. Therefore by Lemma 3.2.3, A is r-mpre closed.

Case 2: If {x} is r-mpre open, then X − {x} is r-mpre closed.

Thus by Lemma 3.2.26, pmC(A, r) ⊆ pmC(X − {x}, r) = X − {x},

and so pmC(A, r) ⊆ X − {x}. Therefore x /∈ pmC(A, r), contradicts.

Implies, x ∈ A and so pmC(A, r) ⊆ A ⊆ pmC(A, r).

Thus pmC(A, r) = A. Hence by Lemma 3.2.25, A is r-mpre closed set.

(4)⇒ (6) Let A be r-mgp closed, then by (4), A is r-mpre closed.

Therefore by Lemma 3.2.6, A is r-msp closed.

(7)⇒ (5) Let A be r-mgsp closed.

Assume that x ∈ spmC(A, r), but x /∈ A, then A ⊆ X − {x}.

By Lemma 3.3.17, {x} is either r-mpre open or r-OSM closed.

Case 1: Let {x} be r-OSM closed, then X − {x} is r-OSM open.

Since A is r-mgsp closed, spmC(A, r) ⊆ X − {x}. Thus x /∈ spmC(A, r), contradicts.

Implies, x ∈ A, and so spmC(A, r) ⊆ A ⊆ spmC(A, r). Hence spmC(A, r) = A.

Therefore by Lemma 3.2.24, A is r-msp closed.

Case 2: Let {x} be r-mpre open, then X − {x} is r-mpre closed. Thus pmC(A, r) ⊆

pmC(X − {x}, r) = X − {x}. By Lemma 3.2.6,

spmC(A, r) = ∩{F : F is r −msp closed and A ⊆ F}
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⊆ ∩{F : F is r −mpre closed and A ⊆ F}

= pmC(A, r)

⊆ X − {x}.

Therefore x /∈ spmC(A, r), contradicts. Implies, x ∈ A and so spmC(A, r) ⊆ A ⊆

spmC(A, r). Thus spmC(A, r) = A. Hence by Lemma 3.2.24, A is r-msp closed.

(5)⇒ (6) Let A be r-mgp closed,

then by Lemma 3.3.9, A is r-mgsp closed. And by (5), A is r-msp closed.

(6) ⇒ (7) Let x ∈ X , then by Lemma 3.3.18, {x} is either r-mpre open or nowhere

dense.

Case 1 : If {x} is r-mpre open, then by Lemma 3.3.17, X is Tgs.

Case 2 : If {x} is nowhere dense. Then we show that {x} is r-OSM closed.

Assume that {x} is not r-OSM closed, then X − {x} is not r-OSM open.

Thus X is only r-OSM open such that X − {x} ⊆ X .

So pmC(X − {x}, r) ⊆ X , then X − {x} is r-mgp closed.

By (6), then X − {x} is r-msp closed.

ThusmI(mC(mI(X − {x}, r), r), r) ⊆ X − {x}. Then

X −mC(mI(mC({x}, r), r), r) = mI(X −mI(mC({x}, r), r), r)

= mI(mC(X −mC({x}, r), r), r)

= mI(mC(mI(X − {x}, r), r), r)

⊆ X − {x}.

Hence {x} ⊆ mC(mI(mC({x}, r), r), r) = mC(∅, r) = ∅, contradicts.

So {x} is r-OSM closed. Therefore X is Tgs by Lemma 3.3.17.

Now, we give the following result.

Theorem 3.3.20 Let (X,M) be an r-OSMS, the following statements are equivalent:

1 Evaery r-mb closed set is r-mgs closed.

2 Every r-mgb closed set is r-mgs closed.

Proof. (1)⇒ (2) Let A be r-mgb closed and A ⊆ U where U ∈ Mr,

then bmC(A, r) ⊆ U . Thus by Lemma 3.2.23, bmC(A, r) is r-mb closed.
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And so by (1), bmC(A, r) is r-mgs closed. Therefore smC(A, r) ⊆ smC(bmC(A, r), r)

⊆ U . Hence A is r-mgs closed.

(2)⇒ (1) Let A be r-mb closed, then by Lemma 3.3.3, A is r-mgb closed,

and so by (2), A is r-mgs closed.

Lemma 3.3.21 Let (X,M) be an r-OSMS. If every r-mgp closed is r-msg closed, then

X is Tgs.

Proof. Let x ∈ X , by Lemma 3.3.18, {x} is either r-mpre open set or nowhere dense.

If {x} is r-mpre open, then by Lemma 3.3.17, X is Tgs.

If {x} is nowhere dense.

We show that {x} is r-OSM closed.

Assume that {x} is not r-OSM closed, then X − {x} is not r-OSM open.

Thus X is only r-OSM open such that X − {x} ⊆ X , and so pmC(X − {x}, r) ⊆ X .

Implies, X − {x} is r-mgp closed. Therefore X − {x} is r-msg closed.

Thus smC(X − {x}, r) ⊆ X − {x}. By Lemma 3.2.27, we have

(X − {x}) ∪mI(mC(X − {x}, r), r) = smC(X − {x}, r) ⊆ X − {x}.

ThusmI(mC(X − {x}, r), r) ⊆ X − {x}. So, X − {x} is r-ms closed.

This implies that {x} is r-ms open. Then {x} ⊆ mC(mI({x}, r), r)

⊆ mC(mI(mC({x}, r), r), r) = mC(∅) = ∅, contradicts.

This implies that {x} is r-OSM closed set. Hence X is Tgs by Lemma 3.3.17.

Corollary 3.3.22 Let (X,M) be an r-OSMS is r-msg closed and M has the property

(U), then the following statements are equivalent.

1 Every r-mgsp closed set is r-mpre closed.

2 Every r-mgb closed set is r-mpre closed.

3 X is extremely disconnected and Tgs.

Proof. (1)⇒ (2) Let A be r-mgb closed .

Since Lemma 3.3.10, A is r-mgsp closed, then by (1), A is r-mpre closed.

(2)⇒ (3) Let A be r-mgb closed , then by (2), A is r-mpre closed.

From Lemma 3.3.2, A is r-mgp closed. By Theorem 3.3.13(6), X is extremely
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disconnected. Thus from A is r-mpre closed and Lemma 3.2.6, A is r-msp closed.

And so by Theorem 3.3.19(3), X is Tgs.

(3)⇒ (1) Let A be r-mgsp closed .

Since X is extremely disconnected and by Theorem 3.3.13(1), A is r-mgp closed.

Since X is Tgs and by Theorem 3.3.19(4), A is r-mpre closed.

Lemma 3.3.23 If X is nowhere dense, then X − {x} is r-ms open.

Proof. Let X be nowhere dense, thenmI(mC({x}, r), r) = ∅. Since ∅ ⊆ {x},

then mI(mC({x}, r), r) ⊆ {x}. Consider, X − {x} ⊆ X − mI(mC({x}, r), r) =

mC(X −mC({x}, r)), r) = mC(mI(X −{x}, r), r). ThusX −{x} is r-ms open.

Lemma 3.3.24 Let (X,M) be an r-OSMS. Then every r-msg closed set is r-mb closed.

Proof. Let A be r-msg closed. Assume that x ∈ bmC(A, r), but x /∈ A.

Then A ⊆ X − {x}. By Lemma 3.3.18, {x} is either r-mpre open or nowhere dense.

If {x} is r-mpre open, thenX−{x} is r-mpre closed. Thus by Lemma 3.2.3,X−{x} is r-

mb closed, and so bmC(A, r) ⊆ bmC(X−{x}, r) = X−{x}. Therefore x /∈ bmC(A, r),

contradicts. Then x ∈ A, bmC(A, r) ⊆ A ⊆ bmC(A, r). Thus bmC(A, r) = A.

Hence A is r-mb closed.

If {x} is nowhere dense, then by Lemma 3.3.23, X − {x} is r-ms open.

Since A is r-msg closed, smC(A, r) ⊆ X − {x}, and by Lemma 3.2.4, we have

bmC(A, r) = ∩{F : F is r −mb closed and A ⊆ F}

⊆ ∩{F : F is r −ms closed and A ⊆ F}

= smC(A, r) ⊆ X − {x}.

Therefore x /∈ bmC(A, r), contradicts. Then x ∈ A, bmC(A, r) ⊆ A ⊆ bmC(A, r).

Thus bmC(A, r) = A, implies that A is r-mb closed.
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CHAPTER 4

FUZZY r-WEAKLY STRUCTURES SPACES

In this chapter, we define the fuzzy r-weakly structure spaces and introduced

the concept of fuzzy r-weak α-open set, fuzzy r-weak α-semiopen set, fuzzy r-weak α-

continuous and fuzzy r-weak α-open mappings it intersects on such.

4.1 Fuzzy α-Wr open sets

In this section, we define of open set, closed set, closure, interior, α-open set and

semiopen set in fuzzy r-weak space. And some basic properties.

Definition 4.1.1 [1] Let A and B be fuzzy sets. We denote

1 A ⊆ B ⇔ A(x) ≤ B(x) for all x ∈ X ,

2 (
∪
α∈Λ

Aα)(x) = sup
α∈Λ

Aα(x) for all x ∈ X ,

3 (
∩
α∈Λ

Aα)(x) = inf
α∈Λ

Aα(x) for all x ∈ X .

Let I be the unit interval [0, 1] of the real number line. A member A of IX is

called a fuzzy set of X . By 0̃ and 1̃ we donote constant maps on X with value 0 and 1,

respectively. For any A ∈ IX , AC denotes the complement 1̃−A. All other notations are

standard notations of fuzzy set theory.

Definition 4.1.2 Let X be a nonempty set and r ∈ (0, 1]. A fuzzy family W : IX → I

on X is said to have a fuzzy r-weakly structure if the family

Wr = {A ∈ IX : W(A) ≥ r}

contains 0̃.

Then the pair (X,W) is called a fuzzy r-weakly structure space (simply, r-FWS).

Every member ofWr is called a fuzzy r-weak open set (simply, r-FWS open set). A fuzzy

set A is called a fuzzy r-weak closed set (simply, r-FWS closed set) if the complement of

A (simply, AC) is a fuzzy r-weak open set.

Let (X,W) be an r-FWS and r ∈ (0, 1]. The fuzzy r-weak closure of A, denote
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by wC(A, r), is define as

wC(A, r) = ∩{B ∈ IX : BC ∈ Wr and A ⊆ B},

wC(A, r)(x) = inf
α∈Λ

{Bα(x) ∈ IX : BC
α ∈ Wr and A(x) ≤ B(x)} for all x ∈ X .

The fuzzy r-weak interior of A, denote by wI(A, r), is define as

wI(A, r) = ∪{B ∈ IX : B ∈ Wr and B ⊆ A}

wI(A, r)(x) = sup
α∈Λ

{Bα(x) ∈ IX : Bα ∈ Wr and B(x) ≤ A(x)} for all x ∈ X .

Example 4.1.3 Let X = [0, 1] and let A be fuzzy sets define as follows:

A(x) =

x+ 1
2
, ; 0 ≤ x ≤ 1

4
,

1
3
(x− 1) + 1

2
, ; 1

4
≤ x ≤ 1.

Let us consider a fuzzy r-weakly structure as follows:

W(µ) =


2
3
, ifµ = 0̃, A,

0, otherwise.

Let r = 2
3
,W 2

3
= {A ∈ IX : W(A) ≥ 2

3
}. W 2

3
= {0̃, A}. Then

(X,W) is 2
3
-FWS. Then 0̃ and A are 2

3
-FWS open and 1̃ and 1̃− A are 2

3
-FWS closed.

Theorem 4.1.4 Let (X,W) be an r-FWS and A,B ∈ IX .

1 wI(A, r) ⊆ A and if A ∈ Wr, then wI(A, r) = A.

2 A ⊆ wC(A, r) and if AC ∈ Wr, then wC(A, r) = A.

3 If A ⊆ B, then wI(A, r) ⊆ wI(B, r) and wC(A, r) ⊆ wC(B, r).

4 wI(A, r) ∩ wI(B, r) ⊇ wI(A ∩B, r) and wC(A, r) ∪ wC(B, r) ⊆ wC(A ∪

B, r).

5 wI(mI(A, r), r) = wI(A, r) and wC(wC(A, r), r) = wC(A, r).

6 1̃− wC(A, r) = wI(1̃− A, r) and 1̃− wI(A, r) = wC(1̃− A, r).

Proof. (1) Let Bα be r-FWS open such that Bα ⊆ A for all α ∈ Λ.

Then, for any x ∈ X , Bα(x) ≤ A(x) for all α ∈ Λ.
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Thus (
∪
α∈Λ

Bα)(x) = sup
α∈Λ

Bα(x) ≤ A(x) for all x ∈ X .

This implies that (wI(A, r))(x) ≤ A(x) for all x ∈ X .

Hence wI(A, r) ⊆ A. Next we show that if A ∈ Wr, then wI(A, r) = A.

Let A ∈ Wr. Then A ∈ {Bα ∈ IX : Bα ∈ Wr and Bα ⊆ A for all α ∈ Λ}.

Thus for any x ∈ X , A(x) ∈ {Bα(x) : Bα ∈ Wr and Bα ⊆ A for all α ∈ Λ}.

Thus A(x) ≤ sup
α∈Λ

{Bα(x) : Bα ∈ Wr and Bα ⊆ A} = (
∪
α∈Λ

Bα)(x)

and so A ⊆ wI(A, r). Since wI(A, r) ⊆ A, we get that wI(A, r) = A.

(2) Let Bα be r-FWS closed such that A ⊆ Bα for all α ∈ Λ.

Then, for any x ∈ X , A(x) ≤ Bα(x) for all α ∈ Λ.

Thus (
∩
α∈Λ

Bα)(x) = inf
α∈Λ

Bα(x) ≥ A(x) for all x ∈ X .

This implies that A(x) ≤ (wC(A, r))(x) for all x ∈ X .

Hence A ⊆ wC(A, r). Next we show that if AC ∈ Wr, then wC(A, r) = A.

Let AC ∈ Wr. Then A ∈ {Bα ∈ IX : BC
α ∈ Wr and A ⊆ Bα for all α ∈ Λ}.

Thus, for any x ∈ X , A(x) ∈ {Bα(x) : B
C
α ∈ Wr and A ⊆ Bα for all α ∈ Λ}.

Thus A(x) ≥ inf
α∈Λ

{Bα(x) : B
C
α ∈ Wr and A ⊆ Bα} = (

∩
α∈Λ

Bα)(x)

and so wC(A, r) ⊆ A. Since A ⊆ wC(A, r), we have wC(A, r) = A.

(3) Let A ⊆ B, then A(x) ≤ B(x) for all x ∈ X .

Let Bβ ∈ Wr such that Bβ ⊆ A for all β ∈ Λ.

Since A ⊆ B, we have Bβ ⊆ B for all β ∈ Λ.

Thus Bβ ∈ {Fα ∈ IX : Fα ⊆ B,Fα ∈ Wr for all α ∈ Λ}.

So, for any x ∈ X , Bβ(x) ≤ sup
α∈Λ

{Fα(x) : Fα ∈ Wr and Fα ⊆ B}.

Thus sup
α∈Λ

{Fα(x) : Fα ∈ Wr and Fα ⊆ B} is an upper bound of {Bβ(x) : Bβ ∈ Wr

and Bβ ⊆ A for all β ∈ Λ}. Hence sup
β∈Λ

{Bβ(x) : Bβ ∈ Wr and Bβ ⊆ A} ≤

sup
α∈Λ

{Fα(x) : Fα ∈ Wr and Fα ⊆ B} for all x ∈ X . This implies that wI(A, r) ⊆

wI(B, r). Next we show that wC(A, r) ⊆ wC(B, r).

Let A ⊆ B, then A(x) ≤ B(x) for all x ∈ X .

Let Bβ be r-FWS closed such that A ⊆ Bβ for all β ∈ Λ.

Since A ⊆ B, we have B ⊆ Bβ for all β ∈ Λ.

Thus Bβ ∈ {Fα ∈ IX : B ⊆ Fα, F
C
α ∈ Wr for all α ∈ Λ}.
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So, for any x ∈ X , Bβ(x) ≥ inf
α∈Λ

{Fα(x) : F
C
α ∈ Wr and Fα ⊆ B}.

Thus inf
α∈Λ

{Fα(x) : F
C
α ∈ Wr and Fα ⊆ B} is a lower bound of {Bβ(x) : B

C
β ∈ Wr

and A ⊆ Bβ for all β ∈ Λ}. and so inf
β∈Λ

{Bβ(x) : BC
β ∈ Wr and A ⊆ Bβ} ≥

inf
α∈Λ

{Fα(x) : F
C
α ∈ Wr and Fα ⊆ B} for all x ∈ X . Hence wC(A, r) ⊆ wC(B, r).

(4) Since A ∩B ⊆ A, A ∩B ⊆ B and using (3), we have

wI(A ∩B, r) ⊆ wI(A, r) and wI(A ∩B, r) ⊆ wI(B, r).

Therefore wI(A ∩B, r) ⊆ wI(A, r) ∩ wI(B, r).

We show that wC(A, r) ∪ wC(B, r) ⊆ wC(A ∪B, r).

Since A ⊆ A ∪B, B ⊆ A ∪B and by (3), we get that

wC(A, r) ⊆ wC(A ∪B, r) and wC(B, r) ⊆ wC(A ∪B, r).

Therefore wC(A, r) ∪ wC(B, r) ⊆ wC(A ∩B, r).

(5) By (1) and (3), we have wI(wI(A, r), r) ⊆ wI(A, r).

For any Gβ ∈ IX be such that Gβ ∈ Wr and Gβ ⊆ A, we have Gβ ⊆ wI(A, r).

Thus Gβ ⊆ ∪{Gα : Gα ∈ Wr, Gα ⊆ wI(A, r) for all α ∈ Λ}. This implies that

wI(A, r) = ∪{Gβ : Gβ ∈ Wr, Gβ ⊆ A for all β ∈ Λ}

⊆ ∪{Gα : Gα ∈ Wr, Gα ⊆ wI(A, r) for all α ∈ Λ}

= wI(wI(A, r), r).

So wI(A, r) = wI(wI(A, r), r). We show that wC(wC(A, r), r) = wC(A, r).

It follows from (2) and (3), we get that wC(A, r) ⊆ wC(wC(A, r), r).

For any Fβ ∈ IX be such that FC
β ∈ Wr and A ⊆ Fβ , we have wC(A, r) ⊆ Fβ .

Thus ∩{Fα : FC
α ∈ Wr, wC(A, r) ⊆ Fα for all α ∈ Λ} ⊆ Fβ . This implies that

wC(A, r) = ∩{Fβ : FC
β ∈ Wr, A ⊆ Fβ for all β ∈ Λ}

⊇ ∩{Fα : FC
α ∈ Wr, wC(A, r) ⊆ Fα for all α ∈ Λ}

= wC(wC(A, r), r).

So wC(A, r) = wC(wC(A, r), r).

(6) We show that wC(1̃− A, r) = 1̃− wI(A, r). For each x ∈ X and α ∈ Λ, we have

(1̃− wI(A, r))(x) = 1̃(x)− wI(A, r)(x)

= 1̃(x)− (∪{Gα ∈ IX : Gα ⊆ A,Gα ∈ Wr, α ∈ Λ})(x)
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= 1̃(x)− sup
α∈Λ

{Gα(x) : Gα ⊆ A,Gα ∈ Wr}

≤ 1̃(x)−Gα(x)

= (1̃−Gα)(x).

Thus

(1̃− wI(A, r))(x) ≤ inf
α∈Λ

{(1̃−Gα)(x) : (1̃−Gα)
C ∈ Wr, 1̃− A ⊆ 1̃−Gα}

≤ inf
α∈Λ

{Fα(x) : F
C
α ∈ Wr, 1̃− A ⊆ Fα}

= (
∩
α∈Λ

{Fα : FC
α ∈ Wr, 1̃− A ⊆ Fα})(x)

= (wC(1̃− A, r))(x).

So 1̃− wI(A, r) ⊆ wC(1̃− A, r).

Consider, For any α ∈ Λ, Gα ∈ Wr, Gα ⊆ A, we have

Gα(x) = (1̃− (1̃−Gα))(x)

= 1̃(x)− (1̃−Gα)(x)

≤ 1̃(x)− inf
α∈Λ

{(1̃−Gα)(x) : 1̃− A ⊆ 1̃−Gα, (1̃−Gα)
C ∈ Wr}

≤ 1̃(x)− inf
α∈Λ

{Fα(x) : 1̃− A ⊆ Fα, F
C
α ∈ Wr}

= wC(1̃− A, r)(x)

= (1̃− wC(1̃− A, r))(x).

Thus 1̃− wC(1̃− A, r)(x) ≥ sup
α∈Λ

{(Gα)(x) : Gα ⊆ A,Gα ∈ Wr}

= wI(A, r)(x).

This implies that wC(1̃− A, r) ⊆ 1̃− wI(A, r).

Hence wC(1̃− A, r) = 1̃− wI(A, r).

Next we show that wI(1̃− A, r) = 1̃− wC(A, r).

We have
1̃− wC(A, r) = 1̃− wC(1̃− (1̃− A), r)

= 1̃− (1̃− wI(1̃− A, r))

= wI(1̃− A, r).

Hence wI(1̃− A, r) = 1̃− wC(A, r).
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Definition 4.1.5 Let (X,W) be an r-FWS and A ∈ IX . Then a fuzzy set A is called a

fuzzy r-weak semiopen set (simply, r-FWS semiopen set) in X if

A ⊆ wC(wI(A, r), r).

A fuzzy set A is called a fuzzy r-weak semiclosed set (simply, r-FWS semiclosed

set) if the complement of A is fuzzy r-weak semiopen.

Let (X,W) and (Y,N ) be two r-FWS’s. Then f : X → Y is said to be fuzzy

r-W continuous mappings if for every A ∈ Nr, f
−1(A) is inWr.

Definition 4.1.6 Let (X,W) be an r-FWS and A ∈ IX . Then a fuzzy set A is called a

fuzzy r-weak α-open set (simply, α-Wr open set) in X if

A ⊆ wI(wC(wI(A, r), r), r).

A fuzzy set A is called a fuzzy r-weak α-closed set (simply, α-Wr closed set) if

the complement of A is fuzzy r-weak α-open.

Lemma 4.1.7 Let (X,W) be an r-FWS. Then the following condition are hold:

1 Every r-FWS open set is α-Wr open.

2 Every α-Wr open set is r-FWS semiopen.

Proof. (1) Let A be r-FWS open. Then wI(A, r) = A.

Since A ⊆ wC(A, r) = wC(wI(A, r), r), we get that

A = wI(A, r) ⊆ wI(wC(wI(A, r), r), r). Hence A is α-Wr open.

(2) Let A be α-Wr open. Then A ⊆ wI(wC(wI(A, r), r), r).

Since wI(wC(wI(A, r), r), r) ⊆ wC(wI(A, r), r),

we get that A ⊆ wC(wI(A, r), r). Hence A is r-FWS semiopen.

Remark 4.1.8 The following implications are obtained but the converses are not trure in

general.

fuzzy r-weak open⇒ fuzzy r-weak α-open⇒ fuzzy r-weak semiopen

Example 4.1.9 Let X = [0, 1] and let A and B be fuzzy sets define as follows

A(x) =

x+ 1
2
, ; 0 ≤ x ≤ 1

4
,

1
3
(x− 1) + 1

2
, ; 1

4
< x ≤ 1,
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and B(x) = 1
3
; 0 ≤ x ≤ 1.

Let us consider a fuzzy r-weak structure define as follows

W(µ) =


1
2
, ifµ = 0̃, A,

0, otherwise.

Let r = 1
2
, consider wI(wC(wI(B, 1

2
), 1

2
), 1

2
)(x) = (1

2
, 3
4
].

Then B(x) ≤ wI(wC(wI(B, 1
2
), 1

2
), 1

2
)(x), Thus B ⊆ wI(wC(wI(B, 1

2
), 1

2
), 1

2
).

Therefore B is α-W 1
2
open. But B is not 1

2
-FWS open.

Let r = 1
2
, consider wC(wI(1̃−B, 1

2
), 1

2
)(x) = [2

3
, 3
4
).

Then (1̃−B)(x) ≤ wC(wI((1̃−B, 1
2
), 1

2
)(x), Thus (1̃−B) ⊆ wC(wI((1̃−B), 1

2
), 1

2
).

Therefore (1̃−B) is 1
2
-weak semiopen. But (1̃−B) is not α-W 1

2
open.

Lemma 4.1.10 Let (X,W) be an r-FWS. Then a fuzzy set A is α-Wr closed set if and

only if wC(wI(wC(A, r), r), r) ⊆ A.

Proof. (⇒) Let A be α-Wr closed. Then 1̃− A is α-Wr open.

Thus 1̃− A ⊆ wI(wC(wI(1̃− A, r), r), r). By Theorem 4.1.4 (6), we have

1̃− A ⊆ wI(wC(1̃− wC(A, r), r), r)

= wI(1̃− wI(wC(A, r), r), r)

= 1̃− wC(wI(wC(A, r), r), r).

Hence wC(wI(wC(A, r), r), r) ⊆ A.

(⇐) Let wC(wI(wC(A, r), r), r) ⊆ A. Consider,

1̃− A ⊆ 1̃− wC(wI(wC(A, r), r), r)

= wI(1̃− wI(wC(A, r), r), r)

= wI(wC(1̃− wC(A, r), r), r)

= wI(wC(wI(1̃− A, r), r), r).

Thus 1̃− A is α-Wr open. This implies that A is α-Wr closed.

Theorem 4.1.11 Let (X,W) be an r-FWS. Then any union of α-Wr open set is α-Wr

open.
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Proof. Let Aβ be α-Wr open for all β ∈ Λ. Then for any β ∈ Λ,

Aβ ⊆ wI(wC(wI(Aβ, r), r), r) ⊆ wI(wC(wI(
∪
β∈Λ

Aβ, r), r), r).

Since Aβ(x) ≤ wI(wC(wI(
∪
β∈Λ

Aβ, r), r), r)(x) for all x ∈ X ,

and so
∪
β∈Λ

Aβ(x) ≤ wI(wC(wI(
∪
β∈Λ

Aβ, r), r), r)(x) for all x ∈ X .

Thus
∪
β∈Λ

Aβ ⊆ wI(wC(wI(
∪
β∈Λ

Aβ, r), r), r). Hence
∪
β∈Λ

Aβ is α-Wr open.

Definition 4.1.12 Let (X,W) be an r-FWS. For anyA ∈ IX ,wαC(A, r) andwαI(A, r),

respectively, are define as the following:

wαC(A, r) = ∩{F ∈ IX : A ⊆ F, F is α-Wr closed };

wαI(A, r) = ∪{U ∈ IX : U ⊆ A,U is α-Wr open }.

Theorem 4.1.13 Let (X,W) be an r-FWS and A ∈ IX . Then the following statements

are hold.

1 wαI(A, r) ⊆ A.

2 If A ⊆ B, then wαI(A, r) ⊆ wαI(B, r).

3 A is α-Wr open if and only if wαI(A, r) = A.

4 wαI(wαI(A, r), r) = wαI(A, r).

5 wαC(1̃− A, r) = 1̃− wαI(A, r) and wαI(1̃− A, r) = 1̃− wαC(A, r).

Proof. (1) Let Bβ be α-Wr open such that Bβ ⊆ A for all β ∈ Λ.

Then, for any x ∈ X , Bβ(x) ≤ A(x) for all β ∈ Λ.

Thus (
∪
β∈Λ

Bβ)(x) = sup
β∈Λ

Bβ(x) ≤ A(x) for all x ∈ X .

This implies that (wαI(A, r))(x) ≤ A(x) for all x ∈ X .

Hence wαI(A, r) ⊆ A.

(2) Let A ⊆ B. Then A(x) ≤ B(x) for all x ∈ X .

Let Bβ be α-Wr open such that Bβ ⊆ A for all β ∈ Λ.

Since A ⊆ B, we have Bβ ⊆ B for all β ∈ Λ.

Thus Bβ ∈ {Fα ∈ IX : Fα ⊆ B,Fα is α-Wr open}.
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So, for any x ∈ X , Bβ(x) ≤ sup
α∈Λ

{Fα(x) : Fα is α-Wr open and Fα ⊆ B for

all α ∈ Λ}. Thus sup
α∈Λ

{Fα(x) : Fα is α-Wr open and Fα ⊆ B for all α ∈ Λ} is

upper bound of {Bβ(x) : Bβ is α-Wr open and Bβ ⊆ A for all β ∈ Λ}. Hence

sup
β∈Λ

{Bβ(x) : Bβ is α-Wr open and Bβ ⊆ A for all β ∈ Λ} ≤ sup
α∈Λ

{Fα(x) : Fα is

α-Wr open and Fα ⊆ B for all α ∈ Λ} for all x ∈ X .

This implies that wαI(A, r) ⊆ wαI(B, r).

(3) (⇒) Let A be α-Wr open.

Then A ∈ {Bβ ∈ IX : Bβ is α-Wr open and Bβ ⊆ A for all β ∈ Λ}.

Thus, for any x ∈ X , A(x) ∈ {Bβ(x) : Bβ is α-Wr open andBβ ⊆ A for all β ∈ Λ}.

SoA(x) ≤ sup
β∈Λ

{Bβ(x) : Bβ isα-Wr open andBβ ⊆ A for all β ∈ Λ} = wαI(A, r)(x).

By (1), we have wαI(A, r) = A.

(⇐) Let wαI(A, r) = A. By Theorem 4.1.11, we have wαI(A, r) is α-Wr open.

Therefore A is α-Wr open.

(4) By Theorem 4.1.11, we have wαI(A, r) is α-Wr open.

From (3), wαI(wαI(A, r), r) = wαI(A, r).

(5) We show that wαC(1̃− A, r) = 1̃− wαI(A, r).

For any α ∈ Λ, let Gα is α-Wr open and Gα ⊆ A and x ∈ X ,

(1̃− wαI(A, r))(x) = 1̃(x)− wαI(A, r)(x)

= 1̃(x)− sup
α∈Λ

{Gα(x) : Gα ⊆ A,Gα isα−Wr open}

≤ 1̃(x)−Gα(x)

= (1̃−Gα)(x).

Thus

(1̃− wαI(A, r))(x) ≤ inf
α∈Λ

{(1̃−Gα)(x) : (1̃−Gα) is α−Wr closed, 1̃− A ⊆ 1̃−Gα}

= inf
α∈Λ

{Fα(x) : F is α−Wr closed, 1̃− A ⊆ Fα}

=
( ∩
α∈Λ

{Fα : F is α−Wr closed, 1̃− A ⊆ Fα}
)
(x)

= (wαC(1̃− A, r))(x).
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So 1̃− wαI(A, r) ⊆ wαC(1̃− A, r).

Consider, for any α ∈ Λ, Gα ∈ IX , Gα is α-Wr open, Gα ⊆ A. Then

Gα(x) = (1̃− (1̃−Gα))(x)

= 1̃(x)− (1̃−Gα)(x)

≤ 1̃(x)− inf
α∈Λ

{(Fα)(x) : 1̃− A ⊆ Fα, F
C
α is α−Wr closed}

= 1̃(x)− wαC(1̃− A, r)(x)

= (1̃− wαC(1̃− A, r))(x).

Thus

wαI(A, r)(x) = sup
α∈Λ

{(Gα)(x) : Gα is α-Wr open and Gα ⊆ A} ≤ (1̃ − wαC(1̃ −

A, r))(x) for all x ∈ X . Hence wαC(1̃− A, r) ⊆ 1̃− wαI(A, r).

This implies that wαC(1̃− A, r) = 1̃− wαI(A, r).

Next we show that wαI(1̃− A, r) = 1̃− wαC(A, r).

We have
1̃− wαC(A, r) = 1̃− wαC(1̃− (1̃− A), r)

= 1̃− (1̃− wαI(1̃− A, r))

= wαI(1̃− A, r).

Hence wαI(1̃− A, r) = 1̃− wαC(A, r).

Theorem 4.1.14 Let (X,W) be an r-FWS and A ∈ IX . Then

1 A ⊆ wαC(A, r).

2 If A ⊆ B, then wαC(A, r) ⊆ wαC(B, r),

3 A is α-Wr closed if and only if wαC(A, r) = A,

4 wαC(wαI(A, r), r) = wαC(A, r).

Proof. (1) Since A = 1̃− (1̃− A)

⊆ 1̃− wαI(1̃− A, r)

= wαC(1̃− (1̃− A), r)

= wαC(A, r).

Hence A ⊆ wαC(A, r).
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(2) Let A ⊆ B. Then 1̃−B ⊆ 1̃− A.

By Theorem 4.1.13 (2), then wαI(1̃−B, r) ⊆ wαI(1̃− A, r).

Thus by Theorem 4.1.13 (5), 1̃− wαC(B, r) ⊆ 1̃− wα(A, r).

Hence wαC(A, r) ⊆ wαC(B, r).

(3) (⇒) Let A be α-Wr closed. Then 1̃− A is α-Wr open.

Thus by Theorem 4.1.13 (3) , wαI(1̃− A, r) = 1̃− A.

By Theorem 4.1.13 (5), then 1̃− wαC(A, r) = 1̃− A.

This implies that wαC(A, r) = A.

(⇐) Let wαC(A, r) = A. By Theorem 4.1.13 (5),

1̃− wαC(A, r) = wαI(1̃−A, r). Then by Theorem 4.1.11, wαI(1̃−A, r) is α-Wr

open. Therefore 1̃ − wαC(A, r) is α-Wr open. Thus wαC(A, r) is α-Wr closed.

Hence A is α-Wr closed.

(4) Since wαC(A, r) is α-Wr closed. By (3), wαC(wαC(A, r), r) = wαC(A, r).

4.2 Fuzzy r-W α-continuity and fuzzy r-W α-open mappings

In this section, we introduce the concept of fuzzyα-continuous, fuzzyα-semicontinuous

and fuzzy α-open mappings in fuzzy r-weak spaces. And the relationship between the

fuzzy α-open mappings and the fuzzy α-continues.

Definition 4.2.1 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then f is

said to be fuzzy r-W α-continuous if f−1(U) is α-Wr open for all r-FWS open set U in

Y .

Definition 4.2.2 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then f is

said to be fuzzy r-W semicontinuous if f−1(U) is r-FWS semiopen for all r-FWS open U

in Y .

Lemma 4.2.3 Let (X,W) be an r-FWS. Then the following condition are hold.

1 Every fuzzy r-W continuous is fuzzy r-W α-continuous.

2 Every fuzzy r-W α-continuous is fuzzy r-W semicontinuous.
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Proof. (1) Let f be a fuzzy r-W continuous, and U be r-FWS open in Y .

Thus f−1(U) is r-FWS open in X . By Lemma 4.1.7 (1),

then f−1(U) is α-Wr open. Hence f is fuzzy r-W α-continuous.

(2) Let f be a fuzzy r-W α-continuous, and U be r-FWS open in Y .

Thus f−1(U) is α-Wr open in X . By Lemma 4.1.7 (2),

then f−1(U) is r-FWS semiopen. Hence f is fuzzy r-W semicontinuous.

Remark 4.2.4 It is obvious that every fuzzy r-W α-continuousmapping is fuzzy

r-W semicontinuous but the converse may not be true as show in the next example.

fuzzy r-W continuous⇒ fuzzy r-W α-continuous⇒ fuzzy r-W semicontinuous.

Example 4.2.5 Let X = [0, 1] and let A, B and C be fuzzy sets define as follows

A(x) =

x+ 1
2
, ; 0 ≤ x ≤ 1

4
,

1
3
(x− 1) + 1

2
, ; 1

4
< x ≤ 1,

B(x) = 1
3
(x+ 2); 0 ≤ x ≤ 1, and

C(x) = 1
2
x; 0 ≤ x ≤ 1.

Let us consider a fuzzy r-weak structure define as follows

W(µ) =


3
4
, ifµ = 0̃, A,

0, otherwise,

N (µ) =


3
4
, ifµ = 0̃, B,

0, otherwise,

Let r = 3
4
, we haveW 3

4
= {0̃, A} and N 3

4
= {0̃, B}.

Let f : (X,W) → (X,N ) be an identity function.

1. We show that f is fuzzy r-W α-continuous.

Let U ∈ N 3
4
= {0̃, B}, then f−1(U) is α-W 3

4
open. Consider,

If U = 0̃, f−1(U) = 0̃ such that 0̃(x) ≤ wI(wC(wI(0̃, 3
4
), 3

4
), 3

4
)(x).

So 0̃ ⊆ wI(wC(wI(0̃, 3
4
), 3

4
), 3

4
). Therefore 0̃ is α-W 3

4
open.

IfU = B, f−1(U) = B such thatB(x) = [2
3
, 1] ≤ [2

3
, 1] = wI(wC(wI(B, 3

4
), 3

4
), 3

4
)(x).
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So ⊆ wI(wC(wI(B, 3
4
), 3

4
), 3

4
). Therefore B is α-W 3

4
open.

Hence f is fuzzy r-W α-continuous. But f is not fuzzy r-W continuous.

Let r = 3
4
, we haveW 3

4
= {0̃, A} and N 3

4
= {0̃, B}.

Let f : (X,N ) → (X,W) be an identity function.

2. We show that f is fuzzy r-W semicontinuous.

Let U ∈ W 3
4
= {0̃, A}, then f−1(U) is 3

4
-FWS semiopen. Consider,

If U = 0̃, f−1(U) = 0̃ such that 0̃(x) ≤ wC(wI(0̃, 3
4
), 3

4
)(x).

So 0̃ ⊆ wC(wI(0̃, 3
4
), 3

4
). Therefore 0̃ is 3

4
-FWS semiopen.

If U = A, f−1(U) = A such that A(x) = [2
3
, 1] ≤ [2

3
, 1] = wC(wI(A, 3

4
), 3

4
).

So A ⊆ wC(wI(A, 3
4
), 3

4
). Therefore A is 3

4
-FWS semiopen.

Hence f is fuzzy r-W semicontinuous. But f is not fuzzyr-W α-continuous.

consider wI(wC(wI(B, 1
2
), 1

2
), 1

2
)(x) = (1

2
, 3
4
].

Then B(x) ≤ wI(wC(wI(B, 1
2
), 1

2
), 1

2
)(x), Thus B ⊆ wI(wC(wI(B, 1

2
), 1

2
), 1

2
).

Therefore B is α-W 1
2
open. But B is not 1

2
-FWS open.

Let r = 1
2
, consider wC(wI(1̃−B, 1

2
), 1

2
)(x) = [2

3
, 3
4
).

Then (1̃−B)(x) ≤ wC(wI((1̃−B, 1
2
), 1

2
)(x), Thus (1̃−B) ⊆ wC(wI((1̃−B), 1

2
), 1

2
).

Therefore (1̃−B) is 1
2
-weak semiopen. But (1̃−B) is not α-W 1

2
open.

Theorem 4.2.6 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the

following statements are equivalent:

1 f is fuzzy r-W α-continuous,

2 f−1(B) is α-Wr closed for each r-FWS closed set B in Y ,

3 f(wαC(A, r)) ⊆ wC(f(A), r) for A ∈ IX ,

4 wαC(f−1(B), r) ⊆ f−1(wC(B, r)) for B ∈ IY ,

5 f−1(wI(B, r)) ⊆ wαI(f−1(B), r) for B ∈ IY .

Proof. (1)⇒ (2) Let B be r-FWS closed in Y , then 1̃−B is r-FWS open in Y .

By (1), then f−1(1̃−B) is α-Wr open in X . Hence f−1(B) is α-Wr closed.

(2)⇒ (3) For A ∈ IX , we have

f−1(wC(f(A), r)) = f−1(
∩
α∈Λ

{Fα ∈ IY : f(A) ⊆ Fα and Fα is r - FWS closed}
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=
∩
α∈Λ

{f−1(Fα) ∈ IX : A ⊆ f−1(Fα) and f−1(Fα) is α−Wr closed}

⊇
∩
α∈Λ

{K ∈ IX : A ⊆ K and K is α−Wr closed}

= wαC(A, r).

Then wαC(A, r) ⊆ f−1(wC(f(A), r)).

Therefore f(wαC(A, r)) ⊆ f(f−1(wC(f(A), r))) ⊆ wC(f(A), r).

Hence f(wαC(A, r)) ⊆ wC(f(A), r).

(3)⇒ (4) For B ∈ IY . Then

f(wαC(f−1(B), r)) ⊆ wC(f(f−1(B)), r) ⊆ wC(B, r).

Thus f(wαC(f−1(B), r)) ⊆ wC(B, r).

Therefore wαC(f−1(B), r) ⊆ f−1(f(wαC(f−1(B), r))) ⊆ f−1(wC(B, r)).

Hence wαC(f−1(B), r) ⊆ f−1(wC(B, r)).

(4)⇒ (5) For B ∈ IY , by Theorem 4.1.13 (5), we have

f−1(wI(B, r)) = f−1(1̃Y − wC(1̃Y −B, r))

= 1̃X − f−1(wC(1̃Y −B, r))

⊆ 1̃X − wαC(f−1(1̃Y −B, r))

= wαI(f−1(B), r).

Therefore f−1(wI(B, r)) ⊆ wαI(f−1(B), r).

(5)⇒ (1) For B ∈ Nr. Thus f−1(wI(B, r)) ⊆ wαI(f−1(B), r).

Therefore f−1(B) = f−1(wI(B, r)) ⊆ wαI(f−1(B), r).

By Theorem 4.1.13 (1), wαI(f−1(B), r) ⊆ f−1(B). Thus f−1(B) = wαI(f−1(B), r).

Therefore by Theorem 4.1.11, wαI(f−1(B), r) is α-Wr open.

Hence f is fuzzy r-W α-continuous.

Definition 4.2.7 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then

1 f is said to be fuzzy r-W α-open if for r-FWS open set A inX , f(A) is α-Wr

open in Y ;

2 f is said to be fuzzy r-W α-closed if for r-FWS closed set A in X , f(A) is
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α-Wr closed in Y .

Theorem 4.2.8 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the

following conditions are equivalent:

1 f is fuzzy r-W α-open,

2 f(wI(A, r)) ⊆ wαI(f(A), r) for A ∈ IX ,

3 wI(f−1(B), r) ⊆ f−1(wαI(B, r)) for B ∈ IY .

Proof. (1)⇒ (2) For A ∈ IX ,

f(wI(A, r) = f(∪{B ∈ IX : B ⊆ A,B is r - FWS open})

= ∪{f(B) ∈ IX : f(B) ⊆ f(A), f(B) is α−Wr open}

⊆ ∪{U ∈ IX : U ⊆ f(A), U is α−Wr open}

= wαI(f(A), r).

Hence f(wI(A, r) ⊆ wαI(f(A), r).

(2)⇒ (1) Let A be r-FWS open in X , then A = wI(A, r).

By (2), f(A) ⊆ wαI(f(A), r). Thus f(A) is α-Wr open.

Hence f is fuzzy r-W α-open.

(2)⇒ (3) For B ∈ IY , it follows from (2) that

f(wI(f−1(B), r)) ⊆ wαI(f(f−1(B)), r) ⊆ wαI(B, r).

Thus f(wI(f−1(B), r)) ⊆ wαI(B, r).

Therefore wI(f−1(B), r) ⊆ f−1(f(wI(f−1(B), r))) ⊆ f−1(wαI(B, r)).

Hence wI(f−1(B), r) ⊆ f−1(wαI(B, r)).

(3)⇒ (2) For A ∈ IX ,

then wI(f−1(f(A)), r) ⊆ f−1(wαI(f(A), r). Since wI(A, r) ⊆ wI(f−1(f(A)), r).

Thus wI(A, r) ⊆ f−1(wαI(f(A), r)). Hence f(wI(A, r)) ⊆ wαI(f(A), r).

Theorem 4.2.9 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the

following statements are equivalent:

1 f is fuzzy r-W α-closed.

2 wαC(f(A), r)) ⊆ f(wC(A, r)) for A ∈ IX .
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Proof. (1)⇒ (2) For A ∈ IX , Then

f(wC(A, r)) = f(∩{F ∈ IX : A ⊆ F, F is r - FWS open})

= ∩{f(F ) ∈ IY : f(A) ⊆ f(F ), f(F ) is α−Wr open}

⊇ ∩{K ∈ IY : f(A) ⊆ K,K is α−Wr open}

= wαC(f(A), r).

Therefore wαC(f(A), r) ⊆ f(wC(A, r)).

(2)⇒ (1) Let A be r-FWS closed in X ,

then A = wC(A, r). By (2), wαC(f(A), r)) ⊆ f(wC(A, r)) = f(A).

Thus f(A) is α-Wr closed. Hence f is fuzzy r-W α-closed.

Definition 4.2.10 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then

1 f is said to be fuzzy r-W ∗α-open if for every α-Wr open A in X , f(A) is

r-FWS open in Y ;

2 f is said to be fuzzy r-W ∗α-closed if for every α-Wr closed A in X , f(A) is

r-FWS closed in Y .

Definition 4.2.11 Let X be a nonempty set and W : IX → I a fuzzy family on X . The

fuzzy r-weak structureW has the property (U) if for Ai ∈ Wr(i ∈ J),

W(∪Ai) ≥ ∧W(Ai).

Theorem 4.2.12 Let (X,W) be an r-FMS such that W has the property (U). Then for

A ∈ IX , wI(A, r) = A if and only if A is r-FWS open.

Proof. Let for A ∈ IX , then wI(A, r) = A. By property (U), then a r-FWS open set A.

Conversely, for A ∈ IX , From Theorem 4.1.4(1), then wI(A, r) = A.

Theorem 4.2.13 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the

following statements are equivalent:

1 f(wαI(A, r)) ⊆ wI(f(A), r) for A ∈ IX ,

2 wαI(f−1(B), r) ⊆ f−1(wI(B, r)) for B ∈ IY .
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Proof. (1)⇒ (2) For B ∈ IY ,

By (1), then f(wαI(f−1(B), r)) ⊆ wI(f(f−1(B)), r) ⊆ wI(B, r).

Thus f(wαI(f−1(B), r)) ⊆ wI(B, r).

Therefore wαI(f−1(B), r) ⊆ f−1f(wαI(f−1(B), r)) ⊆ f−1(wI(B, r)).

Hence wαI(f−1(B), r) ⊆ f−1(wI(B, r)).

(2)⇒ (1) For A ∈ IX , then wαI(f−1(f(A)), r) ⊆ f−1(wI(f(A), r).

Since f(wαI(A, r)) ⊆ f(wI(f−1(f(A)), r)) ⊆ f(f−1(wI(f(A), r))) ⊆ wI(f(A), r).

Therefore f(wαI(A, r)) ⊆ wI(f(A), r).

Theorem 4.2.14 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the

following statements are hold:

1 If f is fuzzy r-W ∗α-open, then f(wαI(A, r)) ⊆ wI(f(A), r) for A ∈ IX .

2 If f(wαI(A, r)) ⊆ wI(f(A), r) for A ∈ IX andN has the property (U), then

f is fuzzy r-W ∗α-open.

Proof. 1. For A ∈ IX ,

f(wαI(A, r) = f(∪{B ∈ IX : B ⊆ A,B is α−Wr open})

= ∪{f(B) ∈ IY : f(B) ⊆ f(A), f(B) is r -FWS open}

⊆ ∪{U ∈ IY : U ⊆ f(A), U is r -FWS open}

= wI(f(A), r).

Hence f(wαI(A, r)) ⊆ wI(f(A), r).

2. Let A be α-Wr open in X . Since N has the property (U), we have wI(f(A), r) is

r-FWS open. From Theorem 4.2.15, we get that f is fuzzy r-W ∗α-open.

Theorem 4.2.15 FromTheorem 4.2.13, If f(wαI(A, r)) ⊆ wI(f(A), r) andwI(f(A), r)

is r-FWS open for all A ∈ IX , then f is fuzzy r-W ∗ α-open.

Proof. Let A be r-FWS α-open in X , then A = wαI(A, r).

And f(A) = f(wαI(A, r)) ⊆ wI(f(A), r) ⊆ f(A).

since wI(f(A), r) is r-FWS open, we have f(A) is r-FWS open.
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Theorem 4.2.16 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. and

wC(f(A), r) is r-FWS closed. Then the following statements are equivalent:

1 f is fuzzy r-W ∗α-closed.

2 wC(f(A), r) ⊆ f(wαC(A, r)) for A ∈ IX .

Proof. (1)⇒ (2) Let A ∈ IX , then

f(wαC(A, r)) = f(∩{Fα ∈ IX : Fα is α-Wr closed and A ⊆ Fα, α ∈ Λ}).

= ∩{f(Fα) ∈ IX : f(Fα) is α-Wr closed and f(A) ⊆ f(Fα), α ∈ Λ}).

⊇ ∩{Gα ∈ IX : Gα is α-Wr closed and f(A) ⊆ Gα, α ∈ Λ}).

= wC(f(A), r).

(2)⇒ (1) Let A be α-Wr open, then wαC(A, r) = A.

and wC(f(A), r) ⊆ f(wαC(A, r)) = f(A) ⊆ wC(f(A), r).

Since wC(f(A), r) is closed, f(A) is closed.
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CHAPTER 5

CONCLUSIONS

The aim of this thesis is to introduce the concepts of ordinary smooth r-minimal

spaces which study open set, closed set, closure and interior it intersects on such. The stud-

ied properties of opens mapping, continuous mapping and compactness. And introduced

r-mb generalized closed sets, Also we studied characterization of extremely disconnected

and Tgs space on ordinary smooth r-minimal spaces. The results are follows:

1 Ordinary Smooth r-Minimal Structure Spaces

Let X be a nonempty set and r ∈ (0, 1]. A mapping M : 2X → I is said to

have an ordinary smooth r-minimal structure if the family

Mr = {A ∈ 2X : M(A) ≥ r}.

contains ∅ and X .

Then the (X,M) is called an ordinary smooth r-minimal structure space (sim-

ply, r-OSMS). Every member of Mr is called an ordinary smooth r-minimal

open set (simply, r-OSM open set). A subset A of X is called an ordinary

smooth r-minimal closed set (simply, r-OSM closed set) if the complement of

A (simply, AC) is an ordinary smooth r-minimal open set.

1.1 Let (X,M) be an r-OSMS and r ∈ (0, 1]. The r-OSM closure and the

r-OSM interior ofA, denoted bymC(A, r) andmI(A, r), respectively,

are defined as follows:

1.1.1 mC(A, r) = ∩{B ∈ 2X : BC ∈ Mr and A ⊆ B},

1.1.2 mI(A, r) = ∪{B ∈ 2X : B ∈ Mr and B ⊆ A}.

1.2 Let (X,M) be an r-OSMS and A,B ∈ 2X .

1.2.1 mI(A, r) ⊆ A.

1.2.2 If A is an r-OSM open set, thenmI(A, r) = A.

1.2.3 A ⊆ mC(A, r).

1.2.4 If A is an r-OSM closed set, thenmC(A, r) = A.
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1.2.5 If A ⊆ B, then mI(A, r) ⊆ mI(B, r) and mC(A, r) ⊆

mC(B, r).

1.2.6 mI(A, r)∩mI(B, r) ⊇ mI(A∩B, r) andmC(A, r)∪mC(B, r) ⊆

mC(A ∪B, r).

1.2.7 mI(mI(A, r), r) = mI(A, r) andmC(mC(A, r), r) = mC(A, r).

1.2.8 X − mC(A, r) = mI(X − A, r) and X − mI(A, r) =

mC(X − A, r).

1.3 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s. Then f is

said to be

1.3.1 r-M continuous mapping if for every A ∈ Nr, f−1(A) is in

Mr.

1.3.2 r-M open mapping if for every A ∈ Mr, f(A) is in Nr.

1.4 r-OSM compactness.

1.4.1 Let (X,M) be an r-OSMS and {Ai ∈ 2X : i ∈ J}. A is

called an ordinary smooth r-minimal cover (simply, r-OSM

cover) of X if ∪{Ai : i ∈ J} = X . It is an ordinary smooth

r-minimal open cover (simply, r-OSM open cover) if each Ai

is an r-OSM set. {Bi ∈ 2X : i ∈ J} is called an ordinary

smooth r-minimal open cover of B ⊆ X if B ⊆ ∪{Bi ∈ 2X :

i ∈ J}.

1.4.2 Let (X,M) be an r-OSMS. An A ∈ X is said to be ordinary

smooth r-minimal compact (simply, r-OSM compact) if every

r-OSM open cover {Ai ∈ Mr : i ∈ J} of A has a finite

subcover.

1.4.3 Let f : (X,M) → (Y,N ) be an r-M continuous mapping

on two r-OSMS’s. If A is an r-OSM compact set, then f(A)

is also an r-OSM compact set.

1.4.4 Let (X,M) be an r-OSMS. An A ∈ X is said to be ordi-

nary smooth r-minimal almost compact (simply, r-OSM al-

most compact) if for every r-OSM open cover {Ai ∈ 2X :
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i ∈ J} of A, there exists J0 = {j1, j2, ..., jn} ⊆ J such that

A ⊆
∪
i∈J0

mC(Ai, r).

1.4.5 Let (X,M) be an r-OSMS. An A ∈ X is said to be ordinary

smooth r-minimal nearly compact (simply, r-OSMnearly com-

pact) if for every r-OSM open cover {Ai : i ∈ J} of A, there

exists J0 = {j1, j2, ..., jn} ⊆ J such thatA ⊆
∪
i∈J0

mI(mC(Ai, r), r).

1.4.6 Let (X,M) be an r-OSMS. If a subset A in X is an r-OSM

compact, then it is an r-OSM nearly compact.

1.5 r-M continuous and r-M open.

1.5.1 Let X be a nonempty set and M : 2X → I a family on X .

The family M is said to have the property (U) if for Ai ∈

Mr(i ∈ J)

M(∪Ai) ≥ ∧M(Ai).

1.5.2 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are equivalent:

(i) f is r-M continuous.

(ii) f−1(B) is an r-OSM closed set, for each r-OSM closed

set B in Y .

1.5.3 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are hold:

(i) If f is r-M continuous, then f(mC(A, r)) ⊆ mC(f(A), r)

for all A ∈ 2X .

(ii) If f−1(mI(B, r)) ⊆ mI(f−1(B), r), for all B ∈ 2Y is

true andM has the property (U), then f is r-M contin-

uous.

1.5.4 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are equivalent:

(i) f(mC(A, r)) ⊆ mC(f(A), r) for A ∈ 2X .

(ii) mC(f−1(B), r) ⊆ f−1(mC(B, r)) for B ∈ 2Y .
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(iii) f−1(mI(B, r)) ⊆ mI(f−1(B), r) for B ∈ 2Y .

1.5.5 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then

(i) f(mI(A, r)) ⊆ mI(f(A), r) for A ∈ 2X .

(ii) mI(f−1(B), r) ⊆ f−1(mI(B, r)) for B ∈ 2Y .

1.5.6 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are equivalent:

(i) If f is r-M open, then f(mI(A, r)) ⊆ mI(f(A), r) for

A ∈ 2X .

(ii) IfmI(f−1(B), r) ⊆ f−1(mI(B, r)) for B ∈ 2Y and N

has property (U), then f is r-M open.

1.5.7 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then f is said to be ordinary smooth weakly r-M continuous

(simply,r-M weak continuous) if for x ∈ X and each r-OSM

open set V containing f(x), there is an r-OSM open set U

containing x such that f(U) ⊆ mC(V, r).

1.5.8 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are equivalent:

(i) f−1(V ) ⊆ mI(f−1(mC(V, r)), r) for each r-OSMopen

set V in Y .

(ii) mC(f−1(mI(B, r), r) ⊆ f−1(B) for each r-OSMclosed

set B in Y .

(iii) mC(f−1(B), r) ⊆ f−1(mC(B, r)) for each r-OSMopen

set B in Y .

1.5.9 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are hold:

(i) If f is r-M weak continuous, then f−1(V ) ⊆ mI(f−1(mC(V, r)), r)

for each r-OSM open set V in Y .

(ii) If mC(f−1(B), r) ⊆ f−1(mC(B, r)) for each r-OSM

open setB in Y is true andN has the property (U), then
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f is r-M weak continuous.

1.5.10 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s

and A ∈ 2Y . If f is r-M weak continuous, then the following

statements hold :

(i) f−1(A) ⊆ mI(f−1(mC(A, r)), r) for A = mI(A, r).

(ii) mC(f−1(mI(A, r)), r) ⊆ f−1(A) for A = mC(A, r).

1.5.11 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then f is said to be ordinary smooth almost r−M continuous

(simply, r-M almost continuous) if for x ∈ X and each r-

OSM open set V containing f(x), there is an r-OSM open set

U containing x such that f(U) ⊆ mI(mC(V, r), r).

1.5.12 Let f : (X,M) → (Y,N ) be a mapping on two r-OSMS’s.

Then the following statements are equivalent:

(i) f is r −M almost continuous.

(ii) f−1(B) ⊆ mI(f−1(mI(mC(B, r), r)), r) for each r-

OSM open set B in Y .

(iii) mC(f−1(mC(mI(F, r), r)), r) ⊆ f−1(F ) for each r-

OSM closed set F in Y .

1.6 Relationships between some types of r-OSM compactness and r-M

continuous.

1.6.1 Let (X,M) be an r-OSMS. If a subsetA inX is r-OSM com-

pact, then it is also r-OSM almost compact.

1.6.2 Let f : (X,M) → (Y,N ) be an r-M continuous mapping on

two r-OSMS’s. If A is an r-OSM almost compact set, then

f(A) is also an r-OSM almost compact set.

1.6.3 Let f : (X,M) → (Y,N ) be an r-M continuous and r-M

open mapping on two r-OSMS’s. If A is an r-OSM nearly

compact set, then f(A) is an r-OSM nearly compact set.

1.6.4 Let f : (X,M) → (Y,N ) be an r-M weak continuous map-

pings on two r-OSMS’s. If A is an r-OSM compact set in
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X and M has property (U), then f(A) is an r-OSM almost

compact set.

1.6.5 Let f : (X,M) → (Y,N ) be an r-M weak continuous map-

pings on two r-OSMS’s. If A is an r-OSM almost compact

set and M has property (U), then f(A) is an r-OSM almost

compact set.

1.6.6 Let f : (X,M) → (Y,N ) be an r-M weak continuous map-

pings on two r-OSMS’s. If A is an r-OSM nearly r-minimal

compact set andM has property (U), then f(A) is an r-OSM

nearly compact set.

1.6.7 Let f : (X,M) → (Y,N ) be an r-M almost continuous

mappings on two r-OSMS’s. If A is an r-OSM compact set

inX andM has property (U), then f(A) is an r-OSM nearly

compact set.

1.6.8 Let f : (X,M) → (Y,N ) be an r-M almost continuous and

r-M open mappings on two r-OSMS’s. If A is an r-OSM

almost compact set andM has property (U), then f(A) is an

r-OSM almost compact set.

1.6.9 Let f : (X,M) → (Y,N ) be an r-M almost continuous and

r-M open bmappings on two r-OSMS’s. If A is an r-OSM

compact set andM has property (U), then f(A) is an r-OSM

compact set.

1.7 Let X be a nonempty set andM : 2X → I a family on X . The family

M is said to have the property (U) if for Ai ∈ Mr(i ∈ J)

M(∪Ai) ≥ ∧M(Ai).

1.8 Let (X,M) be an r-OSMS with the property (U). Then

1.8.1 mI(A, r) = A if and only if A ∈ Mr for A ∈ 2X .

1.8.2 mC(A, r) = A if and only if AC ∈ Mr for A ∈ 2X .

1.9 On Generalized r-mb Closed sets.

1.9.1 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called:
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(i) ordinary smooth r-minimal semi-closed (briefly r-ms

closed)

ifmI(mC(A, r), r) ⊆ A

(ii) ordinary smooth r-minimal pre-closed (briefly r-mpre

closed)

ifmC(mI(A, r), r) ⊆ A

(iii) ordinary smooth r-minimal b-closed (briefly r-mb closed)

if (mC(mI(A, r), r) ∩mI(mC(A, r), r)) ⊆ A

(iv) ordinary smooth r-minimal semi-preclosed (briefly r-

msp closed)

ifmI(mC(mI(A, r), r), r) ⊆ A

1.9.2 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called:

(i) r-mgb closed if bmC(A, r) ⊆ U whenever A ⊆ U and

U ∈ Mr .

(ii) r-msg closed if smC(A, r) ⊆ U whenever A ⊆ U and

U ∈ r-mSO(X).

(iii) r-mgs closed if smC(A, r) ⊆ U whenever A ⊆ U and

U ∈ Mr .

(iv) r-mgp closed if pmC(A, r) ⊆ U whenever A ⊆ U and

U ∈ Mr .

(v) r-mgsp closed if spmC(A, r) ⊆ U whenever A ⊆ U

and U ∈ Mr.

1.9.3 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called

nowhere dense if and only ifmI(mC(A, r), r) = ∅.

1.9.4 Let (X,M) be an r-OSMS and D ∈ 2X . Then D is called

dense if and only ifmC(D, r) = X .

1.9.5 Let (X,M) be an r-OSMS and E ∈ 2X . Then E is called

codense if and only ifmI(E, r) = ∅.

1.9.6 Let (X,M) be an r-OSMS is said to be:

(i) Tgs if every gs-closed subset of X is sg-closed.
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(ii) Extremely disconnected if the closure of each open sub-

sets of X is open.

1.9.7 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called :

(i) ordinary smooth r-minimal semi-open (briefly r-ms open)

if A ⊆ mC(mI(A, r), r)

(ii) ordinary smooth r-minimal regular open (briefly r-mrg

open)

if A = mI(mC(A, r), r)

(iii) ordinary smooth r-minimal pre-open (briefly r-mpre open)

if A ⊆ mI(mC(A, r), r)

1.9.8 Let (X,M) be an r-OSMS and A ∈ 2X . Then A is called :

(i) pmC(A, r) = A ∪mC(mI(A, r), r)

(ii) smC(A, r) = A ∪mI(mC(A, r), r)

1.9.9 Let (X,M) be an r-OSMS and r ∈ (0, 1].

(i) smC(A, r) = ∩{B ∈ 2X : B is s-closed set and A ⊆

B}

(ii) pmC(A, r) = ∩{B ∈ 2X : B is pre-closed set and

A ⊆ B}

(iii) bmC(A, r) = ∩{B ∈ 2X : B is b-closed set and A ⊆

B}

(iv) spmC(A, r) = ∩{B ∈ 2X : B is sp-closed set and

A ⊆ B}

1.10 r-mgb Closed Sets and Their Relationships.

1.10.1 If Aα is a r-mb closed set for α ∈ Λ, then
∩
α∈Λ

Aα is a r-mb

closed set

1.10.2 If Aα is r-msp closed for all α ∈ Λ, then
∩
α∈Λ

Aα is r-msp

closed.

1.10.3 If Aα is r-ms closed for all α ∈ Λ, then
∩
α∈Λ

Aα is r-ms

closed.
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1.10.4 If Aα is r-mpre closed for all α ∈ Λ, then
∩
α∈Λ

Aα is r-mpre

closed.

1.10.5 Every r-mb closed set is r-mgb closed.

1.10.6 Every r-msp closed set is r-mgsp closed.

1.10.7 Every r-msg closed set is r-mgs closed.

1.10.8 Every r-mpre closed set is r-mgp closed.

1.10.9 Every r-ms closed set is r-msg closed.

1.10.10 Every r-mgp closed set is r-mgsp closed.

1.10.11 Every r-ms closed set is r-mgs closed.

1.10.12 Every r-mgp closed set is r-mgb closed.

1.10.13 Every r-mgb closed set is r-mgsp closed.

1.10.14 If G is r-mrg open set , then G is r-OSM open.

1.10.15 If G is r-mrg open set, then G is r-OSM closed.

1.10.16 If F is r-ms closed set, then F is r-msp closed.

1.10.17 If G is r-OSM open set , then G is r-ms open.

1.10.18 If F is r-ms closed set, then F is r-mb closed.

1.10.19 If F is r-mpre closed set, then F is r-mb closed.

1.10.20 If F is r-mpre closed set, then F is r-msp closed.

1.10.21 If F is r-mb closed set, then F is r-msp closed.

1.10.22 If X is nowhere dense, then X − {x} is r-ms open sets.

1.11 Let X be any r-OSMS, then the following are equivalent:

1.11.1 Every r-mgb closed set is r-mgp closed.

1.11.2 Every r-mb closed set is r-mgp closed.

1.12 Let (X,M) be an r-OSMS the following are equivalent:

1.12.1 Every r-mgsp closed set is r-mgp closed.

1.12.2 Every r-msp closed set is r-mgp closed.

1.12.3 Every r-mgsp closed set is r-mgp closed.

1.12.4 Every r-msg closed set is r-mgp closed.
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1.12.5 Every r-msp closed is r-mpre closed.

1.12.6 Every r-mgp closed set is r-mgp closed.

1.12.7 Every r-mb closed set is r-mgp closed.

1.12.8 X is extremely disconnnected.

1.13 Let (X,M) be r-OSMS and let X1, X2 ⊆ X defined by

X1 = {x ∈ X : {x} is nowhere dense} and X2 = {x ∈ X : {x} is

r-mpre open}. It is easy to see that {X1, X2} is a decomposition ofX

(i.e. X = X1 ∪X2).

1.14 Let (X,M) be r-OSMS and A ∈ 2X . Then A is r-msg closed if and

only if X1 ∩ smC(A, r) ⊆ A

1.15 LetX be any r-OSMS,X is Tgs if and only if every singleton is either

r-mpre open or r-OSM closed.

1.16 Let (X,M) be an r-OSMS, every singleton is either r-mpre open or

nowhere dense.

1.17 Let (X,M) be an r-OSMS , the following are equivalent.

1.17.1 Every r-mgb closed set is r-mb closed.

1.17.2 Every r-mgs closed set is r-mb closed.

1.17.3 Every r-mgb closed set is r-msp closed.

1.17.4 Every r-mgp closed set is r-mpre closed.

1.17.5 Every r-mgsp closed set is r-msp closed.

1.17.6 Every r-mgp closed set is r-msp closed.

1.17.7 X is Tgs

1.18 Let (X,M) be an r-OSMS , the following are equivalent.

1.18.1 Evaery r-mb closed set is r-mgs closed.

1.18.2 Every r-mgb closed set is r-mgs closed.

1.19 If every r-mgp closed set of a spaceX is r-msg closed, thenX is Tgs.

1.19.1 Every r-mgsp closed set is r-mpre closed.

1.19.2 Every r-mgb closed set is r-mpre closed.
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1.19.3 X is extremely disconnected and Tgs.

1.20 Let (X,M) be r-OSMS. Then every r-msg closed set is r-mb closed.

2 Fuzzy r-Weak Structure Spaces

LetX be a nonempty set and r ∈ (0, 1]. A fuzzy familyW : IX → I onX

is said to have a fuzzy r-weakly structure if the family

Wr = {A ∈ IX : W(A) ≥ r}

contains 0̃.

Then the pair (X,W) is called a fuzzy r-weakly structure space (simply, r-

FWS). Every member ofWr is called a fuzzy r-weak open set (simply, r-FWS

open set). A fuzzy set A is called a fuzzy r-weak closed set (simply, r-FWS

closed set) if the complement of A (simply, AC) is a fuzzy r-weak open set.

2.1 Let (X,W) be an r-FWS and r ∈ (0, 1].

2.1.1 wC(A, r) = ∩{B ∈ IX : BC ∈ Wr and A ⊆ B}

2.1.2 wI(A, r) = ∪{B ∈ IX : B ∈ Wr and B ⊆ A}

2.2 Let (X,W) be an r-FWS and A,B ∈ IX .

2.2.1 wI(A, r) ⊆ A and if A ∈ Wr, then wI(A, r) = A.

2.2.2 A ⊆ wC(A, r) and if AC ∈ Wr, then wC(A, r) = A.

2.2.3 IfA ⊆ B, thenwI(A, r) ⊆ wI(B, r) andwC(A, r) ⊆ wC(B, r).

2.2.4 wI(A, r)∩wI(B, r) ⊇ wI(A∩B, r) andwC(A, r)∪wC(B, r) ⊆

wC(A ∪B, r).

2.2.5 wI(mI(A, r), r) = wI(A, r) andwC(wC(A, r), r) = wC(A, r).

2.2.6 1̃− wC(A, r) = wI(1̃− A, r) and 1̃− wI(A, r) = wC(1̃−

A, r).

2.3 Let (X,W) be an r-FWS and A ∈ IX . Then a fuzzy set A is called a

fuzzy r-weak semiopen set (simply, r-FWS semiopen set) in X if

A ⊆ wC(wI(A, r), r).

A fuzzy setA is called a fuzzy r-weak semiclosed set (simply, r-FWS

semiclosed set) if the complement of A is fuzzy r-weak semiopen.

Let (X,W) and (Y,N ) be two r-FWS’s. Then f : X → Y is said
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to be fuzzy r-W continuous function if for every A ∈ Nr, f
−1(A) is in

Wr.

2.4 Let (X,W) be an r-FWS and A ∈ IX . Then a fuzzy set A is called a

fuzzy r-weak α-open set (simply, α-Wr open set) in X if

A ⊆ wI(wC(wI(A, r), r), r).

A fuzzy set A is called a fuzzy r-weak α-closed set (simply, α-Wr

closed set) if the complement of A is fuzzy r-weak α-open.

2.5 Let (X,W) be an r-FWS. Then the following condition are hold:

2.5.1 Every r-FWS open set is α-Wr open.

2.5.2 Every α-Wr open set is r-FWS semiopen.

2.6 The following implications are obtained but the converses are not trure

in general.

fuzzy r-weak open⇒ fuzzy r-weakα-open⇒ fuzzy r-weak semiopen.

3 Let (X,W) be an r-FWS. Then a fuzzy set A is α-Wr closed set if and only if

wC(wI(wC(A, r), r), r) ⊆ A.

4 Let (X,W) be an r-FWS. Then any union of α-Wr open set isα-Wr open.

5 Let (X,W) be an r-FWS. For any A ∈ IX , wαC(A, r) and wαI(A, r), re-

spectively, are defined as the following

wαC(A, r) = ∩{F ∈ IX : A ⊆ F, F is r-FWS α-closed };

wαI(A, r) = ∪{U ∈ IX : U ⊆ A,U is r-FWS α-open }.

6 Let (X,W) be an r-FWS and A ∈ IX . Then the following statments are hold.

6.1 wαI(A, r) ⊆ A.

6.2 If A ⊆ B, then wαI(A, r) ⊆ wαI(B, r).

6.3 A is α-Wr open if and only if wαI(A, r) = (A, r).

6.4 wαI(wαI(A, r), r) = wαI(A, r).

6.5 wαC(1̃−A, r) = 1̃−wαI(A, r) andwαI(1̃−A, r) = 1̃−wαC(A, r).
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7 Let (X,W) be an r-FWS and A ∈ IX . Then

7.1 A ⊆ wαC(A, r).

7.2 If A ⊆ B, thenwαC(A, r) ⊆ wαC(B, r)

7.3 A is α-Wr closed if and only if wαC(A, r) = (A, r).

7.4 wαC(wαI(A, r), r) = wαC(A, r).

8 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then f is said to be

fuzzy r-W continuous function if for every A ∈ Nr, f
−1(A) is inWr.

9 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then f is said to

be fuzzy r-W α-continuous if f−1(U) is an α-Wr open set for all r-FWS open

set U in Y .

10 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then f said to be

fuzzy r-W semicontinuous if f−1(U) is an r-FWS semiopen set for all r-FWS

open set U in Y .

11 Let (X,W) be an r-FWS then the following condition is true.

11.1 Every fuzzy r-W continuous is fuzzy r-W α-continuous.

11.2 Every fuzzy r-W α-continuous is fuzzy r-W semicontinuous.

12 It is obvious that every fuzzy r-W α-continuous mapping is fuzzy r-W semi-

continuous but the converse may not be true as show in the next example.

fuzzy r-W continuous⇒ fuzzy r-W α-continuous⇒ fuzzy r-W semicontin-

uous.

13 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the following

statements are equivalent:

13.1 f is fuzzy r-W α-continuous.

13.2 f−1(B) is an α-Wr closed set for each r-FWS closed set B in Y .

13.3 f(wαC(A, r)) ⊆ wC(f(A), r) for A ∈ IX .

13.4 wαC(f−1(B), r) ⊆ f−1(wC(B, r)) for B ∈ IY .
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13.5 f−1(wI(B, r)) ⊆ wαI(f−1(B), r) for B ∈ IY .

Fuzzy r-W α-open.

14 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then

14.1 f is said to be fuzzy r-W α-open if for r-FWS open set A inX , f(A)

is r-FWS α-open in Y ;

14.2 f is said to be fuzzy r-W α-closed if for r-FWS closed set A in X ,

f(A) is r-FWS α-closed in Y .

15 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the following

are equivalent:

15.1 f is fuzzy r-W α-open.

15.2 f(wI(A, r)) ⊆ wαI(f(A), r) for A ∈ IX .

15.3 wI(f−1(B), r) ⊆ f−1(wαI(B, r)) for B ∈ IY .

16 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the following

are equivalent:

16.1 f is fuzzy r-M α-closed.

16.2 wαC(f(A), r)) ⊆ f(wC(A, r)) for A ∈ IX .

17 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then

17.1 f is said to be fuzzy r-W ∗α-open if for r-FWS open set A inX , f(A)

is r-FWS open in Y ;

17.2 f is said to be fuzzy r-W ∗α-closed if for r-FWS closed set A in X ,

f(A) is r-FWS closed in Y .

18 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s.

18.1 f is fuzzy r-W ∗α-open.

18.2 fwαI(A, r)) ⊆ wI(f(A), r) for A ∈ IX .

18.3 wαI(f−1(B), r) ⊆ f−1(wI(B, r)) for B ∈ IY .
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Then (1)⇒ (2)⇒ (3).

19 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s. Then the following

are equivalent:

19.1 f is fuzzy r −M∗α-closed.

19.2 wC(f(A), r)) ⊆ f(wαC(A, r) for A ∈ IX .

20 Let X be a nonempty set and W : IX → I a fuzzy family on X . The fuzzy

r-weak structure Wr is said to have the property (U) if for Ai ∈ Wr(i ∈ J),

W(∪Ai) ≥ ∧W(Ai).

21 Let (X,W) be an r-FMS with the property (U). Then for A ∈ IX ,

wI(A, r) = A if and only if A is r-FWS open.

22 Let f : (X,W) → (Y,N ) be a mapping on two r-FWS’s.

If (Y,N) has the property (U), then the following are equivalent:

22.1 f is fuzzy r-W ∗α-open.

22.2 fwαI(A, r)) ⊆ wI(f(A), r) for A ∈ IX .

22.3 wαI(f−1(B), r) ⊆ f−1(wI(B, r)) for B ∈ IY .
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