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บทคัดยอ

การศึกษาสัจพจนการแยกในปริภูมิเชิงทอพอโลยี ไดรับแนวคิดจากสัจพจนการแยกบนเซตของ
จำนวนจริง สัจพจนการแยกสามารถจำแนกปริภูมิเชิงทอพอโลยีชนิดตาง ๆ ที่สอดคลองกับเงื่อนไขของการ
แยกไดเปนปริภูมิ T0, T1, T2, T3, T4 และ T5 เปนตน

ในงานวิจัยนี้ ผู วิจัย ได กำหนดสัจพจน การแยกบนปริภูมิ เชิงทอพอโลยี แบบ เรียบสามัญ ซึ่ง
สามารถจำแนกชนิดของปริภูมิเชิงทอพอ โลยีแบบเรียบสามัญที่สอดคลองกับเงื่อนไขของการแยกไดเปน
ปริภูมิ OT0, OT1, OT2, OT3, OT4 และ OT5 และยังเปนวางนัยทั่วไปของปริภูมิเชิง ทอพอโลยี พรอม
ทั้งศึกษาสมบัติของสัจพจนการแยกและศึกษาฟงกชันบนปริภูมิดังกลาว นอกจากนี้ ผูวิจัยยังไดนำเสนอ
แนวคิดเกี่ยวกับเซตหนาแนน OST บนปริภูมิเชิงทอพอโลยีแบบเรียบสามัญ และศึกษาสมบัติของเซตหนา
แนน OST

คำสำคัญ : ปริภูมิเชิงทอพอโลยีแบบเรียบสามัญ; สวนปดคลุมแบบเรียบสามัญ; ภายในแบบเรียบ
สามัญ; ฟงกชันตอเนื่องแบบเรียบสามัญ; ฟงกชันเปดแบบเรียบสามัญ; ฟงกชันปดแบบเรียบ
สามัญ
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CHAPTER 1

INTRODUCTION

The concepts of fuzzy topology on a setX which consists of a setX and structure

T onX and this spaces called the fuzzy topological spaces (briefly fts) was first introduced

by Chang [1]. In 1986, Badard [2] introduced the concepts of smooth topological spaces

and redefined fuzzy topology was called smooth topology (briefly st) and this space called

the smooth topological spaces (briefly sts). In 1992, Ramadan [3] rediscover the smooth

topological spaces.

In 2001, El-gayyar, Kerre and Ramadan [4] introduced concepts of separation

axioms in smooth topological spaces and investigated some of their properties and the re-

lations between them in smooth topological spaces. Next, the concepts of ordinary smooth

topology (briefly OST) on a setX and notion of ordinary smooth continuitywere introduced

by Lim, Ryoo and Hur in [5]. They also studied and investigated some properties of ordi-

nary smooth subspaces. After that, they introduced the notions of ordinary smooth closure

and ordinary smooth interior of ordinary subsets and investigated some of their properties,

also they introduced ordinary smooth open preserving functions and studied some of their

properties. In addition, they developed the notions of ordinary smooth compactness, ordi-

nary smooth almost compactness, and ordinary near compactness and discusses them in the

general framework on ordinary smooth topological spaces in [7].

In 2013, Lee, Lim and Hur [6] redefined the notions of ordinary smooth closure

and ordinary smooth interior. Also they introduced and studied some of their properties

of compact in an ordinary smooth topological spaces, and redefined a new definition of

ordinary smooth closure and ordinary smooth interior.

For our purpose, we introduce the concepts of some separation axioms in ordinary

smooth topological spaces and study some properties of these spaces. Moreover, we study

some properties of functions on ordinary smooth topological spaces. Furthermore, we in-

troduce the concepts of OST -dense sets in ordinary smooth topological spaces and study

the basic properties of OST -dense sets in ordinary smooth topological spaces.

In the first chapter, the introduction was present.
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In Chapter 2, we present some basis concepts and results of ordinary smooth topol-

ogy without proofs which are needed in the subsequent chapters.

In Chapter 3, we introduce the concepts of some separation axioms in ordinary

smooth topological spaces and study some properties on the spaces. Moreover, we study

some properties of functions on ordinary smooth topological spaces.

In Chapter 4, we introduce the concepts of OST -dense sets in ordinary smooth

topological spaces and study the basic properties of OST -dense sets.

In the last Chapter, we summarize results of our study.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will recall some definitions, notations, dealing with some pre-

liminaries and some useful results that will be duplicated in later chapter.

2.1 Classical topological spaces

In this section we discuss some properties of classical topological spaces and some

properties of closure, interior, continuous functions and separation axioms of all those. First

of all, we will recall the definition of classical topological spaces.

Definition 2.1.1. [8] LetX be a nonempty set. A class of τ of subsets ofX is a classical

topology on X if and only if τ satisfies the following axioms:

(i) X, ∅ ∈ τ .

(ii) If A1, A2 ∈ τ , then A1 ∩ A2 ∈ τ .

(iii) If Aα ∈ τ for all α ∈ Γ, then
∪
α∈Γ

Aα ∈ τ .

The pair (X, τ ) is called a classical topological space and the members of τ are called

open sets.

The operators on X which induced by the topologies τ are follows:

Definition 2.1.2. [8] Let (X, τ ) be a classical topological spaces and let A ⊆ X . Then

closure of A in X , denoted by A, is defined by

A =
∩

{F : A ⊆ F,X\F ∈ τ}.

Definition 2.1.3. [8] Let (X, τ ) be a classical topological spaces and let A ⊆ X . Then

interior of A in X , denoted by A◦ , is defined by

A◦ =
∪

{U : U ⊆ A,U ∈ τ}.

The function f : X → Y which pre-image preserves open set, preserves open set

and preserves closed set are called continuous, open function and closed function respec-

tively.
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Definition 2.1.4. [8] Let (X, τ1) and (Y, τ2) be two classical topological spaces. Then a

mapping f : X → Y is said to be continuous if U ∈ τ2 implies that f−1(U) ∈ τ1.

Definition 2.1.5. [8] Let (X, τ1) and (Y, τ2) be two classical topological spaces. Then a

mapping f : X → Y is said to be

(i) an open function if and only if f(G) is an open subsets in Y for all open

subset G in X .

(ii) a closed function if and only if f(F ) is a closed subsets in Y for all closed

subset F in X .

Definition 2.1.6. [8] Let (X, τ1) and (Y, τ2) be two classical topological space. Then a

mapping f : X → Y is called a homeomorphism if and only if

(i) f is a bijective,

(ii) f and f−1 are continuous.

Next, we will recall the definitions of T0, T1, ..., T4 and T5-spaces and dense sets

in classical topological spaces.

Definition 2.1.7. [8] A topological space X is a T0- space if and only if for any pair of

distinct points a, b ∈ X , there exists an open set U such that either a ∈ U and b /∈ U or

b ∈ U and a /∈ U (i.e. U containing exactly one of these points).

Definition 2.1.8. [8] A topological space X is a T1-space if and only if for any pair of

distinct points a, b ∈ X , there exist an open sets U and V such that a ∈ U, b /∈ U and

b ∈ V, a /∈ V .

Definition 2.1.9. [8] A topological space X is a T2-space if and only if for any pair of

distinct points a, b ∈ X , there exist an open sets U and V such that a ∈ U, b ∈ V and

U ∩ V = ∅.

Definition 2.1.10. [8] A topological space X is a T3-space if and only if for any closed

subset A ofX and b is a point in X with b /∈ A, there exist disjoint open sets U and V such

that A ⊆ U and b ∈ V .

Definition 2.1.11. [8] A topological space X is a T4-space if and only if for any pair

of distinct closed subsets A and B in X , there exist disjoint open set U and V such that

A ⊆ U, B ⊆ V and U ∩ V = ∅.
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Definition 2.1.12. [8] A topological space X is a T5-space if and only if for separated set

A and B inX(i.e., A ∩B = ∅ and A ∩B = ∅), there exist disjoint open set U and V such

that A ⊆ U, B ⊆ V and U ∩ V = ∅.

Definition 2.1.13. [8] Let (X, τ ) be a classical topological space and A be a subset of X .

A is called a dense set in X if X = A.

2.2 Smooth topological spaces

In this section we discuss some properties of smooth topological spaces and some

properties of smooth closure, smooth interior, smooth continuous and some separation ax-

ioms in smooth topological spaces.

Definition 2.2.1. [1] For a setX , we define a fuzzy set inX to be function µ : X → [0, 1].

For each a nonempty set X , let IX be the family of all fuzzy sets on X and I be

the closed interval [0, 1]. And intersections and union of fuzzy sets are denoted by ∧ and

∨, respectively, and defined by

∧Ai = inf{Ai(x) : i ∈ J and x ∈ X}.

∨Ai = sup{Ai(x) : i ∈ J and x ∈ X}.

First of all, we will recall smooth topological spaces.

Definition 2.2.2. [3] Let X be a nonempty set. Then a mapping τ ′ : IX → I is called a

smooth topology (in short, st) on X if τ ′ satisfies the following axioms:

(i) τ ′(0) = τ ′(1) = 1.

(ii) ∀A1, A2 ∈ IX , τ ′(A1 ∩ A2) ≥ τ ′(A1) ∧ τ ′(A2).

(iii) ∀Γ, τ ′(
∪
α∈Γ

Aα) ≥
∧
α∈Γ

τ ′(Aα).

The pair (X, τ ′) is called a smooth topological space (in short, sts). We will denote the set

of all st’s on X as ST (X).

Definition 2.2.3. [3] Let X be a nonempty set. Then a mapping C ′ : IX → I is called a

smooth cotopology (in short, sct) on X subsets of X if C ′ satisfies the following axioms:

(i) C ′(0) = C ′(1) = 1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



6

(ii) ∀B1, B2 ∈ IX , C ′(B1 ∪B2) ≥ C ′(B1) ∧ C ′(B2).

(iii) ∀Γ, C ′(
∩
α∈Γ

Bα) ≥
∧
α∈Γ

C ′(Bα).

The pair (X, C ′) is called a smooth cotopological space (in short, scts). We will denote the

set of all sct’s on X as SCT (X).

Remark 2.2.4. If I = {0, 1}, then definition 2.2.2 coincides with the known definition of

classical topology.

The operators on X which induced by the smooth topologies τ ′ are follows:

Definition 2.2.5. [3] Let (X, τ ′) be an osts and let A ∈ 2X . Then smooth closure of A in

X , denoted by A is defined by

A =

A, if τ ′(Ac) = 1,∩
{F ∈ 2X : A ⊆ F and τ ′(F c) > τ ′(Ac)}, if τ ′(Ac) ̸= 1.

Definition 2.2.6. [3] Let (X, τ ′) be an osts and let A ∈ 2X . Then smooth interior of A in

X , denoted by A◦ is defined by

A◦ =

A, if τ ′(A) = 1,∪
{S ∈ 2X : S ⊆ A and τ ′(S) > τ ′(A)}, if τ ′(A) ̸= 1.

Definition 2.2.7. [3] A map f : X → Y is called a smooth continuous with respect to the

smooth topologies τ ′1 and τ ′2 respectively, iff for every A ∈ LY we have

τ ′2(A) ≤ τ ′1(f
−1(A)), where f−1(A) is defined by f−1(A)(x) = A(f(x)),∀x ∈ X .

For a smooth topological space (X, τ ′), we define suppA = {x ∈ X : A(x) > 0}

and suppA will be called the support of τ ′.

Next, we will recall the definitions of ST0, ST1 and ST2-spaces in smooth topolog-

ical spaces.

Definition 2.2.8. [4] A sts (X, τ ′) is called ST0- space if and only if for each x, y ∈ X

with x ̸= y there exists A ∈ IX such that (x ∈ suppA, y /∈ suppA and τ ′(A) ≥ A(x)) or

(y ∈ suppA, x /∈ suppA and τ ′(A) ≥ A(y)).

Definition 2.2.9. [4] A sts (X, τ ′) is called ST1- space if and only if for each x, y ∈ X

with x ̸= y there exist A,B ∈ IX such that (x ∈ suppA\suppB and τ ′(A) ≥ A(x)) or

(y ∈ suppB\suppA and τ ′(B) ≥ B(y)).
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Definition 2.2.10. [4] A sts (X, τ ′) is called ST2- space if and only if for each

x, y ∈ X with x ̸= y there exist A,B ∈ IX such that x ∈ suppA, τ ′(A) ≥ A(x),

y ∈ suppB, τ ′(B) ≥ B(y) and A ∩B = ∅.

2.3 Ordinary smooth topological spaces

In this section we discuss some properties of ordinary smooth topological spaces

and some properties of smooth closure, smooth interior, smooth continuous, ordinary smooth

open, ordinary smooth closed and ordinary smooth subspaces in ordinary smooth topolog-

ical spaces.

For each a nonempty set X , let 2X be the set of all ordinary subsets of a set X and

let I be the closed interval [0, 1]. For any τ : 2X → I , the infimum and the supremum of

{τ(Aα) : α ∈ Γ} are defined as follows:∧
α∈Γ

τ(Aα) = inf{τ(Aα) : α ∈ Γ}.

∨
α∈Γ

τ(Aα) = sup{τ(Aα) : α ∈ Γ}.

Definition 2.3.1. [5] Let X be a nonempty set. Then a mapping τ : 2X → I is called

an ordinary smooth topology (in short, ost) on X or a gradation of openness of ordinary

subsets of X if τ satisfies the following axioms:

(i) τ(∅) = τ(X) = 1.

(ii) τ(A ∩B) ≥ τ(A) ∧ τ(B) ∀A,B ∈ 2X .

(iii) τ(
∪
α∈Γ

Aα) ≥
∧
α∈Γ

τ(Aα) ∀{Aα} ⊆ 2X .

The pair (X, τ ) is called an ordinary smooth topological space (in short, osts). We will

denote the set of all ost on X as OST (X).

Definition 2.3.2. [5] Let X be a nonempty set. Then a mapping C : 2X → I is called an

ordinary smooth cotopology (in short, osct) on X or a gradation of closedness of ordinary

subsets of X if C satisfies the following axioms:

(i) C(∅) = C(X) = 1.

(ii) C(A ∪B) ≥ C(A) ∧ C(B) ∀A,B ∈ 2X .
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(iii) C(
∩
α∈Γ

Aα) ≥
∧
α∈Γ

C(Aα) ∀{Aα} ⊆ 2X .

The pair (X, C) is called an ordinary smooth cotopological space (in short, oscts). We will

denote the set of all osct on X as OSCT (X).

Remark 2.3.3. If I = {0, 1}, then Definition 2.3.1 coincides with the known definition of

classical topology.

Proposition 2.3.4. [5] Let (X, τ ) be an osts and let A ⊆ X . We defined a mapping

τA : 2A → I as follows: For each B ∈ 2A,

τA(B) =
∨

{τ(C) : C ∈ 2X andC ∩ A = B}.

Then τA ∈ OST (A) and τ(B) ≤ τA(B). In this case, (A, τA) is called an ordinary smooth

subspace of (X, τ ) and τA is called the induced ordinary smooth topology on A by τ .

The operators on X which induced by the ordinary smooth topologies τ are fol-

lows:

Definition 2.3.5. [6] Let (X, τ ) be an osts and let A ∈ 2X . Then ordinary smooth closure

of A in X , denoted by A is defined by

A =
∩

{F ∈ 2X : A ⊆ F and Cτ (F ) > 0}.

Definition 2.3.6. [6] Let (X, τ ) be an osts and let A ∈ 2X . Then ordinary smooth interior

of A in X , denoted by A◦ is defined by

A◦ =
∪

{U ∈ 2X : U ⊆ A and τ(U) > 0}.

The following results therefore follows directly from the definition of ordinary

smooth closure and ordinary smooth interior.

Proposition 2.3.7. [6] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:

(i) If A ⊆ B, then A◦ ⊆ B◦ and A ⊆ B.

(ii) (A◦)c = (Ac).

(iii) A◦ = ((Ac))c.

(iv) A = ((Ac)◦)c.
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(v) (A)c = (Ac)◦.

Proposition 2.3.8. [6] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:
(i) X◦ = X .

(ii) A◦ ⊆ A.

(iii) (A◦)◦ = A◦.

(iv) (A ∩B)◦ ⊆ A◦ ∩B◦.

Proposition 2.3.9. [6] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:
(i) ∅ = ∅.

(ii) A ⊆ A.

(iii) (A) = A.

(iv) A ∪B ⊆ A ∪B.

Proposition 2.3.10. [6] Let (X, τ ) be an osts and let A,B ∈ 2X . Then:
(i) If τ(A) > 0, then A = A◦.

(ii) If Cτ (A) > 0, then A = A.
Definition 2.3.11. [6] Let (X, τ1) and (Y, τ2) be two osts. Then a mapping f : X → Y is

said to be ordinary smooth continuous if τ2(A) ≤ τ1(f
−1(A)), ∀A ∈ 2Y .

Definition 2.3.12. [6] Let (X, τ1) and (Y, τ2) be two osts. Then a mapping f : X → Y

is said to be ordinary smooth continuous if τ2(Ac) ≤ τ1(f
−1(A)c), ∀A ∈ 2Y .

Corollary 2.3.13. [6] Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be ordinary

smooth continuous. Then:
(i) f(A) ⊆ f(A) for all A ∈ 2X .

(ii) f−1(B) ⊆ f−1(B) for all B ∈ 2Y .

(iii) f−1(B◦) ⊆ (f−1(B))◦ for all B ∈ 2Y .

Definition 2.3.14. [6] Let τ1 ∈ OST (X) and let τ2 ∈ OST (Y ). Then a mapping f :

X → Y is said to be
(i) ordinary smooth open if τ1(A) ≤ τ2(f(A)),∀A ∈ 2X .

(ii) ordinary smooth closed if τ1(Ac) ≤ τ2(f(A
c)), ∀A ∈ 2X .

Definition 2.3.15. [5] Let τ1 ∈ OST (X) and let τ2 ∈ OST (Y ). Then a mapping f :

X → Y is called an ordinary smooth homeomorphism if :
(i) f is a bijective,

(ii) f and f−1 are ordinary smooth continuous.
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Theorem 2.3.16. [5] Let (X, τ1) and (Y, τ2) be two osts’s and let f : X → Y be a mapping.

Then the following are equivalent:

(i) f is an ordinary smooth homeomorphism.

(ii) f is ordinary smooth open and ordinary smooth continuous.

(iii) f is ordinary smooth closed and ordinary smooth continuous.
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CHAPTER 3

SEPARATION AXIOMS IN ORDINARY SMOOTH
TOPOLOGICAL SPACES

In this chapter, we will introduce the notion ofOT0, OT1, OT2, OT3, OT4 andOT5-

spaces on ordinary smooth topological spaces and study some of their properties, by using

S(τ) operator.

For an osts (X, τ ), define S(τ) = {A ∈ 2X : τ(A) > 0} and S(τ) will be called

the support of τ .

3.1 OT0-spaces

In this subsection, we will introduce the notion of OT0-spaces and investigate

some of their properties.

Definition 3.1.1. An osts (X, τ ) is called a OT0-space if and only if for each x, y ∈ X

with x ̸= y, there exists U ∈ S(τ) such that either x ∈ U and y /∈ U or y ∈ U and x /∈ U .

Example 3.1.2. LetX = {1, 2} and we define a mapping τ : 2X → I as follows: τ(X) =

τ(∅) = 1, τ({1}) = 0.5, τ({2}) = 0. Clearly, (X, τ ) is an osts. Then (X, τ ) is aOT0-space,

since {1} ∈ S(τ), 1 ∈ {1} and 2 /∈ {1}.

We now give an example of an osts which is not OT0-spaces.

Example 3.1.3. Let X = {1, 2, 3} and we define a mapping τ : 2X → I as follows:

τ(X) = τ(∅) = 1, τ({1}) = 0.5 and τ(A) = 0 if A /∈ {X, ∅, {1}}. Clearly, (X, τ ) is

an osts. Since X is the only set in S(τ) which contain 2 and 3. That means there are no

U ∈ S(τ) such that 2 ∈ U and 3 /∈ U .

Next theorem shows a very simple characterization of OT0-spaces.

Theorem 3.1.4. An osts (X, τ ) is a OT0-space if and only if for every x, y ∈ X such that

x ̸= y, we have that {x} ̸= {y}.
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Proof. (=⇒) : Suppose that (X, τ ) is an OT0-space and let x, y ∈ X such that x ̸= y.

By assumption we may assume that there exists U ∈ S(τ) such that x ∈ U, y /∈ U . Sine

{y} ⊆ X\U and τ(U) > 0, using Proposition 2.3.10 (ii), we get, {y} ⊆ X\U . But

{x} * X\U . Therefore {x} ̸= {y}.

(⇐=) : Assume that {x} ̸= {y} for all x, y ∈ X such that x ̸= y. We will show that (X, τ )

is a OT0-space. By assumption, we may assume that x /∈ {y}. Then there exists F ∈ 2X

such that {y} ⊆ F , τ(F c) > 0 and x /∈ F . Let U = F c. Since x /∈ F and y ∈ F , then

x ∈ U and y /∈ U . Therefore (X, τ ) is a OT0-space.

Proposition 3.1.5. Every subspace of OT0-spaces is also OT0-spaces.

Proof. Let (X, τ ) be an OT0-space, let (A, τA) be an ordinary smooth subspace of (X, τ )

and let a1, a2 be elements of A such that a1 ̸= a2. Since (X, τ ) is a OT0-space, we may

assume that there exists U ∈ S(τ) such that a1 ∈ U, a2 /∈ U . Let V = U ∩ A. Then

τA(V ) =
∨

{τ(U ′) : U ′ ∈ 2X andU ′ ∩ A = V }

≥ τ(U)

> 0.

So V ∈ S(τA) such that a1 ∈ V and a2 /∈ V . Hence (A, τA) is a OT0-space.

The following results are the properties of OT0-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.1.6. Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary

smooth homeomorphism. Then (X, τ1) is an OT0-space if and only if (Y, τ2) is an OT0-

space.

Proof. (=⇒) : Let y1, y2 ∈ Y such that y1 ̸= y2. Since f is a bijective, then there are

x1, x2 ∈ X such that y1 = f(x1), y2 = f(x2) and x1 ̸= x2. Since (X, τ1) is an OT0-space,

we may assume that there exists U ∈ S(τ1) such that x1 ∈ U, x2 /∈ U . Since f is an

ordinary smooth open, it follows that

τ2(f(U)) ≥ τ1(U) > 0.
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Thus f(U) ∈ S(τ2). Since f is an injective, then y1 ∈ f(U) and y2 /∈ f(U). Hence (Y, τ2)

is a OT0-space.

(⇐=) : Let x1, x2 ∈ X such that x1 ̸= x2. Since f is a bijective, then there are y1, y2 ∈ Y

such that x1 = f−1(y1), x2 = f−1(y2) and y1 ̸= y2. Since (Y, τ2) is an OT0-space, we

may assume that there exists U ∈ S(τ2) such that y1 ∈ U, y2 /∈ U . Since f is an ordinary

smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0.

Thus f−1(U) ∈ S(τ1). Since f is an injective, then x1 ∈ f−1(U) and x2 /∈ f−1(U). Hence

(X, τ1) is a OT0-space.

Proposition 3.1.7. Let f : X → Y be injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies τ1 and τ2, respectively. If (Y, τ2) is a OT0-space,

then so is (X, τ1).

Proof. Let x1, x2 ∈ X such that x1 ̸= x2. Since f is an injective, we have f(x1) ̸= f(x2).

Since (Y, τ2) is a OT0-space, we may assume that there exists U ∈ S(τ2) such that f(x1) ∈

U, f(x2) /∈ U . Since f is an injective and ordinary smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0,

x1 = f−1(f(x1)) ∈ f−1(U), x2 = f−1(f(x2)) /∈ f−1(U).

So, there exists f−1(U) ∈ S(τ1) such that x1 ∈ f−1(U), x2 /∈ f−1(U). Hence (X, τ1) is a

OT0-space.

Proposition 3.1.8. An osts (X, τ1) is a OT0-space. If f : X → Y is an injective and

ordinary smooth open, then (f(X), τ2f(X)) is a OT0-space.

Proof. Let (f(X), τ2f(X)) be an ordinary smooth subspace of (Y, τ2). For any a, b ∈ f(X)

such that a ̸= b. Since f is an injective, there exist x, y ∈ X such that x = f−1(a) ̸=

f−1(b) = y. Since (X, τ1) is aOT0-space, we may assume that there exists U ∈ S(τ1) such

that x ∈ U, y /∈ U . Since f is an ordinary smooth open and f(U) ⊆ f(X), then

0 < τ1(U) ≤ τ2(f(U)) ≤ τ2f(X)(f(U)).
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Thus f(U) ∈ S(τ2f(X)). Since f is an injective, then a ∈ f(U), b /∈ f(U). Therefore,

(f(X), τ2f(X)) is a OT0-space.

Proposition 3.1.9. An osts (Y, τ2) is a OT0-space. If f : X → Y is an injective and

ordinary smooth continuous, then (f−1(Y ), τ2f−1(Y )) is a OT0-space.

Proof. Let (f−1(Y ), τ1f−1(Y )) be an ordinary smooth subspace of (X, τ1). For any a, b ∈

f−1(Y ) such that a ̸= b, we have that f(a) ̸= f(b). Since (Y, τ2) is a OT0-space, we may

assume that there exists U ∈ S(τ2) such that f(a) ∈ U, f(b) /∈ U . Since f is an ordinary

smooth continuous and ordinary smooth subspace and f−1(U) ⊆ f−1(Y ), then

0 < τ2(U) ≤ τ1(f
−1(U)) ≤ τ1f−1(Y )(f

−1(U)).

Thus f−1(U) ∈ S(τ1f−1(V )). Since f is an injective, then a ∈ f−1(U) and b /∈ f−1(U).

Hence (f−1(Y ), τ1f−1(Y )) is a OT0-space.

3.2 OT1-spaces

In this section, we will introduce the notion of OT1-spaces and investigate some

of their properties.

Definition 3.2.1. An osts (X, τ ) is called a OT1-space if and only if for each x, y ∈ X

with x ̸= y, there exist U, V ∈ S(τ) such that x ∈ U, y /∈ U and y ∈ V, x /∈ V .

Example 3.2.2. Let X be infinite set. We define a mapping τ : 2X → I as follows:

τ(A) =

1, if A = ∅ or Ac is finite,

0, otherwise.

for each A ∈ 2X ,

Clearly, (X, τ ) is an osts. Let consider x, y ∈ X such that x ̸= y. Since y /∈ {x}, then

y ∈ X\{x}. and X\{x} ∈ S(τ). Similarly, x ∈ X\{y} and X\{y} ∈ S(τ). It follows

that (X, τ ) is a OT1-space.
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Remark 3.2.3. If an osts (X, τ ) is a OT1-space, then (X, τ ) is a OT0-space.

Since (X, τ ) is a OT1-space and for any x, y ∈ X which x ̸= y, there exist U, V ∈ S(τ)

such that x ∈ U, y /∈ U and y ∈ V, x /∈ V . Hence, there exists W ∈ S(τ) such that

x ∈ W, y /∈ W or y ∈ W, x /∈ W . Therefore (X, τ ) is a OT0-space.

The converse of remark 3.2.3 is not true. If can be seen from the following exam-

ple.

Example 3.2.4. From examlple 3.1.2, (X, τ ) is not a OT1-space. Since there exists U ∈

S(τ) which contain 1 ∈ U and 2 /∈ U . But there is not V ∈ S(τ) which 2 ∈ V but 1 /∈ V .

That means there are not U, V ∈ S(τ) such that 2 /∈ U and 1 /∈ V .

Theorem 3.2.5. An osts (X, τ ) is a OT1-space if and only {x} = {x} for every x ∈ X .

Proof. (=⇒) : Assume that (X, τ ) is a OT1-space. We will show that {x} = {x}.

Suppose that {x}\{x} ̸= ∅. Then there exists y ∈ {x}\{x}. Since (X, τ ) is a OT1-space,

there exists Uy ∈ S(τ) such that y ∈ Uy and x /∈ Uy, so y /∈ (Uy)
c and {x} ⊆ (Uy)

c.

But y ∈ {x}, we have that y ∈ F for all F such that {x} ⊆ F and F c ∈ S(τ). Since

{x} ⊆ (Uy)
c and Uy ∈ S(τ), then y ∈ (Uy)

c. This is a contradiction. Thus {x}\{x} = ∅.

Hence {x} = {x}.

(⇐=) : Assume that {x} = {x} for all x ∈ X . We will show that (X, τ ) is a OT1-space.

Let x, y ∈ X with x ̸= y. By assumption we have that x ∈ X\{y}, y ∈ X\{x},

then x /∈ {y} and y /∈ {x}, there exist F1, F2 ∈ 2X such that {y} ⊆ F1, {x} ⊆ F2,

τ(F c
1 ) > 0, τ(F c

2 ) > 0 and x /∈ F1, y /∈ F2. Let U1 = F c
1 and U2 = F c

2 . Then x ∈ U1,

x /∈ U2 and y ∈ U2, y /∈ U1, where U1, U2 ∈ S(τ). Therefore (X, τ ) is a OT1-space.

Proposition 3.2.6. Every subspace of OT1-spaces is also OT1-spaces.

Proof. Let (X, τ ) be aOT1-space, let (A, τA) be an ordinary smooth subspace of (X, τ ) and

let a1, a2 be elements of A such that a1 ̸= a2. Since(X, τ ) is a OT1-space, we may assume

that there exist U, V ∈ S(τ) such that a1 ∈ U, a2 /∈ U and a2 ∈ V, a1 /∈ V .

Let B = U ∩ A and C = V ∩ A. Then

τA(B) =
∨

{τ(U) : U ∈ 2X andU ∩ A = B}

≥ τ(U)
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> 0,

and

τA(C) =
∨

{τ(V ) : V ∈ 2X andV ∩ A = B}

≥ τ(V )

> 0.

So B,C ∈ S(τA) such that a1 ∈ B, a2 /∈ B and a2 ∈ C, a1 /∈ C. Hence (A, τA) is a

OT1-space.

The following results are the properties of OT0-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.2.7. Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary

smooth homeomorphism. Then (X, τ2) is an OT1-space if and only if (Y, τ2) is an OT1-

space.

Proof. (=⇒) : Let y1, y2 ∈ Y such that y1 ̸= y2. Since f is a bijective, then there are

x1, x2 ∈ X such that y1 = f(x1), y2 = f(x2) and x1 ̸= x2. Since (X, τ1) is a OT1-space,

then there exist U, V ∈ S(τ1) such that x1 ∈ U , x2 /∈ U and x2 ∈ V , x1 /∈ V . Since f is an

ordinary smooth open, it follows that

τ2(f(U)) ≥ τ1(U) > 0,

and

τ2(f(V )) ≥ τ1(V ) > 0.

Thus f(U), f(V ) ∈ S(τ2). Since f is an injective, then y1 ∈ f(U), y2 /∈ f(U) and

y2 ∈ f(V ), y1 /∈ f(V ). Hence (Y, τ2) is a OT1-space.

(⇐=) : Let x1, x2 ∈ X such that x1 ̸= x2. Since f is a bijective, then there are y1, y2 ∈ Y

such that x1 = f−1(y1), x2 = f−1(y2) and y1 ̸= y2. Since (Y, τ2) is aOT1-space, then there

exist U, V ∈ S(τ2) such that y1 ∈ U , y2 /∈ U and y2 ∈ V , y1 /∈ V . Since f is an ordinary

smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0,
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and

τ1(f
−1(V )) ≥ τ2(V ) > 0.

Thus f−1(U), f−1(V ) ∈ S(τ1). Since f is an injective, then x1 ∈ f−1(U), x2 /∈ f−1(U)

and x2 ∈ f−1(V ), x1 /∈ f−1(V ). Hence (X, τ1) is a OT1-space.

Proposition 3.2.8. Let f : X → Y be an injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies τ1 and τ2 respectively. If (Y, τ2) is a OT1-space,

then so is (X, τ1).

Proof. Let x1, x2 ∈ X with x1 ̸= x2, since f is an injective, we have f(x1) ̸= f(x2). Since

(Y, τ2) is a OT1-space, then there exist U, V ∈ S(τ2) such that f(x1) ∈ U, f(x2) /∈ U and

f(x2) ∈ V, f(x1) /∈ V . Since f is an injective and ordinary smooth continuous, it follows

that

τ1(f
−1(U)) ≥ τ2(U) > 0,

τ1(f
−1(V )) ≥ τ2(V ) > 0,

x1 = f−1(f(x1)) ∈ f−1(U), x2 = f−1(f(x2)) /∈ f−1(U)

and

x2 = f−1(f(x2)) ∈ f−1(V ), x1 = f−1(f(x1)) /∈ f−1(V ).

So f−1(U), f−1(V ) ∈ S(τ1) such that x1 ∈ f−1(U), x2 /∈ f−1(U) and x2 ∈ f−1(V ), x1 /∈

f−1(V ). Hence (X, τ1) is a OT1-space.

Proposition 3.2.9. An osts (X, τ1) is a OT1-space. If f : X → Y is an injective and

ordinary smooth continuous, then (f(X), τ2f(X)) is a OT1-space.

Proof. Let (f(X), τ2f(X)) be an ordinary smooth subspace of (Y, τ2). For any a, b ∈ f(X)

such that a ̸= b. Since f is an injective, then f−1(a) ̸= f−1(b). Since (X, τ1) is a OT1-

space, then there exist U, V ∈ S(τ1) such that f−1(a) ∈ U, f−1(b) /∈ U and f−1(b) ∈

V, f−1(a) /∈ V . Since f is an ordinary smooth continuous and (f(X), τ2f(X)) is an ordinary

smooth subspace of (Y, τ2) and f(U), f(V ) ⊆ f(X), then

0 < τ1(U) ≤ τ2(f(U)) ≤ τ2f(X)(f(U)),

0 < τ1(V ) ≤ τ2(f(V )) ≤ τ2f(X)(f(V )).
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Thus f(U), f(V ) ∈ S(τ2f(X)). Since f is an injective, then a ∈ f(U), b /∈ f(U) and

b ∈ f(V ), a /∈ f(V ). Hence (f(X), τ2f(X)) is a OT1-space.

Proposition 3.2.10. An osts (Y, τ2) is a OT1-space. If f : X → Y is an injective and

ordinary smooth open, then (f−1(Y ), τ1f−1(Y )) is a OT1-space.

Proof. Let (f−1(Y ), τ1f−1(Y )) be an ordinary smooth subspace of (X, τ1). For any a, b ∈

f−1(Y ) such that a ̸= b. Since f is an injective, then f(a) ̸= f(b). Since (Y, τ2) is a

OT1-space, then there exist U, V ∈ S(τ2) such that f(a) ∈ U, f(b) /∈ U and f(b) ∈

V, f(a) /∈ V . Since f is an ordinary smooth open and (f−1(Y ), τ1f−1(Y )) is an ordinary

smooth subspace of (X, τ1) and f−1(U), f−1(V ) ⊆ X , then

τ1f−1(Y )(f
−1(U)) ≥ τ1(f

−1(U)) ≥ τ2(U) > 0,

τ1f−1(Y )(f
−1(V )) ≥ τ1(f

−1(V )) ≥ τ2(V ) > 0.

Thus f−1(U), f−1(V ) ∈ S(τ1f−1(Y )) Since f is an injective, then a ∈ f−1(U), b /∈ f−1(U)

and b ∈ f−1(V ), a /∈ f−1(V ). Hence (f−1(Y ), τ1f−1(Y )) is a OT1-space.

3.3 OT2-spaces

In this section, we will introduce the notion of OT2-spaces and investigate some

of their properties.

Definition 3.3.1. An osts (X, τ ) is called a OT2-space if and only if for each x, y ∈ X

with x ̸= y, there exist U, V ∈ S(τ) such that x ∈ U , y ∈ V and U ∩ V = ∅.

Example 3.3.2. Let X be a nonempty set. We define a mapping τ : 2X → I as follows:

τ(A) = 1,

for each A ∈ 2X .

Then pair (X, τ ) is called an ordinary smooth discrete topological space on X. For each

x, y ∈ X which x ̸= y. Since τ({x}) = 1, τ({y}) = 1, Then {x}, {y} ∈ S(τ) and

{x} ∩ {y} = ∅. Therefore (X, τ ) is a OT2-space.
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Remark 3.3.3. If an osts (X, τ ) is a OT2-space, then (X, τ ) is a OT1-space.

Since (X, τ ) is a OT2-space and x, y ∈ X with x ̸= y, there exist U, V ∈ S(τ) such that

x ∈ U, y ∈ V and U ∩ V = ∅. Hence x ∈ U, y /∈ U and y ∈ V, x /∈ V . Therefore (X, τ )

is a OT1-space.

Remark 3.3.4. If an osts (X, τ ) is a OT1-space, then (X, τ ) is not a OT2-space, be seen

from the following example.

Example 3.3.5. By example 3.2.2. LetX be a infinite set. We define amapping τ : 2X → I

as follows:

τ(A) =

1, if A = ∅ or Ac is finite,

0, otherwise,

for each A ∈ 2X

Clearly, (X, τ ) is a OT1-space. But is not (X, τ ) is a OT2-space. It is enough to prove

that U ∩ V ̸= ∅ for all U, V ∈ S(τ) and U, V ̸= ∅. By the definition of τ, we have that

U = X\{x1, x2, ..., xn} and V = X\{y1, y2, ..., ym} for some x1, x2, ..., xn, y1, y2, ..., ym

andm,n ∈ N. Then

U ∩ V = (X\{x1, x2, ..., xn}) ∩ (X\{y1, y2, ..., ym})

= X\({x1, x2, ..., xn}) ∪ {y1, y2, ..., ym})

̸= ∅.

Hence (X, τ ) is not a OT2-space.

Proposition 3.3.6. Every subspace of OT2-spaces is also OT2-spaces.

Proof. Let (X, τ ) be an OT2-space, let (A, τA) be an ordinary smooth subspace of (X, τ ).

For any a1, a2 ∈ A such that a1 ̸= a2. Since (X, τ ) is a OT2-space, then there exist

U, V ∈ S(τ) such that a1 ∈ U, a2 ∈ V and U ∩ V = ∅. Let B = U ∩ A and C = V ∩ A.

Then

τA(B) =
∨

{τ(U) : U ∈ 2X andU ∩ A = B}

≥ τ(U)

> 0,
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τA(C) =
∨

{τ(V ) : V ∈ 2X andV ∩ A = C}

≥ τ(V )

> 0,

and

B ∩ C = (U ∩ A) ∩ (V ∩ A)

= (U ∩ V ) ∩ A

= ∅ ∩ A

= ∅.

So B,C ∈ S(τA) such that a1 ∈ B, a2 ∈ C and B ∩ C = ∅. Hence (A, τA) is a OT2-

space.

The next theorem, we give the equivalent conditions to be OT2-spaces.

Theorem 3.3.7. Let (X, τ) be an osts. Then the following conditions are equivalent:

(i) (X, τ ) is a OT2-space.

(ii) Let p ∈ X for q ̸= p there exists U ∈ S(τ), p ∈ U such that q /∈ U .

(iii) For each p ∈ X , ∩{U : U ∈ S(τ), p ∈ U} = {p}.

Proof. (i)⇒ (ii) Let p, q ∈ X with q ̸= p. Since (X, τ ) is a OT2-space, there exist U, V ∈

S(τ) such that p ∈ U, q ∈ V and U ∩ V = ∅, then U ⊆ X\V . By Proposition 2.3.7 (i),

we have U ⊆ X\V and by Proposition 2.3.10 (ii), then X\V = X\V . Since q ∈ V , then

q /∈ X\V . Hence q /∈ U .

(ii) ⇒ (iii) Let p ∈ X . We will show that ∩{U : U ∈ S(τ), p ∈ U} = {p}. Clearly,

{p} ⊆ ∩{U : U ∈ S(τ), p ∈ U}. Sufficient to proof that ∩{U : U ∈ S(τ), p ∈ U} ⊆ {p}.

Let q ∈ X, q ̸= p, then q /∈ {p}. By (ii), then there exists U1 ∈ S(τ), p ∈ U1 such that

q /∈ U1. Then q /∈ ∩{U : U ∈ S(τ), p ∈ U}. Hence ∩{U : U ∈ S(τ), p ∈ U} ⊆ {p}.

Therefore ∩{U : U ∈ S(τ), p ∈ U} = {p}.

(iii)⇒ (i) Assume that {p} = ∩{U : U ∈ S(τ), p ∈ U}. Let p, q ∈ X with p ̸= q, then

q /∈ {p} = ∩{U : U ∈ S(τ), p ∈ U}. Then there exists U1 ∈ S(τ) such that p ∈ U1 and
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q /∈ U1. Since U1 = ∩{V ∈ 2X : U1 ⊆ V and τ(V c) > 0}, then there exists V ∈ 2X such

that U1 ⊆ V, τ(V c) > 0 and q /∈ V . Let K = V c. Since q /∈ V , then q ∈ V c = K. Next,

we will show that K ∈ S(τ). Since K = V c, then τ(K) = τ(V c) > 0. Hence K ∈ S(τ).

Next, to show thatK ∩U1 = ∅. Since V ∩ V c = ∅ and U1 ⊆ V . ThenK ∩U1 = ∅. Hence

(X, τ ) is a OT2-space.

The following results are the properties of OT2-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.3.8. Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary

smooth homeomorphism. Then (X, τ2) is an OT2-space if and only if (Y, τ2) is an OT2-

space.

Proof. (=⇒) : Let y1, y2 ∈ Y such that y1 ̸= y2. Since f is a bijective, then there are

x1, x2 ∈ X such that y1 = f(x1), y2 = f(x2) and x1 ̸= x2. Since (X, τ1) is a OT2-space,

then there exist U, V ∈ S(τ1) such that x1 ∈ U, x2 ∈ V and U ∩ V = ∅. Since f is an

ordinary smooth open, it follows that

τ2(f(U)) ≥ τ1(U) > 0,

and

τ2(f(V )) ≥ τ1(V ) > 0.

Thus f(U), f(V ) ∈ S(τ2). Since f is a bijective, then y1 ∈ f(U), y2 ∈ f(V ) and f(U) ∩

f(V ) = ∅. Hence (Y, τ2) is a OT2-space.

(⇐=) : Let x1, x2 ∈ X such that x1 ̸= x2. Since f is a bijective, then there are y1, y2 ∈ Y

such that x1 = f−1(y1), x2 = f−1(y2) and y1 ̸= y2. Since (Y, τ2) is a OT2-space, then exist

U, V ∈ S(τ2) such that y1 ∈ U, y2 ∈ V and U ∩ V = ∅. Since f is an ordinary smooth

continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0,

and

τ1(f
−1(V )) ≥ τ2(V ) > 0.

Thus f−1(U), f−1(V ) ∈ S(τ1). Since f is a bijective, then x1 ∈ f−1(U), x2 ∈ f−1(V ) and

f−1(U) ∩ f−1(V ) = ∅. Hence (X, τ1) is a OT2-space.
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Proposition 3.3.9. Let f : X → Y be an injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies τ1 and τ2 respectively. If (Y, τ2) is a OT2-space,

then so is a (X, τ1).

Proof. Let x1, x2 ∈ X such that x1 ̸= x2. Since f is an injective, we have f(x1) ̸= f(x2).

Since (Y, τ2) is aOT2-space, then there exist U, V ∈ S(τ2) such that f(x1) ∈ U, f(x2) ∈ V

and U ∩ V = ∅. Since f is an injective and ordinary smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0,

τ1(f
−1(V )) ≥ τ2(V ) > 0,

f−1(U) ∩ f−1(V ) = ∅,

x1 = f−1(f(x1)) ∈ f−1(U),

and

x2 = f−1(f(x2)) ∈ f−1(V ).

So f−1(U), f−1(V ) ∈ S(τ1) such that x1 ∈ f−1(U), x2 ∈ f−1(V ) and f−1(U)∩f−1(V ) =

∅ . Hence (X, τ1) is a OT2-space.

Proposition 3.3.10. An osts (X, τ ) is a OT2-space. If f : X → Y is an injective and

ordinary smooth open, then (f(X), τ2f(X)) is a OT2-space.

Proof. Let (f(X), τ2f(X)) be an ordinary smooth subspace of (Y, τ2). For any a, b ∈ f(X)

such that a ̸= b. Since f is an injective, then f−1(a) ̸= f−1(b). Since (X, τ1) is a OT2-

space, then there exist U, V ∈ S(τ1) such that f−1(a) ∈ U, f−1(b) ∈ V and U ∩ V = ∅ .

Since f is an ordinary smooth open and (f(X), τ2f(X)) is an ordinary smooth subspace of

(Y, τ2) and f(U), f(V ) ⊆ f(X), then

0 < τ1(U) ≤ τ2(f(U)) ≤ τ2f(X)(f(U)),

0 < τ1(V ) ≤ τ2(f(V )) ≤ τ2f(X)(f(V )).

Thus f(U), f(V ) ∈ S(tau2f(X)).Since f is an injective, then a ∈ f(U), b ∈ f(V ) and

f(U) ∩ f(V ) = ∅. Hence, (f(X), τ2f(X)) is a OT2-space.
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Proposition 3.3.11. An osts (Y, τ2) is a OT2-space. If f : X → Y is an injective and

ordinary smooth continuous, then (f−1(Y ), τ1f−1(Y )) is a OT2-space.

Proof. Let (f−1(Y ), τ1f−1(Y )) be an ordinary smooth subspace of (X, τ1). For any a, b ∈

f−1(Y ) such that a ̸= b. Since f is an injective, then f(a) ̸= f(b). Since (Y, τ2) is a OT2-

space, then there exist U, V ∈ S(τ2) such that f(a) ∈ U, f(b) ∈ V and U ∩ V = ∅. Since

f is an ordinary smooth continuous and (f−1(Y ), τ1f−1(Y )) is an ordinary smooth subspace

of (X, τ1) and f−1(U), f−1(V ) ⊆ X , then

τ1f−1(Y )(f
−1(U)) ≥ τ1(f

−1(U)) ≥ τ2(U) > 0,

τ1f−1(Y )(f
−1(V )) ≥ τ1(f

−1(V )) ≥ τ2(V ) > 0.

Thus f−1(U), f−1(V ) ∈ S(τ1f−1(Y )). Since f is an injective, then a ∈ f−1(U), b ∈ f−1(V )

and f−1(U) ∩ f−1(V ) = ∅. Hence (f−1(Y ), τ1f−1(Y )) is a OT2-space.

3.4 OT3-spaces

In this section, we will introduce the notion of OT3-spaces and investigate some

of their properties.

Definition 3.4.1. An osts (X, τ ) is called a OT3-space if and only if for each A ⊆ X ,

satisfying τ(Ac) > 0, and each b ∈ X , satisfying b /∈ A, there exist U, V ∈ S(τ) such that

A ⊆ U , b ∈ V and U ∩ V = ∅.

Example 3.4.2. Let X = {a, b, c} and we define the mapping τ : 2X → I as follows:

τ(X) = τ(∅) = 1, τ({a}) = 0.6, τ({b, c}) = 0.4 and τ(A) = 0 if A /∈ {X, ∅, {a}, {b, c}}.

Clearly, (X, τ ) is an osts. Since {a}, {b, c} ∈ S(τ) such that {a}∩{b, c} = ∅. Hence (X, τ

) is a OT3-space. But (X, τ ) is a OT2-space, because b, c are not disjoint.

We now give an example of an osts which is not a OT3-space.

Example 3.4.3. LetX = {a, b} and we define a mapping τ : 2X → I as follows: τ(X) =

τ(∅) = 1, τ({a}) = 0.9, τ({b}) = 0. Clearly, (X, τ) is an osts. Since X is the only set in

S(τ)which contains {a, c}, that means there are no U ∈ S(τ) such thatX ∩U ̸= ∅. Hence

(X, τ ) is not a OT3-space.
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Definition 3.4.4. An osts (X, τ) is said to be a OT -regular space if (X, τ) is a OT3-space

and OT1-space.

Theorem 3.4.5. Let an osts (X, τ) is a OT -regular space, then (X, τ) is a OT2-space.

Proof. Let (X, τ) is a OT -regular space. Then (X, τ) is a OT3-space and OT1-space. We

will show that (X, τ) is a OT2-space. Let x, y ∈ X such that x ̸= y. Since (X, τ) is a

OT1-space, there exist U, V ∈ S(τ) such that x ∈ U, y /∈ U and y ∈ V, x /∈ V . Since

x ∈ U , then x /∈ X\U and

τ((X\U)c) = τ(U) > 0.

Since (X, τ) is a OT3-space, there exist W,Z ∈ S(τ) such that X\U ⊆ W , x ∈ Z and

W ∩ Z = ∅. Since y /∈ U , then y ∈ X\U ⊆ W and x ∈ Z and W ∩ Z = ∅. Therefore

(X, τ ) is a OT2-space.

Theorem 3.4.6. Every subspace of OT3-spaces is also OT3-spaces.

Proof. Let osts (X, τ ) be a OT3-space and let (A, τA) be an ordinary smooth subspace of

(X, τ ). For any B ⊆ A , satisfying τA(BcA) > 0, and each a ∈ A , satisfying a /∈ B. Since

τA(B
cA) =

∨
{τ(C) : C ∈ 2X and C ∩ A = BcA}.

Then C ∩ A = BcA , so A ∩ BcA ⊆ C and B ∩ C = ∅. Let τA(BcA) = δ. Since

δ =
∨
{τ(C) : C ∈ 2X and C ∩A = BcA}, then there exists C ′ ⊆ 2X , C ′ ∩A = BcA such

that

τ(C ′) > τA(B
cA)− δ

2
= δ − δ

2
=

δ

2
> 0.

Since (X, τ ) is a OT3-space, there exist U, V ∈ S(τ) such that (C ′)c ⊆ U, a ∈ V and

U ∩ V = ∅. Let E = U ∩ A and F = V ∩ A,

τA(E) =
∨

{τ(U) : U ∈ 2X and U ∩ A = E}

≥ τ(U)

> 0

τA(F ) =
∨

{τ(V ) : V ∈ 2X and V ∩ A = E}

≥ τ(V )

> 0
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and
E ∩ F = (U ∩ A) ∩ (V ∩ A)

= (U ∩ V ) ∩ A

= ∅ ∩ A

= ∅.

Then E,F ∈ S(τA) such that B ⊆ E, a ∈ F and E ∩ F = ∅. Hence (A, τA) is a OT3-

space.

The next theorem, we give the equivalent conditions to be OT3-spaces.

Theorem 3.4.7. Let (X, τ) be an osts. Then the following conditions are equivalent:

(i) (X, τ) is a OT3-space.

(ii) For each x ∈ X and each U containing x, satisfying τ(U) > 0, there exists

a set V containing x, satisfying τ(V ) > 0 such that x ∈ V ⊆ V ⊆ U .

(iii) For each x ∈ X , and each A not containing x, satisfying τ(Ac) > 0 , there

exists a set V , satisfying τ(V ) > 0 containing x such that V ∩ A = ∅.

Proof. (i)⇒ (ii) Let x ∈ X and each U containing x, satisfying τ(U) > 0, then x /∈ X\U

and

τ((X\U)c) = τ(U) > 0.

Since (X, τ) is a OT3-space, there exist V,W ∈ S(τ) such that x ∈ V, X\U ⊆ W and

V ∩W = ∅, then V ⊆ X\W . By Proposition 2.3.7 (i), then V ⊆ X\W and by Proposition

2.3.10 (ii), thenX\W = X\W . So V ⊆ X\W , butX\W ⊆ U . Hence V ⊆ U . Therefore

x ∈ V ⊆ V ⊆ U .

(ii) ⇒ (iii) Let x ∈ X and A ⊆ X , satisfying τ(Ac) > 0, x /∈ A, then x ∈ X\A. By (ii),

then there exists V , satisfying τ(V ) > 0, x ∈ V such that x ∈ V ⊆ V ⊆ X\A. Since

A ∩ (X\A) = ∅, hence V ∩ A = ∅.

(iii) ⇒ (i) Assume that A ⊆ X , satisfying τ(Ac) > 0, and let b ∈ X , satisfying b /∈ A.

By (iii), then there exists V , satisfying τ(V ) > 0 such that V ∩ A = ∅, b ∈ V . Since

V ∩ A = ∅ and V = ∩{F ∈ 2X : V ⊆ F and τ(F c) > 0}, then there exist F ∈ 2X such

that V ⊆ F, τ(F c) > 0 and A ∩ F = ∅. Hence A ⊆ F c, b ∈ V and F c, V ∈ S(τ). Since

V ⊆ F and F ∩ F c = ∅, then V ∩ F c = ∅. Hence (X, τ) is a OT3-space.
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The following results are the properties of OT3-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.4.8. Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary

smooth homeomorphism. Then (X, τ2) is an OT3-space if and only if (Y, τ2) is an OT3-

space.

Proof. (=⇒) : Let f : X → Y be an ordinary smooth homeomorphism and let A ⊆ Y ,

satisfying (τ2(Ac) > 0) and b ∈ Y , satisfying b /∈ A. Since f is a bijective and ordinary

smooth continuous, then f−1(b) /∈ f−1(A) and

τ1(f
−1(A)c) = τ1(f

−1(Ac)) ≥ τ2(A
c) > 0.

Since (X, τ1) is aOT3-space, then there existU, V ∈ S(τ1) such that f−1(A) ⊆ U, f−1(b) ∈

V and U ∩ V = ∅. Since f is an ordinary smooth open, it follows that

0 < τ1(U) ≤ τ2(f(U)) and 0 < τ1(V ) ≤ τ2(f(V )).

Thus f(U), f(V ) ∈ S(τ2) since f is an injective, then A ⊆ f(U), b ∈ f(V ) and f(U) ∩

f(V ) = ∅. Hence (Y, τ2) is a OT3-space.

(⇐=) : Let A ⊆ X , satisfying (τ1(Ac) > 0) and b ∈ X , satisfying b /∈ A. Since f is a

bijective, then f(b) /∈ f(A). Since f is an ordinary smooth closed

τ2(f(A)
c) = τ2(f(A

c)) ≥ τ1(A
c) > 0.

Since (Y, τ2) is a OT3-space, then there exist U, V ∈ S(τ2) such that f(A) ⊆ U, f(b) ∈ V

and U ∩ V = ∅. Since f is an ordinary smooth continuous, it follows that

0 < τ2(U) ≤ τ1(f
−1(U)) and 0 < τ2(V ) ≤ τ1(f

−1(V )).

Thus f−1(U), f−1(V ) ∈ S(τ1). Since f is an injective, then A ⊆ f−1(U), b ∈ f−1(V ) and

f−1(U) ∩ f−1(V ) = ∅. Hence (X, τ1) is a OT3-space.

Proposition 3.4.9. Let f : X → Y be injective, ordinary smooth closed and ordinary

smooth continuous map with respect to the ordinary smooth topologies τ1 and τ2 respec-
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tively. If (Y, τ2) is a OT3-space, then so is a (X, τ1).

Proof. Let A ⊆ X , satisfying τ1(A
c) > 0 and b ∈ X satisfying b /∈ A. Since f is an

injective and ordinary smooth closed, then f(b) /∈ f(A) and

τ2(f(A)
c) = τ2(f(A

c)) ≥ τ1(A
c) > 0.

Since (Y, τ2) is a OT3-space, then there exist U, V ∈ S(τ2) such that f(A) ⊆ U, f(b) ∈ V

and U ∩ V = ∅. Since f is an injective and ordinary smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0 and τ1(f

−1(V )) ≥ τ2(V ) > 0,

f−1(U) ∩ f−1(V ) = ∅,

A = f−1(f(A)) ⊆ f−1(U),

and

b = f−1(f(b)) ∈ f−1(V ).

So f−1(U), f−1(V ) ∈ S(τ1) such thatA ⊆ f−1(U), b ∈ f−1(V ) and f−1(U)∩f−1(V ) = ∅

. Hence (X, τ1) is a OT3-space.

Proposition 3.4.10. An osts (X, τ1) is a OT3-space. If f : X → Y is an injective,ordinary

smooth continuous and ordinary smooth open, then (f(X), τ2f(X)) is a OT3-space.

Proof. Let a ∈ f(X) and A ⊆ f(X), satisfying τ2f(X)(A
cf(X)) > 0 and a /∈ A. Since

τ2f(X)(A
cf(X)) =

∨
{τ2(C) : C ∈ 2Y and C ∩ f(X) = Acf(X)},

thenC∩f(X) = Acf(X) . Hence f(X)∩Acf(X) ⊆ C andA∩C = ∅. Let τ2f(X)(A
cf(X)) = δ.

Then δ =
∨
{τ2(C) : C ∈ 2Y and C ∩ f(X) = Acf(X)}. Thus there exist C ′ ⊆ 2Y , C ′ ∩

f(X) = Acf(X) such that

τ2(C
′) > τ2f(X)(A

cf(X))− δ

2

= δ − δ

2

=
δ

2

> 0.
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Since f is ordinary smooth continuous we have

τ1(f
−1(C ′)) ≥ τ2((C

′)) > 0.

And since a /∈ A, then a ∈ Acf(X) . But Acf(X) = C ′ ∩ f(X). Thus a ∈ C ′ and a ∈ f(X).

Hence a /∈ (C ′)c. Since f is an injective, then f−1(a) /∈ f−1((C ′)c) = (f−1(C ′))c. Since

(X, τ1) is a OT3-space, then there exist U, V ∈ S(τ1) such that f−1((C ′)c) ⊆ U, a ∈ V and

U ∩ V = ∅ . Since f is an ordinary smooth open and (f(X), τ2f(X)) is an ordinary smooth

subspace of (Y, τ2) and f(U), f(V ) ⊆ f(X), then

0 < τ1(U) ≤ τ2(f(U)) ≤ τ2f(X)(f(U)),

0 < τ1(V ) ≤ τ2(f(V )) ≤ τ2f(X)(f(V )),

Thus f(U), (f(V )) ∈ S(τ2f(X)). Since f is an injective, then a ∈ f(V ), (C ′)c =

f(f−1((C ′)c))) ⊆ f(U) and f(U) ∩ f(V ) = ∅. Hence (f(X), τ2f(X)) is a OT3-space.

Proposition 3.4.11. An osts (Y, τ2) is a OT3-space. If f : X → Y is an injective, ordinary

smooth closed and ordinary smooth open, then (f−1(Y ), τ2f−1(Y )) is a OT3-space.

Proof. Let a ∈ f−1(Y ) and A ⊆ f−1(Y ), satisfying τ1f−1(Y )(A
cf−1(Y )) > 0 and a /∈ A.

Since f is an injective, then f(a) /∈ f(A). Since

τ1f−1(Y )(A
cf−1(Y )) =

∨
{τ1(C) : C ∈ 2X and C ∩ f−1(Y ) = Acf−1(Y )}.

Then C ∩ f−1(Y ) = Acf−1(Y ) . Hence f−1(Y ) ∩ Acf−1(Y ) ⊆ C and A ∩ C = ∅. Let

τ1f−1(Y )(A
cf−1(Y )) = δ. Then δ =

∨
{τ1(C) : C ∈ 2X and C ∩ f−1(Y ) = Acf−1(Y )}. Thus

there exist C ′ ⊆ 2X , C ′ ∩ f−1(Y ) = Acf−1(Y ) such that

τ1(C
′) > τ1f−1(Y )(A

cf−1(Y ))− δ

2

= δ − δ

2

=
δ

2

> 0.
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Since f is an ordinary smooth open we have

τ2(f(C
′)) ≥ τ1(C

′) > 0.

And since a /∈ A, then a ∈ Acf−1(Y ) . But Acf−1(Y ) = C ′ ∩ f−1(Y ). Thus a ∈ C ′ and

a ∈ f−1(Y ). Hence a /∈ (C ′)c. Since f is an injective, then f(a) /∈ f((C ′)c) = (f(C ′))c.

Since (Y, τ2) is a OT3-space, there exist U, V ∈ S(τ2) such that f(C ′)c ⊆ U, f(a) ∈ V

and U ∩ V = ∅ . Since f is an ordinary smooth continuous and (f−1(Y ), τ1f−1(Y ))) is an

ordinary smooth subspace of (X, τ1) and f−1(U), f−1(V ) ⊆ X , then

0 < τ2(U) ≤ τ1(f
−1(U)) ≤ τ1f−1(Y )(f

−1(U)),

0 < τ1(V ) ≤ τ1(f
−1(V )) ≤ τ1f−1(Y )(f

−1(V )).

Thus f−1(U), f−1(V ) ∈ S(τ1f−1(Y )). Since f is an injective, then a ∈ f−1(V ), (C ′)c ⊆

f−1(U) and f−1(U) ∩ f−1(V ) = ∅. Hence (f−1(Y ), τ1f−1(Y )) is a OT3-space.

3.5 OT4-spaces

In this section, we will introduce the notion of OT4-spaces and investigate some

of their properties.

Definition 3.5.1. An osts (X, τ ) is called aOT4-space if and only if for eachA,B ⊆ X are

disjoint in X , satisfying τ(Ac) > 0, τ(Bc) > 0, there exist U, V ∈ S(τ) such that A ⊆ U ,

B ⊆ V and U ∩ V = ∅.

Example 3.5.2. Let X = {a, b, c} and we define the mapping τ : 2X → I as follows:

τ(X) = τ(∅) = 1, τ({a}) = 0.6, τ({b}) = 0.4, τ({a, b}) = 0.5 and τ(A) = 0 if A /∈

{X, ∅, {a}{b}, {a, b}}. Clearly, (X, τ ) is an osts. Let consider X, ∅, {c}, {a, b} and {a, c}

such that X, ∅, {c}c, {a, b}c ∈ S(τ) . Then A ∩ B ̸= ∅ for all A,B ⊆ X such that

τ(Ac) > 0, τ(Bc) > 0 which A ̸= B and A,B ̸= ∅. Hence (X, τ ) is a OT4-space.

Furthermore, (X, τ ) is a not a OT3-space. Since a /∈ {c}, which τ({c}) > 0 and there

exists X ∈ S(τ) contains a.

Definition 3.5.3. An osts (X, τ) is said to be a OT -normal space if (X, τ) is a OT4-space

and OT1-space.
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Theorem 3.5.4. Let an osts (X, τ) is a OT -normal space, then (X, τ) is a OT -regular

space.

Proof. Let (X, τ) be anOT -normal space. Then (X, τ) is aOT4-space andOT1-space. We

will show that (X, τ) is a OT -regular space. sufficient to proof that (X, τ) is a OT3-space.

Let F ⊆ X , satisfying τ(F c) > 0, and let x ∈ X , satisfying x /∈ F , then x ∈ X\F .

Since F ∩ F c = ∅, then {x} ∩ F = ∅. Since (X, τ) is a OT1-space, then {x} = {x}, then

{x} ∩ F = ∅. Hence, there exists U ∈ 2X such that {x} ⊆ U, τ(U c) > 0 and F ∩ U = ∅.

Since (X, τ) is a OT4-space, then there exist W,Z ∈ S(τ) such that U ⊆ W, F ⊆ Z and

W ∩ Z = ∅. Since x ∈ U , then x ∈ W . Hence (X, τ) is a OT3-space. Therefore (X, τ) is

a OT -regular space.

Theorem 3.5.5. Every subspace of OT4-space is also OT4-space.

Proof. Let an osts (X, τ ) be a OT4-space and let (A, τA) be an ordinary smooth subspace

of (X, τ ) and let E,F ⊆ A , satisfying EcA , F cA ∈ S(τA) and E ∩ F = ∅. Since

τA(E
cA) =

∨
{τ(C) : C ∈ 2X and C ∩ A = EcA},

τA(F
cA) =

∨
{τ(C) : C ∈ 2X and C ∩ A = F cA},

then C ∩ A = EcA , C ∩ A = F cA . Hence A ∩ EcA ⊆ C,A ∩ F cA ⊆ C and E ∩ C =

∅, F ∩ C = ∅. Let τA(EcA) = δ1 and τA(F cA) = δ2. Since

δ1 =
∨

{τ(C) : C ∈ 2X and C ∩ A = EcA},

δ2 =
∨

{τ(C) : C ∈ 2X and C ∩ A = F cA},

then there exist C ′, C ′′ ⊆ 2X , C ′ ∩ A = EcA and C ′′ ∩ A = F cA such that

τ(C ′) > τA(E
cA)− δ1

2

= δ1 −
δ1
2

=
δ1
2

> 0,
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τ(C ′′) > τA(F
cA)− δ2

2

= δ2 −
δ2
2

=
δ1
2

> 0.

Since (X, τ ) is a OT4-space, there exist U, V ∈ S(τ) such that (C ′)c ⊆ U, (C ′′)c ⊆ V and

U ∩ V = ∅. LetW = U ∩ A and Z = V ∩ A,

τA(W ) =
∨

{τ(U) : U ∈ 2X and U ∩ A = W}

≥ τ(U)

> 0,

τA(Z) =
∨

{τ(V ) : V ∈ 2X and V ∩ A = Z}

≥ τ(V )

> 0,

and
W ∩ Z = (U ∩ A) ∩ (V ∩ A),

= (U ∩ V ) ∩ A,

= ∅ ∩ A,

= ∅.

So W,Z ∈ S(τA) such that E ⊆ W,F ⊆ Z and W ∩ Z = ∅. Hence (A, τA) is a OT4-

space.

The next theorem, we give the equivalent conditions to be OT4-spaces.

Theorem 3.5.6. Let (X, τ) be an osts. Then the following conditions are equivalent:

(i) (X, τ) is a OT4-space.

(ii) If U ⊆ X , satisfying τ(U) > 0 is a superset of a setA, satisfying τ(Ac) > 0,

then there exists V , satisfying τ(V ) > 0 such that A ⊆ V ⊆ V ⊆ U .
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(iii) For each pair of disjoint sets A,B satisfying τ(Ac) > 0, τ(Bc) > 0, there

exists U , satisfying τ(U) > 0 which A ⊆ U and U ∩B = ∅.

(iv) For each pair of disjoint sets A,B ⊆ X , satisfying τ(Ac) > 0, τ(Bc) > 0,

there exist sets U, V ∈ S(τ) such that A ⊆ U,B ⊆ V and U ∩ V = ∅.

Proof. (i) ⇒ (ii) Let A ⊆ X , satisfying τ(Ac) > 0 and U ⊆ X , satisfying τ(U) > 0 such

that A ⊆ U . Let F = X\U which

τ((X\F )) = τ(X\(X\U)) = τ(U) > 0,

andA∩F = ∅. Since (X, τ) is aOT4-space, there exist V,W ∈ S(τ) such thatA ⊆ V, F ⊆

W and V ∩ W = ∅. So V ⊆ X\W . By Proposition 2.3.7 (i), then V ⊆ X\W . And by

Proposition 2.3.10 (ii), then X\W = X\W . Thus V ⊆ X\W , but X\W ⊆ X\F = U .

Hence V ⊆ U . Therefore A ⊆ V ⊆ V ⊆ U .

(ii)⇒ (iii) Let A,B ⊆ X , satisfying τ(Ac) > 0, τ(Bc) > 0 which A ∩B = ∅. By (ii),

then A ⊆ U ⊆ U ⊆ X\B. Hence U ∩B = ∅.

(iii)⇒ (iv) LetA,B ⊆ X , satisfying τ(Ac) > 0, τ(Bc) > 0whichA∩B = ∅. By (iii),

then there exists U, τ(U) > 0 with A ⊆ U and U ∩ B = ∅. Since U = ∩{F ∈ 2X : U ⊆

F and τ(F c) > 0}, then there exists F ∈ 2X such that U ⊆ F, τ(F c) > 0 and B ∩ F = ∅.

By assumption, then there exists V ∈ S(τ), B ⊆ V and V ∩ F = ∅. Consider,
V ∩ U ⊆ V ∩ F

= V ∩ F

= ∅.

Hence V ∩ U = ∅. Therefore Hence (iv) is true.

(iv) ⇒ (i) Let A,B ⊆ X , satisfying τ(Ac) > 0, τ(Bc) > 0 and A ∩ B = ∅. By (iv), then

there exist set U, V ∈ S(τ) such that A ⊆ U,B ⊆ V and U ∩ V = ∅. Since U ⊆ U and

V ⊆ V then U ∩ V = ∅. Hence (X, τ ) is a OT4-space.

The following results are the properties of OT4-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.5.7. Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary

smooth homeomorphism. Then (X, τ2) is an OT4-space if and only if (Y, τ2) is an OT4-

space.
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Proof. (=⇒) : Let A,B are disjoint in Y , satisfying Ac, Bc ∈ S(τ2) . Since f is a bijective

and an ordinary smooth continuous, then

f−1(A) ∩ f−1(B) = ∅

τ1(f
−1(A)c) = τ1(f

−1(Ac)) ≥ τ2(A
c) > 0,

and

τ1(f
−1(B)c) = τ1(f

−1(Bc)) ≥ τ2(B
c) > 0.

So f−1(A)c, f−1(B)c ∈ S(τ1). Since (X, τ1) is a OT4-space, then there exist U, V ∈ S(τ1)

such that f−1(A) ⊆ U, f−1(B) ⊆ V and U ∩ V = ∅. Since f is an ordinary smooth open,

it follows that

0 < τ1(U) ≤ τ2(f(U))

and

0 < τ1(V ) ≤ τ2(f(V )).

Thus f(U), f(V ) ∈ S(τ2). Since f is a bijective, then A ⊆ f(U), B ⊆ f(V ) and

f(U) ∩ f(V ) = ∅ . Hence (Y, τ2) is a OT4-space.

(⇐=) : Let A,B are disjoint inX , satisfying Ac, Bc ∈ S(τ1) . Since f is a bijective and an

ordinary smooth closed, then

f(A) ∩ f(B) = ∅

τ2(f(A)
c) = τ2(f(A

c)) ≥ τ1(A
c) > 0,

and

τ2(f(B)c) = τ2(f(B
c)) ≥ τ1(B

c) > 0.

So f(A)c, f(B)c ∈ S(τ2). Since (Y, τ2) is a OT4-space, then there exist U, V ∈ S(τ2) such

that f(A) ⊆ U, f(B) ⊆ V and U ∩ V = ∅. Since f is an ordinary smooth continuous, it

follows that

0 < τ2(U) ≤ τ1(f
−1(U))
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and

0 < τ2(V ) ≤ τ1(f
−1(V )).

Thus f−1(U), f−1(V ) ∈ S(τ1). Since f is a bijective, then A ⊆ f−1(U), B ⊆ f−1(V )

and f−1(U) ∩ f−1(V ) = ∅ . Hence (X, τ1) is a OT4-space.

Proposition 3.5.8. Let f : X → Y be an injective, ordinary smooth closed and ordinary

smooth continuous map with respect to the ordinary smooth topologies τ1 and τ2 respec-

tively. If (Y, τ2) is a OT4-space, then so is a (X, τ1).

Proof. Let A,B ⊆ X , satisfying Ac, Bc ∈ S(τ1). Since f is an injective and ordinary

smooth closed, it follows that

f(A) ∩ f(B) = ∅,

τ2(f(A)
c) ≥ τ1(A)

c > 0,

τ2(f(B)c) ≥ τ1(B)c > 0.

Since (Y, τ2) is a OT4-space, there exist U, V ∈ S(τ2) such that f(A) ⊆ U, f(B) ⊆ V and

U ∩ V = ∅ . Since f is an injective and an ordinary smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0,

τ1(f
−1(V )) ≥ τ2(V ) > 0,

f−1(U) ∩ f−1(V ) = ∅,

A = f−1(f(A)) ⊆ f−1(U)

and

B = f−1(f(B)) ⊆ f−1(V ).

So f−1(U), f−1(V ) ∈ S(τ1) such thatA ⊆ f−1(U), B ⊆ f−1(V ) and f−1(U)∩f−1(V ) =

∅. Hence (X, τ1) is a OT4-space.

Proposition 3.5.9. An osts (X, τ1) is a OT4-space. If f : X → Y is an injective, ordinary

smooth continuous and ordinary smooth open, then (f(X), τ2f(X)) is a OT4-space.
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Proof. Let A,B are disjoint in f(X), satisfying Acf(X) , Bcf(X) ∈ S(τ2f(X)) . Since f is an

injective, there exist f−1(A), f−1(B) are disjoint in X . Since

τ2f(X)(A
cf (X)) =

∨
{τ2(C) : C ∈ 2Y and C ∩ f(X) = Acf(X)},

τ2f(X)(A
cf (X)) =

∨
{τ2(C) : C ∈ 2Y and C ∩ f(X) = Bcf (X)},

then C ∩ f(X) = Acf(X) , C ∩ f(X) = Bcf(X) . Hence f(X) ∩ Acf(X) ⊆ C, f(X) ∩

Bcf(X) ⊆ C and A ∩ C = ∅, B ∩ C = ∅. Let τ2f(X)(A
cf(X)) = δ1 and τ2f(X)(B

cf(X)) = δ2.

Then

δ1 =
∨

{τ2(C) : C ∈ 2Y and C ∩ f(X) = Acf(X)},

δ2 =
∨

{τ2(C) : C ∈ 2Y and C ∩ f(X) = Bcf(X)}.

Thus, there exist C ′, C ′′ ⊆ 2Y , C ′ ∩ f(X) = Acf(X) , C ′′ ∩ f(X) = Bcf(X) such that

τ2(C
′) > τ2f(X)(A

cf(X))− δ1
2

= δ1 −
δ1
2

=
δ1
2

> 0

τ2(C
′′) > τ2f(X)(A

cf(X))− δ2
2

= δ2 −
δ2
2

=
δ2
2

> 0.

Since f is an ordinary smooth continuous we have

τ1(f
−1(C ′)) ≥ τ2((C

′)) > 0,

τ1(f
−1(C ′′)) ≥ τ2((C

′′)) > 0.

Since (X, τ1) is aOT4-space, there existU, V ∈ S(τ1) such that f−1(C ′)c ⊆ U, f−1(C ′′)c ⊆

V and U ∩ V = ∅ . Since f is an ordinary smooth open and (f(X), τ2f(X)) is an ordinary
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smooth subspace of (Y, τ2) and f(U), f(V ) ⊆ f(X), then

0 < τ1(U) ≤ τ2(f(U)) ≤ τ2f(X)(f(U)),

0 < τ1(V ) ≤ τ2(f(V )) ≤ τ2f(X)(f(V )).

Thus f(U), (f(V )) ∈ S(τ2f(X)). Since f is an injective, then A ⊆ (C ′)c ⊆ f(U), B ⊆

(C ′′)c ⊆ f(V ) and f(U) ∩ f(V ) = ∅. Hence, (f(X), τ2f(X)) is a OT4-space.

Proposition 3.5.10. An osts (Y, τ2) is a OT4-space. If f : X → Y is an injective, ordinary

smooth open and ordinary smooth continuous, then (f−1(Y ), τ2f−1(Y )) is a OT4-space.

Proof. Let A,B are disjoint in f−1(Y ), satisfying Acf−1(Y ) , Bcf−1(Y ) ∈ S(τ1f−1(Y )) . Since

f is an injective, there exist f(A), f(B) are disjoint in Y . Since

τ1f−1(Y )(A
c−1
f (Y )) =

∨
{τ1(C) : C ∈ 2X and C ∩ f−1(Y ) = Acf−1(Y )},

τ1f−1(Y )(A
c−1
f (Y )) =

∨
{τ1(C) : C ∈ 2X and C ∩ f−1(Y ) = Bc−1

f (Y )},

then C ∩ f−1(Y ) = Acf−1(Y ) , C ∩ f−1(Y ) = Bcf−1(Y ) . Hence f−1(Y ) ∩ Acf−1(Y ) ⊆

C, f−1(Y ) ∩ Bcf−1(Y ) ⊆ C and A ∩ C = ∅, B ∩ C = ∅. Let τ1f−1(Y )(A
cf−1(Y )) = δ1 and

τ1f−1(Y )(B
cf−1(Y )) = δ2. Then

δ1 =
∨

{τ1(C) : C ∈ 2X and C ∩ f−1(Y ) = Acf−1(Y )},

δ2 =
∨

{τ1(C) : C ∈ 2X and C ∩ f−1(Y ) = Bcf−1(Y )}.

Thus, there exists C ′, C ′′ ⊆ 2X , C ′ ∩ f−1(Y ) = Acf−1(Y ) , C ′′ ∩ f−1(Y ) = Bcf−1(Y ) such

that

τ1(C
′) > τ1f−1(Y )(A

cf−1(Y ))− δ1
2

= δ1 −
δ1
2

=
δ1
2

> 0

τ1(C
′′) > τ1f−1(Y )(A

cf−1(Y ))− δ2
2

= δ2 −
δ2
2
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=
δ2
2

> 0.

Since f is an ordinary smooth open we have

τ2(f(C
′)) ≥ τ1(C

′) > 0, τ2(f(C
′′)) ≥ τ1(C

′′) > 0

Since (Y, τ2) is a OT4-space, there exist U, V ∈ S(τ2) such that f(C ′)c ⊆ U, f(C ′′)c ⊆ V

and U ∩ V = ∅ . Since f is an ordinary smooth continuous and (f−1(Y ), τ1f−1(Y )) is an

ordinary smooth subspace of (X, τ1) and f−1(U), f−1(V ) ⊆ X , then

0 < τ2(U) ≤ τ1(f
−1(U)) ≤ τ1f−1(Y )(f

−1(U)),

0 < τ2(V ) ≤ τ1(f
−1(V )) ≤ τ2f−1(Y )(f

−1(V )).

Thus f−1(U), (f−1(V )) ∈ S(τ1f−1(Y )). Since f is an injective, thenA ⊆ (C ′)c ⊆ f−1(U), B ⊆

(C ′′)c ⊆ f−1(V ) and f−1(U)∩f−1(V ) = ∅.Hence, (f−1(Y ), τ1f−1(Y )) is aOT4-space.

3.6 OT5-spaces

In this section, we will introduce the notion of OT5-spaces and investigate some

of their properties.

Definition 3.6.1. An osts (X, τ ) is called a OT5-space if and only if for each A,B are

separated sets inX (A∩B = ∅ and A∩B = ∅) there exist U, V ∈ S(τ) such that A ⊆ U ,

B ⊆ V and U ∩ V = ∅.

Example 3.6.2. Let X = {a, b, c} and we define the mapping τ : 2X → I as follows:

τ(X) = τ(∅) = 1, τ({b}) = 0.6, τ({a, c}) = 0.4 and τ(A) = 0 if A /∈ {X, ∅, {b}, {a, c}}.

Clearly, (X, τ ) is an osts. Since {b} = {b} and {a, c} = {a, c}, then {b} ∩ {a, c} = ∅

and {b} ∩ {a, c} = ∅. Hence {b}, {a, c} are separated sets in X and {b}, {a, c} ∈ S(τ).

Therefore (X, τ ) is a OT5-space.

Theorem 3.6.3. Let an osts (X, τ) be a OT5-space, then (X, τ) is a OT4-space.

Proof. Let (X, τ) be an OT5-space and A,B ⊆ X , with A ∩ B = ∅ such that τ(Ac) >

0, τ(Bc) > 0. By Proposition 2.3.10 (ii), then A = A,B = B. Since A ∩ B = ∅ we have
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A∩B = ∅ and A∩B = ∅. Since (X, τ) is a OT5-space, there exist U, V ∈ S(τ) such that

A ⊆ U , B ⊆ V and U ∩ V = ∅. Thus (X, τ) is a OT4-space.

Theorem 3.6.4. Every subspace of OT5-space is also OT5-space.

Proof. Let an osts (X, τ ) is a OT5-space and let (A, τA) be an ordinary smooth subspace of

(X, τ ) and letM,N are separated sets in A, (M ∩N = ∅ andM ∩N = ∅). Since A ⊆ X ,

then M,N ⊆ X . Since M,N inX are subset of M,N ∈ A, respectively. Then M,N are

separated sets in X . And since (X, τ ) is a OT5-space, there exist U, V ∈ S(τ) such that

M ⊆ U,N ⊆ V and U ∩ V = ∅. LetW = U ∩ A and Z = V ∩ A,

τA(W ) =
∨

{τ(U) : U ∈ 2Y and U ∩ A = W}

≥ τ(U)

> 0

τA(Z) =
∨

{τ(V ) : V ∈ 2Y and V ∩ A = Z}

≥ τ(V )

> 0

and

W ∩ Z = (U ∩ A) ∩ (V ∩ A),

= (U ∩ V ) ∩ A,

= ∅ ∩ A,

= ∅.

So W,Z ∈ S(τA) such that M ⊆ W,N ⊆ Z and W ∩ Z = ∅. Hence (A, τA) is a OT5-

space.

The following results are the properties of OT5-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.6.5. Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary

smooth homeomorphism. Then (X, τ2) is an OT5-space if and only if (Y, τ2)is an OT5-

space.
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Proof. (=⇒) : Let A,B are separated sets in Y . Since f is a bijective,ordinary smooth

continuous and ordinary smooth closed, then

f−1(A) ∩ f−1(B) = f−1(A) ∩ f−1(B) = A ∩B = ∅

and

f−1(A) ∩ f−1(B) = f−1(A) ∩ f−1(B) = A ∩B = ∅.

So f−1(A), f−1(B) are separated sets in X . Since (X, τ1) is a OT5-space, then there exist

U, V ∈ S(τ1) such that f−1(A) ⊆ U, f−1(B) ⊆ V and U ∩ V = ∅. Since f is ordinary

smooth open, it follows that

0 < τ1(U) ≤ τ2(f(U))

and

0 < τ1(V ) ≤ τ2(f(V )).

Thus f(U), f(V ) ∈ S(τ2). Since f is a injective, then

A = f(f−1(A)) ⊆ f(U),

B = f(f−1(B)) ⊆ f(V )

and

f(U) ∩ f(V ) = ∅.

Hence (Y, τ2) is a OT5-space.

(⇐=) : LetA,B are separated sets inX . Since f is a bijective,ordinary smooth continuous

and ordinary smooth closed, then

f(A) ∩ f(B) = f(A) ∩ f(B) = A ∩B = ∅

and

f(A) ∩ f(B) = f(A) ∩ f(B) = A ∩B = ∅.

So f(A), f(B) are separated sets in Y . Since (Y, τ2) is aOT5-space, then there exist U, V ∈

S(τ2) such that f(A) ⊆ U, f(B) ⊆ V and U ∩ V = ∅. Since f is ordinary smooth
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continuous, it follows that

0 < τ2(U) ≤ τ1(f
−1(U))

and

0 < τ2(V ) ≤ τ1(f
−1(V )).

Thus f−1(U), f−1(V ) ∈ S(τ1). Since f is a injective, then

A = f−1(f(A)) ⊆ f−1(U),

B = f−1(f(B)) ⊆ f−1(V )

and

f−1(U) ∩ f−1(V ) = ∅.

Hence (X, τ1) is a OT5-space.

Proposition 3.6.6. Let f : X → Y be an injective,ordinary smooth closed and ordinary

smooth continuous map with respect to the ordinary smooth topologies τ1 and τ2 respec-

tively. If (Y, τ2) is a OT5-space, then so is a (X, τ1).

Proof. Let A,B are separated set in X . Since f is a bijective,ordinary smooth continuous

and ordinary smooth closed, then

f(A) ∩ f(B) = f(A) ∩ f(B) = A ∩B = ∅

and

f(A) ∩ f(B) = f(A) ∩ f(B) = A ∩B = ∅.

So f(A), f(B) are separated sets in Y . Since (Y, τ2) is aOT5-space, then there exist U, V ∈

S(τ2) such that f(A) ⊆ U, f(B) ∈ V and U ∩ V = ∅. Since f is an injective and ordinary

smooth continuous, it follows that

τ1(f
−1(U)) ≥ τ2(U) > 0,

τ1(f
−1(V )) ≥ τ2(V ) > 0,
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f−1(U) ∩ f−1(V ) = ∅,

A = f−1(f(A)) ⊆ f−1(U)

and

B = f−1(f(B)) ⊆ f−1(V ).

Hence (X, τ1) is a OT5-space.

Proposition 3.6.7. An osts (X, τ1) is a OT5-space. If f : X → Y is an injective, ordinary

smooth continuous, ordinary smooth closed and ordinary smooth open, then (f(X), τ2f(X))

is a OT5-space.

Proof. Let A,B are separated set in f(X). Since A,B in Y are subset of A,B in f(X)

respectively, then A,B are separated set in Y . Since f is an injective, ordinary smooth

continuous and ordinary smooth closed, then

f−1(A) ∩ f−1(B) = f−1(A) ∩ f−1(B) = A ∩B = ∅

and

f−1(A) ∩ f−1(B) = f−1(A) ∩ f−1(B) = A ∩B = ∅.

Hence f−1(A), f−1(B) are separated set in X . Since (X, τ1) is a OT5-space, then there

exist U, V ∈ S(τ1) such that f−1(A) ⊆ U, f−1(B) ⊆ V and U ∩ V = ∅ . Since f is

an ordinary smooth open and (f(X), τ2f(X)) is an ordinary smooth subspace of (Y, τ2) and

f(U), f(V ) ⊆ f(X), then

0 < τ1(U) ≤ τ2(f(U)) ≤ τ2f(X)(f(U)),

0 < τ1(V ) ≤ τ2(f(V )) ≤ τ2f(X)(f(V )).

Since f is an injective, then

A ⊆ f(U), B ⊆ f(V ),

f(U) ∩ f(V ) = ∅.

So, there exist f(U), (f(V )) ∈ S(τ2f(X)) such that A ⊆ f(U), B ⊆ f(V ) and f(U) ∩

f(V ) = ∅. Hence, (f(X), τf(X)) is a OT5-space.
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Proposition 3.6.8. An osts (Y, τ2) is a OT5-space. If f : X → Y is injective, ordinary

smooth continuous and ordinary smooth open, then (f−1(Y ), τ1f−1(Y )) is a OT5-space.

Proof. LetA,B are separated sets in f−1(Y ). SinceA,B inX are subset ofA,B in f−1(Y )

respectively, then A,B are separated sets in X . Since f is an injective, ordinary smooth

continuous and ordinary smooth closed, then

f(A) ∩ f(B) = f(A) ∩ f(B) = A ∩B = ∅

and

f(A) ∩ f(B) = f(A) ∩ f(B) = A ∩B = ∅.

Hence f(A), f(B) are separated set in Y . Since (Y, τ2) is a OT5-space, then there exist

U, V ∈ S(τ2) such that f(A) ⊆ U, f(B) ⊆ V and U ∩ V = ∅ . Since f is an ordinary

smooth continuous and (f−1(Y ), τ1f−1(Y )) is an ordinary smooth subspace of (X, τ1) and

f−1(U), f−1(V ) ⊆ X , then

0 < τ2(U) ≤ τ1(f
−1(U)) ≤ τ1f−1(Y )(f

−1(U)),

0 < τ2(V ) ≤ τ1(f
−1(V )) ≤ τ1f−1(Y )(f

−1(V )).

Since f is an injective

A ⊆ f−1(U), B ⊆ f−1(V ),

f−1(U) ∩ f−1(V ) = ∅.

So, there exist f−1(U), f−1(V ) ∈ S(τ1f−1(Y )) such that A ⊆ f−1(U), B ⊆ f−1(V ) and

f−1(U) ∩ f−1(V ) = ∅. Hence, (f−1(Y ), τ1f−1(Y )) is a OT5-space.

The following diagram illustrates the relationship between the spaces discussed in

this chapter.
OT4-spaces OT3-spaces

OT5-spaces OT -normal OT -regular

OT0-spaces OT1-spaces OT2-spaces

-
������*

-

?

6

?

�������

6

� �

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



CHAPTER 4

OST -DENSE SETS

In this chapter, we introduce the concepts of OST -dense sets on ordinary smooth

topological spaces and study some fundamental of their properties.

4.1 OST -dense sets

In this section, we will introduce the notion ofOST -dense sets on ordinary smooth

topological spaces and investigate some of their properties.

Definition 4.1.1. A set A is a OST -dense set in X if and only if A = X .

Example 4.1.2. Let X = {1, 2, 3} and we define the mapping τ : 2X → I as follows:

τ(X) = τ(∅) = 1, τ({1}) = 0.7, τ({3}) = 0.4, τ({1, 3}) = 0.5, τ({2, 3}) = 0.3 and

τ(A) = 0 if A /∈ {X, ∅, {1}, {3}, {1, 3}, {2, 3}} . Thus {1, 3} = X , and we have {1, 3} is

a OST -dense set in X .

The following results therefore follows directly from the definition ofOST -dense

sets.

Lemma 4.1.3. A set A is a OST -dense set inX if and only if U◦ ∩A ̸= ∅ for all subset U

of X with U◦ ̸= ∅.

Proof. (=⇒) : Assume that A is a OST -dense set in X . Then A = X . We will show that

U◦ ∩ A ̸= ∅ for all subset U of X with U◦ ̸= ∅. Let U◦ ̸= ∅. Suppose that U◦ ∩ A = ∅.

Since U◦ ̸= ∅, there exists V0 ⊆ U, τ(V0) > 0 and V0 ̸= ∅. Since U◦ ∩ A = ∅, then

V0 ∩A = ∅. So A ⊆ (V0)
c and τ(V0) > 0. By Proposition 2.3.7 (i), then A ⊆ (V0)c. From

Proposition 2.3.10 (ii), we have (V0)c = (V0)
c. Hence A ⊆ (V0)

c. Thus

∅ ̸= V0 = X \ (V0)
c ⊆ X \ A.

Which contradicts with A = X . Therefore U◦ ∩ A ̸= ∅.
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(⇐=) : Assume that U◦ ∩ A ̸= ∅ for all subset U of X with U◦ ̸= ∅. To show that

A = X . Since U◦∩A ̸= ∅, thenA ̸= ∅. SoA ̸= ∅. Suppose thatA ̸= X . ThenX \A ̸= ∅.

Since X \ A = (X \ A)◦, by assumption,

∅ ̸= (X \ A)◦ ∩ A ⊆ (X \ A) ∩ A.

It is a contradiction. Therefore A = X .

Theorem 4.1.4. Let (X, τ) is an osts and A ⊆ X . Then the following conditions are

equivalent:

(i) A is a OST -dense set in X .

(ii) If F is a nonempty subset of X , satisfying τ(F c) > 0 and A ⊆ F , then

F = X .

(iii) If for all subset U of X with U◦ ̸= ∅, then U◦ ∩ A ̸= ∅.

Proof. (i)⇒ (ii) : Assume that A is a OST -dense set inX .Let F be a nonempty subset of

X , satisfying τ(F c) > 0 and A ⊆ F . We will show that F = X . By Proposition 2.3.7 (i),

we have A ⊆ F . From Proposition 2.3.10 (ii), we have F = F . Since A is OST -dense set

in X , then A = X . Thus X = A ⊆ F = F and F ⊆ X . Hence F = X .

(ii) ⇒ (iii) : Assume that (ii) holds. We will show that U◦ ∩ A ̸= ∅ for all subset U of X

with U◦ ̸= ∅. Let U be a subset of X such that U◦ ̸= ∅. Suppose that U◦ ∩ A = ∅. Since

U◦ ̸= ∅, there exists V0 ⊆ U, τ(V0) > 0 and V0 ̸= ∅. SinceU◦∩A = ∅, then V0∩A = ∅. So

A ⊆ (V0)
c and τ(V0) > 0. By assumption, (V0)

c = X , then V0 = ∅. It is a contradiction.

Therefore U◦ ∩ A ̸= ∅.

(iii)⇒ (i) : It follows from Lemma 4.1.3.

Theorem 4.1.5. Let X be an osts and A be a subset of X . Then A is OST -dense set in X

if and only if (X \ A)◦ = ∅ .

Proof. (=⇒) : Assume that A is OST -dense set in X , i.e., A = X . Then X \ A = ∅. By

Proposition 2.3.7 (v), then X \ A = (X \ A)◦. Hence (X \ A)◦ = ∅.

(⇐=) : Assume that (X \ A)◦ = ∅. By Proposition 2.3.7 (v), we have X \ A = ∅.

Hence A = X . Therefore A is OST -dense set in X .
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CHAPTER 5

CONCLUSIONS

The aim of this thesis is to introduce of concepts of some separation axioms

in ordinary smooth topological space by using S(τ). And we study some properties of

OT0, OT1, OT2, OT3, OT4 and OT5 spaces. Moreover, we introduce the concepts of OST -

dense set on ordinary smooth topological spaces and study some of their properties. The

results are follows:

1) An osts (X, τ ) is called a OT0-space if and only if for each x, y ∈ X with x ̸= y there

exists U ∈ S(τ) such that x ∈ U and y /∈ U or y ∈ U and x /∈ U . From the above

definitions. I have the following theorems are derived:

1.1) An osts (X, τ ) is a OT0-space if and only if for every x, y ∈ X such that

x ̸= y we have that {x} ̸= {y}.

1.2) Every subspace of OT0-space is also OT0-space.

1.3) Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary smooth

homeomorphism. Then (X, τ1) is an OT0-space if and only if (Y, τ2) is an

OT0-space.

1.4) Let f : X → Y be an injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies τ1 and τ2 respectively. If (Y, τ2) is

a OT0-space, then so is (X, τ1).

1.5) An osts (X, τ1) is a OT0-space. If f : X → Y is an injective and ordinary

smooth open, then (f(X), τ2f(X)) is a OT0-space.

1.6) An osts (Y, τ2) is a OT0-space. If f : X → Y be injective and ordinary

smooth continuous, then (f−1(Y ), τ2f−1(Y )) is a OT0-space.

2) An osts (X, τ ) is called a OT1-space if and only if for each x, y ∈ X with x ̸= y, there

exist U, V ∈ S(τ) such that x ∈ U, y /∈ U and y ∈ V, x /∈ V .

From the above definitions. I have the following theorems are derived:
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2.1) If an osts (X, τ ) is a OT1-space, then (X, τ ) is a OT0-space.

2.2) An osts (X, τ ) is a OT1-space if and only {x} = {x} for every x ∈ X .

2.3) Every subspace of OT1-space is also OT1-space.

2.4) Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary smooth

homeomorphism. Then (X, τ1) is an OT1-space if and only if (Y, τ2) is an

OT1-space.

2.5) Let f : X → Y be an injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies τ1 and τ2 respectively. If (Y, τ2) is

a OT1-space, then so is (X, τ1).

2.6) An osts (X, τ1) is a OT1-space. If f : X → Y is an injective and ordinary

smooth continuous, then (f(X), τ2f(X)) is a OT1-space.

2.7) An osts (Y, τ2) is a OT1-space. If f : X → Y is an injective and ordinary

smooth open, then (f−1(Y ), τ1f−1(Y )) is a OT1-space.

3) An osts (X, τ ) is called a OT2-space if and only if for each x, y ∈ X with x ̸= y, there

exist U, V ∈ S(τ) such that x ∈ U , y ∈ V and U ∩ V = ∅.

From the above definitions. I have the following theorems are derived:

3.1) If an osts (X, τ ) is a OT2-space, then (X, τ ) is a OT1-space.

3.2) If an osts (X, τ ) is a OT1-space, then (X, τ ) is not a OT2-space.

3.3) Every subspace of OT2-space is also OT2-space.

3.4) Let (X, τ) be an osts. Then the following conditions are equivalent:

(i) (X, τ ) is a OT2-space.

(ii) Let p ∈ X for q ̸= p there exists U ∈ S(τ), p ∈ U such that q /∈ U .

(iii) For each p ∈ X , ∩{U : U ∈ S(τ), p ∈ U} = {p}.

3.5) Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary smooth

homeomorphism. Then (X, τ1) is an OT2-space if and only if (Y, τ2) is an

OT2-space.
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3.6) Let f : X → Y be an injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies τ1 and τ2 respectively. If (Y, τ2) is

a OT2-space, then so is a (X, τ1).

3.7) An osts (X, τ ) is a OT2-space. If f : X → Y is an injective and ordinary

smooth open, then (f(X), τ2f(X)) is a OT2-space.

3.8) An osts (Y, τ2) is a OT2-space. If f : X → Y is an injective and ordinary

smooth continuous, then (f−1(Y ), τ1f−1(Y )) is a OT2-space.

4) An osts (X, τ ) is called aOT3-space if and only if for eachA ⊆ X , satisfying τ(Ac) > 0,

and each b ∈ X , satisfying b /∈ A, there exist U, V ∈ S(τ) such that A ⊆ U , b ∈ V and

U ∩ V = ∅.

From the above definitions. I have the following theorems are derived:

4.1) Every subspace of OT3-space is also OT3-space.

4.2) Let (X, τ) be an osts. Then the following conditions are equivalent:

(i) (X, τ) is a OT3-space.

(ii) For each x ∈ X and each U containing x, satisfying τ(U) > 0, there

exists a set V containing x, satisfying τ(V ) > 0 such that x ∈ V ⊆

V ⊆ U .

(iii) For each x ∈ X , and each A not containing x, satisfying τ(Ac) > 0 ,

there exists a set V , satisfying τ(V ) > 0 containing x such that V ∩A =

∅.

4.3) Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary smooth

homeomorphism. Then (X, τ1) is an OT3-space if and only if (Y, τ2) is an

OT3-space.

4.4) Let f : X → Y be an injective, ordinary smooth closed and ordinary smooth

continuous map with respect to the ordinary smooth topologies τ1 and τ2

respectively. If (Y, τ2) is a OT3-space, then so is a (X, τ1).

4.5) An osts (X, τ1) is a OT3-space. If f : X → Y is an injective, ordinary

smooth continuous and ordinary smooth open, then (f(X), τ2f(X)) is a OT3-

space.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Mahasarakham University 



48

4.6) An osts (Y, τ2) is aOT3-space. If f : X → Y is an injective, ordinary smooth

closed and ordinary smooth open, then (f−1(Y ), τ2f−1(Y )) is a OT3-space.

5) An osts (X, τ) is said to be aOT -regular space if (X, τ) is aOT3-space andOT1-space.

From the above definitions. I have the following theorems are derived:

5.1) Let an osts (X, τ) is a OT -regular space, then (X, τ) is a OT2-space.

6) An osts (X, τ ) is called a OT4-space if and only if for each A,B ⊆ X are disjoint in

X , satisfying τ(Ac) > 0, τ(Bc) > 0, there exist U, V ∈ S(τ) such that A ⊆ U , B ⊆ V

and U ∩ V = ∅.

From the above definitions. I have the following theorems are derived:

6.1) Every subspace of OT4-space is also OT4-space.

6.2) Let (X, τ) be an osts. Then the following conditions are equivalent:

(i) (X, τ) is a OT4-space.

(ii) If U ⊆ X , satisfying τ(U) > 0 is a superset of a set A, satisfying

τ(Ac) > 0, then there exists set V , satisfying τ(V ) > 0 such that

A ⊆ V ⊆ V ⊆ U .

(iii) For each pair of disjoint sets A,B satisfying τ(Ac) > 0, τ(Bc) > 0,

there exists set U , satisfying τ(U) > 0 which A ⊆ U and U ∩B = ∅.

(iv) For each pair of disjoint setsA,B ⊆ X , satisfying τ(Ac) > 0, τ(Bc) >

0, there exist setsU, V ∈ S(τ) such thatA ⊆ U,B ⊆ V andU∩V = ∅.

6.3) Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary smooth

homeomorphism. Then (X, τ1) is an OT4-space if and only if (Y, τ2) is an

OT4-space.

6.4) Let f : X → Y be an injective, ordinary smooth closed and ordinary smooth

continuous map with respect to the ordinary smooth topologies τ1 and τ2

respectively. If (Y, τ2) is a OT4-space, then so is a (X, τ1).

6.5) An osts (X, τ1) is a OT4-space. If f : X → Y is an injective, ordinary

smooth continuous and ordinary smooth open, then (f(X), τ2f(X)) is a OT4-

space.
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6.6) An osts (Y, τ2) is a OT4-space. If f : X → Y is an injective, ordinary

smooth open and ordinary smooth continuous, then (f−1(Y ), τ2f−1(Y )) is a

OT4-space.

7) An osts (X, τ) is said to be aOT -normal space if (X, τ) is aOT4-space andOT1-space.

From the above definitions. I have the following theorems are derived:

7.1) Let an osts (X, τ) is a OT -normal space, then (X, τ) is a OT -regular space.

8) An osts (X, τ ) is called a OT5-space if and only if for each A,B are separated sets in

X (A ∩ B = ∅ and A ∩ B = ∅) there exist U, V ∈ S(τ) such that A ⊆ U , B ⊆ V and

U ∩ V = ∅.

From the above definitions. I have the following theorems are derived:

8.1) Let an osts (X, τ) be a OT5-space, then (X, τ) is a OT4-space.

8.2) Every subspace of OT5-space is also OT5-space.

8.3) Let (X, τ1) and (Y, τ2) be two osts and let f : X → Y be an ordinary smooth

homeomorphism. Then (X, τ1) is an OT5-space if and only if (Y, τ2) is an

OT5-space.

8.4) Let f : X → Y be an injective,ordinary smooth closed and ordinary smooth

continuous map with respect to the ordinary smooth topologies τ1 and τ2

respectively. If (Y, τ2) is a OT5-space, then so is a (X, τ1).

8.5) An osts (X, τ1) is a OT5-space. If f : X → Y is an injective, ordinary

smooth continuous, ordinary smooth closed and ordinary smooth open, then

(f(X), τ2f(X)) is a OT5-space.

8.6) An osts (Y, τ2) is a OT5-space. If f : X → Y is an injective, ordinary

smooth continuous and ordinary smooth open, then (f−1(Y ), τ1f−1(Y )) is a

OT5-space.

9) A set A is a OST -dense set in X if and only if A = X .

From the above definitions. I have the following theorems are derived:
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9.1) A set A is a OST -dense set in X if and only if
◦
U ∩ A ̸= ∅ for all subset U

of X with
◦
U ̸= ∅.

9.2) Let (X, τ) is an osts and A ⊆ X . Then the following conditions are equiva-

lent:

(i) A is a OST -dense set in X .

(ii) If F is a nonempty subset of X , satisfying τ(F c) > 0 and A ⊆ F ,

then F = X .

(iii) If for all subset U of X with
◦
U ̸= ∅, then

◦
U ∩ A ̸= ∅.

9.3) Let X be an osts and A be a subset of X . Then A is OST -dense set in X if

and only if
◦

(X \ A) = ∅.
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