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CHAPTER 1

INTRODUCTION

The concepts of fuzzy topology on a set X which consists of a set X and structure
T on X and this spaces called the fuzzy topological spaces (briefly fis) was first introduced
by Chang [1]. In 1986, Badard [2] introduced the concepts of smooth topological spaces
and redefined fuzzy topology was called smooth topology (briefly s¢) and this space called
the smooth topological spaces (briefly sts). In 1992, Ramadan [3] rediscover the smooth
topological spaces.

In 2001, El-gayyar, Kerre and Ramadan [4] introduced concepts of separation
axioms in smooth topological spaces and investigated some of their properties and the re-
lations between them in smooth topological spaces. Next, the concepts of ordinary smooth
topology (briefly OST) on a set X and notion of ordinary smooth continuity were introduced
by Lim, Ryoo and Hur in [5]. They also studied and investigated some properties of ordi-
nary smooth subspaces. After that, they introduced the notions of ordinary smooth closure
and ordinary smooth interior of ordinary subsets and investigated some of their properties,
also they introduced ordinary smooth open preserving functions and studied some of their
properties. In addition, they developed the notions of ordinary smooth compactness, ordi-
nary smooth almost compactness, and ordinary near compactness and discusses them in the
general framework on ordinary smooth topological spaces in [7].

In 2013, Lee, Lim and Hur [6] redefined the notions of ordinary smooth closure
and ordinary smooth interior. Also they introduced and studied some of their properties
of compact in an ordinary smooth topological spaces, and redefined a new definition of
ordinary smooth closure and ordinary smooth interior.

For our purpose, we introduce the concepts of some separation axioms in ordinary
smooth topological spaces and study some properties of these spaces. Moreover, we study
some properties of functions on ordinary smooth topological spaces. Furthermore, we in-
troduce the concepts of OST'-dense sets in ordinary smooth topological spaces and study
the basic properties of O.ST'-dense sets in ordinary smooth topological spaces.

In the first chapter, the introduction was present.
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In Chapter 2, we present some basis concepts and results of ordinary smooth topol-
ogy without proofs which are needed in the subsequent chapters.

In Chapter 3, we introduce the concepts of some separation axioms in ordinary
smooth topological spaces and study some properties on the spaces. Moreover, we study
some properties of functions on ordinary smooth topological spaces.

In Chapter 4, we introduce the concepts of OST-dense sets in ordinary smooth
topological spaces and study the basic properties of O.ST-dense sets.

In the last Chapter, we summarize results of our study.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will recall some definitions, notations, dealing with some pre-

liminaries and some useful results that will be duplicated in later chapter.

2.1 Classical topological spaces

In this section we discuss some properties of classical topological spaces and some
properties of closure, interior, continuous functions and separation axioms of all those. First
of all, we will recall the definition of classical topological spaces.

Definition 2.1.1. [8] Let X be a nonempty set. A class of 7 of subsets of X is a classical
topology on X if and only if 7 satisfies the following axioms:
(i) X,0er.
() If A1, Ay € T, then A, N Ay € 7.
(i) If A, € 7 foralla € T, then | J A, € 7.

ael’
The pair (X, 7) is called a classical topological space and the members of 7 are called

open sets.
The operators on X which induced by the topologies 7 are follows:

Definition 2.1.2. [8] Let (X, 7) be a classical topological spaces and let A C X. Then
closure of A in X, denoted by A, is defined by

A=({F:ACFX\Fer}.

Definition 2.1.3. [8] Let (X, 7) be a classical topological spaces and let A C X. Then
interior of A in X , denoted by A° , is defined by

A= Jiu:vcAUer}

The function f : X — Y which pre-image preserves open set, preserves open set
and preserves closed set are called continuous, open function and closed function respec-

tively.
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Definition 2.1.4. [8] Let (X, 77) and (Y, 1) be two classical topological spaces. Then a
mapping f : X — Y is said to be continuous if U € T, implies that f~}(U) € .

Definition 2.1.5. [8] Let (X, 7;) and (Y, 72) be two classical topological spaces. Then a
mapping f : X — Y is said to be
(i) an open function if and only if f(G) is an open subsets in Y for all open
subset G in X.
(ii) a closed function if and only if f(F') is a closed subsets in Y for all closed
subset F'in X.

Definition 2.1.6. [8] Let (X, ) and (Y, 72) be two classical topological space. Then a
mapping f : X — Y is called a homeomorphism if and only if
(i) f is a bijective,

(ii) fand f~! are continuous.

Next, we will recall the definitions of 7T¢, 71, ..., T and T5-spaces and dense sets

in classical topological spaces.

Definition 2.1.7. [8] A topological space X is a Tj- space if and only if for any pair of
distinct points a,b € X, there exists an open set U such that eithera € U and b ¢ U or

be Uanda ¢ U (i.e. U containing exactly one of these points).

Definition 2.1.8. [8] A topological space X is a Tj-space if and only if for any pair of
distinct points a,b € X, there exist an open sets U and V such that a € U, b ¢ U and
beV,adV.

Definition 2.1.9. [8] A topological space X is a Th-space if and only if for any pair of
distinct points a,b € X, there exist an open sets U and V such thata € U, b € V and
unv =140.

Definition 2.1.10. [8] A topological space X is a T3-space if and only if for any closed
subset A of X and b is a point in X with b ¢ A, there exist disjoint open sets U and V' such
that AC U and b e V.

Definition 2.1.11. [8] A topological space X is a T-space if and only if for any pair
of distinct closed subsets A and B in X, there exist disjoint open set U and V' such that
ACU BCVandUNV = 0.
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Definition 2.1.12. [8] A topological space X is a T5-space if and only if for separated set
Aand Bin X(i.e., AN B = () and AN B = ()), there exist disjoint open set U and V such
that ACU, BCVandUNV = 0.

Definition 2.1.13. [8] Let (X, 7) be a classical topological space and A be a subset of X.
Ais called a dense set in X if X = A.

2.2 Smooth topological spaces

In this section we discuss some properties of smooth topological spaces and some
properties of smooth closure, smooth interior, smooth continuous and some separation ax-

ioms in smooth topological spaces.
Definition 2.2.1. [1] For a set X, we define a fuzzy set in X to be function p : X — [0, 1].

For each a nonempty set X, let /X be the family of all fuzzy sets on X and I be
the closed interval [0, 1]. And intersections and union of fuzzy sets are denoted by A and

V, respectively, and defined by

NA; = inf{A;(z) :i € Jand z € X}.

VA; =sup{A;(z) :i € Jand z € X}.

First of all, we will recall smooth topological spaces.
Definition 2.2.2. [3] Let X be a nonempty set. Then a mapping 7’ : [X — I is called a
smooth topology (in short, st) on X if 7/ satisfies the following axioms:
@) 7(0) =) =1
(i) VA, Ay € IX 7/(A1 N Ay) > 7/(A) AT/(Ay).
(iii) VI, ([ ) 4a) > A 7'(4a).

acl’ acl’
The pair (X, 7') is called a smooth topological space (in short, sts). We will denote the set

of all st’s on X as ST'(X).

Definition 2.2.3. [3] Let X be a nonempty set. Then a mapping C’ : IX — I is called a

smooth cotopology (in short, sct) on X subsets of X if C’ satisfies the following axioms:

(M C'0) =C(1) = 1.
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(il) VBy, By € IX,C'(By U By) > C'(By1) AC'(Bs).
(iii) VI',C'(() Ba) > /\ C'(Ba).
acl’ acl
The pair (X,C’) is calleed a smoothE cotopological space (in short, scts). We will denote the

set of all sct’s on X as SCT'(X).

Remark 2.2.4. If I = {0, 1}, then definition 2.2.2 coincides with the known definition of

classical topology.
The operators on X which induced by the smooth topologies 7 are follows:

Definition 2.2.5. [3] Let (X, 7') be an osts and let A € 2%, Then smooth closure of A in
X , denoted by A is defined by

)4 if 7/(A¢) = 1,
A=
M{F €2X:AC Fand 7(F°) > r'(A%)}, if 7/(A¢) # 1.

Definition 2.2.6. [3] Let (X, 7') be an osts and let A € 2%. Then smooth interior of A in
X , denoted by A° is defined by

A, if 7'(A) =1,
A° =
U{Se2¥:SCAand 7(S) > 7 (A)}, if 7/(A) # 1.
Definition 2.2.7. [3] Amap f : X — Y is called a smooth continuous with respect to the

smooth topologies 7; and 75 respectively, iff for every A € LY we have

5(A) < 7(f~'(A)), where f~1(A) is defined by f~1(A)(z) = A(f(x)),Vr € X.

For a smooth topological space (X, 7'), we define suppA = {x € X : A(x) > 0}
and suppA will be called the support of 7'.
Next, we will recall the definitions of ST}, ST} and ST,-spaces in smooth topolog-

ical spaces.

Definition 2.2.8. [4] A sts (X, 77) is called STj- space if and only if for each x,y € X
with o # y there exists A € I~ such that (z € suppA,y ¢ suppA and 7/(A) > A(x)) or
(y € suppA,x ¢ suppAand 7'(A) > A(y)).

Definition 2.2.9. [4] A sts (X, 7’) is called ST}- space if and only if for each x,y € X
with 2 # y there exist A, B € I such that (z € suppA\suppB and 7/(A) > A(z)) or
(y € suppB\suppA and 7'(B) > B(y)).
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Definition 2.2.10. [4] A sts (X, 7') is called ST3- space if and only if for each
z,y € X with z # y there exist A, B € I such that x € suppA, 7'(A) > A(x),
y € suppB,7'(B) > B(y) and AN B = (.

2.3 Ordinary smooth topological spaces

In this section we discuss some properties of ordinary smooth topological spaces
and some properties of smooth closure, smooth interior, smooth continuous, ordinary smooth
open, ordinary smooth closed and ordinary smooth subspaces in ordinary smooth topolog-
ical spaces.

For each a nonempty set X, let 2% be the set of all ordinary subsets of a set X and
let I be the closed interval [0, 1]. For any 7 : 2% — I, the infimum and the supremum of
{T(A,) : @ € I'} are defined as follows:

N\ 7(Ao) = inf{r(As) s a €T}

acl

\/ 7(Aa) = sup{r(As) :a € T}.

ael

Definition 2.3.1. [5] Let X be a nonempty set. Then a mapping 7 : 2% — [ is called
an ordinary smooth topology (in short, ost) on X or a gradation of openness of ordinary
subsets of X if T satisfies the following axioms:
(i) 7(0) =7(X) =1
(i) T7(ANB) > 1(A)AT(B) VA, B e 2.
(i) 7(| ) 4a) > A\ 7(4a) V{A.} C 2%

a€cl’ acl
The pair (X, 7) is called an ordinary smooth topological space (in short, osts). We will
denote the set of all ost on X as OST'(X).

Definition 2.3.2. [5] Let X be a nonempty set. Then a mapping C : 2¥ — I is called an
ordinary smooth cotopology (in short, osct) on X or a gradation of closedness of ordinary
subsets of X if C satisfies the following axioms:

(i) C(0) =C(X) = 1.

(i) C(AUB) >C(A)AC(B) VA,B e 2*.
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(i) C([) 4a) = /\ C(Aa) V{As} €27

acl acl’
The pair (X, C) is called an ordinary smooth cotopological space (in short, oscts). We will
denote the set of all osct on X as OSCT(X).

Remark 2.3.3. If / = {0, 1}, then Definition 2.3.1 coincides with the known definition of

classical topology.

Proposition 2.3.4. [5] Let (X, 7) be an osts and let A C X. We defined a mapping

74 : 24 — I as follows: For each B € 24,
7a(B) = \/{7(C): C € 2¥andC N A = B}.

Then 74 € OST(A) and 7(B) < 74(B). In this case, (A, 74) is called an ordinary smooth

subspace of (X, 1) and 74 is called the induced ordinary smooth topology on A by .

The operators on X which induced by the ordinary smooth topologies 7 are fol-

lows:

Definition 2.3.5. [6] Let (X, 7) be an osts and let A € 2X. Then ordinary smooth closure
of Ain X, denoted by A is defined by

A=(|Fe2: ACFandC.(F) > 0}.

Definition 2.3.6. [6] Let (X, 7) be an osts and let A € 2%, Then ordinary smooth interior
of A in X, denoted by A° is defined by

A= J{ue2*:UC Aand 7(U) > 0}.

The following results therefore follows directly from the definition of ordinary

smooth closure and ordinary smooth interior.

Proposition 2.3.7. [6] Let (X, 7) be an osts and let A, B € 2%, Then:
(i) If A C B, then A° C B° and A C B.

(i) (A°)° = (A°).

(iii) A° = ((A))e.
(iv) A= ((4)°).
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(V) (A)° = (A"
Proposition 2.3.8. [6] Let (X, 7) be an osts and let A, B € 2%, Then:
(1) X°=X.
(i) A° C A.
(iii) (A°)° = A°.
(iv) (AN B)° C A°N B°.
Proposition 2.3.9. [6] Let (X, 7) be an osts and let A, B € 2%. Then:
(i) 0 =0.
(i) A C A.
(iii) (4) = A.
(ivi AUBC AUB.
Proposition 2.3.10. [6] Let (X, 7) be an osts and let A, B € 2%. Then:
(i) If 7(A) > 0,then A = A°.

(i) IfC.(A) > 0,then A = A.
Definition 2.3.11. [6] Let (X, 1) and (Y, 7») be two osts. Then a mapping f: X — Y is

said to be ordinary smooth continuous if 75(A) < 7 (f71(A)), VA € 2V,
Definition 2.3.12. [6] Let (X, 7;) and (Y, 75) be two osts. Then a mapping f : X — Y
is said to be ordinary smooth continuous if 75(A°) < 7 (f1(A)°), VA € 2Y.

Corollary 2.3.13. [6] Let (X, 71) and (Y, 72) be two osts and let f : X — Y be ordinary

smooth continuous. Then:
(1) f(X) C f(A) forall A e 2%,

(ii) f-(B) C f~(B) forall B € 2V.
(iii) f~1(B°) C (f~Y(B))° forall B € 2V.

Definition 2.3.14. [6] Let ; € OST(X) and let » € OST(Y). Then a mapping f :

X — Y issaid to be
(i) ordinary smooth open if T (A) < 1o(f(A)),VA € 2%,

(ii) ordinary smooth closed if 71 (A°) < 1o(f(A°)),VA € 2%,

Definition 2.3.15. [5] Let ; € OST(X) and let » € OST(Y). Then a mapping [ :

X — Y is called an ordinary smooth homeomorphism if :
(1) f is a bijective,

(ii) f and f~! are ordinary smooth continuous.
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Theorem 2.3.16. [5] Let (X, 1) and (Y, 75) be two osts’s and let f : X — Y be a mapping.
Then the following are equivalent:

(1) f is an ordinary smooth homeomorphism.

(i1) f is ordinary smooth open and ordinary smooth continuous.

(ii1) f is ordinary smooth closed and ordinary smooth continuous.

‘/ \W
12
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CHAPTER 33

SEPARATION AXIOMS IN ORDINARY SMOOTH
TOPOLOGICAL SPACES

In this chapter, we will introduce the notion of OTq, OT, OT,, OT3, OT, and OT5-
spaces on ordinary smooth topological spaces and study some of their properties, by using
S(7) operator.

For an osts (X, 7), define S(7) = {4 € 2% : 7(A) > 0} and S(7) will be called

the support of 7.

3.1 OTy-spaces

In this subsection, we will introduce the notion of OTj-spaces and investigate

some of their properties.

Definition 3.1.1. An osts (X, 7) is called a OTy-space if and only if for each z,y € X
with x # y, there exists U € S(7) such that eitherz € Uandy ¢ Uory € Uandz ¢ U.

Example 3.1.2. Let X = {1, 2} and we define a mapping 7 : 2% — T as follows: 7(X) =
7(0) = 1,7({1}) = 0.5,7({2}) = 0. Clearly, (X, 7) is an osts. Then (X, 7) is a OT,-space,
since {1} € S(7),1 € {1} and 2 ¢ {1}.

We now give an example of an osts which is not O7{-spaces.

Example 3.1.3. Let X = {1,2,3} and we define a mapping 7 : 2% — I as follows:
7(X) = 7(0) = 1,7({1}) = 0.5 and 7(A) = 0if A ¢ {X,0,{1}}. Clearly, (X,7) is
an osts. Since X is the only set in S(7) which contain 2 and 3. That means there are no

Ue€ S(r)suchthat2 € Uand 3 ¢ U.
Next theorem shows a very simple characterization of O7j-spaces.

Theorem 3.1.4. An osts (X, 7) is a OTj-space if and only if for every z,y € X such that
x # y, we have that {z} # {y}.
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Proof. (=) : Suppose that (X, 7) is an OTy-space and let x,y € X such that z # y.
By assumption we may assume that there exists U € S(7) such that z € U,y ¢ U. Sine
{y} € X\U and 7(U) > 0, using Proposition 2.3.10 (ii), we get, {y} € X\U. But
{2} ¢ X\U. Therefore {2} # {y}.

(<) : Assume that m # @ forall z,y € X such that z # y. We will show that (X, 7)
is a OTp-space. By assumption, we may assume that = ¢ @ Then there exists ' € 2%
such that {y} C F, 7(F°) > 0andx ¢ F. LetU = F°. Since x ¢ F and y € F, then
x € Uandy ¢ U. Therefore (X, 7) is a OTj-space. O

Proposition 3.1.5. Every subspace of O7j-spaces is also O7j-spaces.

Proof. Let (X, 7) be an OTj-space, let (A, 74) be an ordinary smooth subspace of (X, 7)
and let ay, a; be elements of A such that a; # ay. Since (X, 7) is a OTy-space, we may

assume that there exists U € S(7) suchthata; € U,ay ¢ U. Let V = U N A. Then

ra(V) = \{r(U") : U € 2¥andU' N A=V}
> 7(U)

> 0.

SoV € S(74) suchthata; € V and as ¢ V. Hence (A, 74) is a OTj-space. O

The following results are the properties of O7Tj-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.1.6. Let (X, 1) and (Y, 75) be two osts and let f : X — Y be an ordinary
smooth homeomorphism. Then (X, ;) is an OTy-space if and only if (Y, 75) is an OTp-

space.

Proof- (=) : Let y1,y> € Y such that y; # ys. Since f is a bijective, then there are
x1,T9 € X such that y; = f(z1),y2 = f(22) and x; # x4. Since (X, 71) is an OT}-space,
we may assume that there exists U € S(m) such that z; € U, z, ¢ U. Since f is an

ordinary smooth open, it follows that

n(f(U)) > n(U) > 0.
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Thus f(U) € S(m). Since f is an injective, then y; € f(U) and yo ¢ f(U). Hence (Y, 72)
is a OTjy-space.

(<) : Let x1, 25 € X such that x; # x5. Since f is a bijective, then there are y;,y, € Y
such that z1 = f~'(y1), 22 = f~'(y2) and y; # y». Since (Y, 7») is an OTy-space, we
may assume that there exists U € S(73) such that y; € U, y, ¢ U. Since f is an ordinary

smooth continuous, it follows that
n(fH(U)) > (U) > 0.

Thus f~Y(U) € S(71). Since f is an injective, then x; € f~1(U) and x5 ¢ f~1(U). Hence
(X, ) is a OTy-space.

O
Proposition 3.1.7. Let f : X — Y be injective, ordinary smooth continuous map with

respect to the ordinary smooth topologies 7 and 7, respectively. If (Y, 75) is a OTy-space,

then so is (X, 71).

Proof. Let x1, x5 € X such that z; # xo. Since f is an injective, we have f(x;) # f(z2).
Since (Y, 72) is a OTy-space, we may assume that there exists U € S(7y) such that f(z;) €

U, f(xq) ¢ U. Since f is an injective and ordinary smooth continuous, it follows that
n(f7H(U)) =2 =(U) >0,

z1 = T (f(21) € FTHU), w2 = [T (f(2)) & f7H(U).
So, there exists f~!(U) € S(m) such that z; € f~1(U), o ¢ f~1(U). Hence (X, 1) is a
OTy-space. [
Proposition 3.1.8. An osts (X, 77) is a OTp-space. If f : X — Y is an injective and
ordinary smooth open, then (f(X), 725(x)) is a OTy-space.

Proof. Let (f(X), T25(x)) be an ordinary smooth subspace of (Y, 73). For any a,b € f(X)
such that @ # b. Since f is an injective, there exist x,y € X such that x = f~(a) #
f7Y(b) = y. Since (X, 71) is a OTy-space, we may assume that there exists U € S(7;) such
thatz € U, y ¢ U. Since f is an ordinary smooth open and f(U) C f(X), then

0<n(U) <7n(f(U)) < mpx) (f(U)).

&7 Mahasarakham University



14

Thus f(U) € S(m25(x)). Since f is an injective, then a € f(U), b ¢ f(U). Therefore,
(f(X), Tap(x)) is a OTy-space. ]

Proposition 3.1.9. An osts (Y, 1) is a OTy-space. If f : X — Y is an injective and

ordinary smooth continuous, then (f~'(Y"), 75¢-1(y) is a OT,-space.

Proof. Let (f~*(Y'), 714-1(yv)) be an ordinary smooth subspace of (X, 7). For any a,b €
f7YY) such that a # b, we have that f(a) # f(b). Since (Y, 7») is a OTy-space, we may
assume that there exists U € S(73) such that f(a) € U, f(b) ¢ U. Since f is an ordinary

smooth continuous and ordinary smooth subspace and f~1(U) C f~!(Y), then

0<7(U) <n(f 1 U) < 1o (fHU)).

Thus f~'(U) € S(714-1(v)). Since f is an injective, then a € f~'(U) and b ¢ f~'(U).
Hence (f~(Y), 71 7-1(v)) is @ OTy-space. O

3.2 OTi-spaces

In this section, we will introduce the notion of OT}-spaces and investigate some

of their properties.

Definition 3.2.1. An osts (X, 7) is called a OT}-space if and only if for each z,y € X
with z # y, there exist U,V € S(7)suchthatz e U,y ¢ U andy €V, z ¢ V.

Example 3.2.2. Let X be infinite set. We define a mapping 7 : 2X — I as follows:

1, if A =0 or A°is finite,
T(4) =

0, otherwise.
for each A € 2%,
Clearly, (X, 7) is an osts. Let consider z,y € X such that z # y. Since y ¢ {z}, then
y € X\{z}. and X\{z} € S(7). Similarly, z € X\{y} and X\{y} € S(7). It follows
that (X, 7) is a OT}-space.
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Remark 3.2.3. If an osts (X, 7) is a OT}-space, then (X, 7) is a OT}-space.

Since (X, 7) is a OT}-space and for any x,y € X which z # vy, there exist U,V € S(7)
suchthatz € U, y ¢ Uandy € V, = ¢ V. Hence, there exists W € S(7) such that
reW, y¢g Wory e W, x ¢ W. Therefore (X, 7) is a OTp-space.

The converse of remark 3.2.3 is not true. If can be seen from the following exam-

ple.

Example 3.2.4. From examlple 3.1.2, (X, 7 ) is not a OT}-space. Since there exists U €
S(7) which contain 1 € U and 2 ¢ U. But thereisnot V' € S(7) which2 € Vbutl ¢ V.
That means there are not U,V € S(7) suchthat2 ¢ Uand 1 ¢ V.

Theorem 3.2.5. An osts (X, 7) is a OT-space if and only {z} = {z} for every z € X.

Proof. (=) : Assume that (X, 7) is a OT}-space. We will show that {2} = {z}.
Suppose that {z}\{z} # (). Then there exists y € {x}\{z}. Since (X, 7) is a OT}-space,
there exists U, € S(7) suchthaty € U, and x ¢ Uy, soy ¢ (U,)° and {z} C (U,)°.
But y € {x}, we have that y € F for all F such that {z} C F and F° € S(r). Since
{2} € (U,)¢and U, € S(), then y € (U,)°. This is a contradiction. Thus {z}\{z} = 0.
Hence {z} = {z}.

(«<=) : Assume that {z} = {z} for all z € X. We will show that (X, 7) is a OT}-space.
Let z,y € X with x # y. By assumption we have that x € X \@, y € X \m,
then z ¢ {y} and y ¢ {z}, there exist F, F, € 2¥ such that {y} C F\, {z} C F,
T(Ff) >0, 7(F5) >0and x ¢ Fy, y ¢ F». Let Uy = F{ and Uy = F5. Then x € Uy,
x ¢ Uyandy € Uy, y ¢ Uy, where Uy, Uy € S(7). Therefore (X, 7) is a OT;-space. O

Proposition 3.2.6. Every subspace of OT7-spaces is also OT}-spaces.

Proof. Let (X, 7)beaOT;-space, let (A, 74) be an ordinary smooth subspace of (X, 7) and
let aq, as be elements of A such that a; # as. Since(X, 7) is a OT;-space, we may assume
that there exist U,V € S(7) such thata; € U, ay ¢ U anday, € V, a3 ¢ V.

Let B=UnNAand C =V N A. Then

74(B) = \/{r(U): U € 2¥andU N A = B}
> 7(U)
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> 0,
and

74(C) = \/{r(V): V €2¥andV N A = B}
>7(V)

> 0.

So B,C € S(74)suchthata; € B, as ¢ Bandas € C, a; ¢ C. Hence (A,74) is a
OT1-space. [

The following results are the properties of OTj-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.2.7. Let (X, 1) and (Y, 75) be two osts and let f : X — Y be an ordinary
smooth homeomorphism. Then (X, 75) is an OT}-space if and only if (Y, ) is an OT}-

space.

Proof. (=) : Let y;,y2 € Y such that y; # ys. Since f is a bijective, then there are
x1, Ty € X such that y; = f(21),y2 = f(x2) and x1 # xs. Since (X, 7y) is a OT}-space,
then there exist U,V € S(ry) suchthatz; € U, 2 ¢ U andxs € V, 21 ¢ V. Since f is an

ordinary smooth open, it follows that
n(f(U)) > n(U) > 0,

and

m(f(V)) > 7n(V) > 0.

Thus f(U), f(V) € S(m2). Since f is an injective, then y; € f(U), y» ¢ f(U) and
y2 € f(V), 41 ¢ f(V). Hence (Y, 12) is a OT;-space.

(<) : Let x1, 5 € X such that z; # x5. Since f is a bijective, then there are y;, 4y, € YV
suchthatz; = f~1(y1), 22 = f~(y2) and 4, # ys. Since (Y, 72) is a OT}-space, then there
exist U,V € S(rp) suchthaty; € U,y ¢ U andys € V,y; ¢ V. Since f is an ordinary

smooth continuous, it follows that

n(f7H(U)) = n(U) > 0,
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and

n(f7 (V) = (V) > 0.

Thus f~Y(U), f~%(V) € S(m). Since f is an injective, then x, € f~Y(U), zo & f~1(U)
and 2o € f~H(V), z1 ¢ f~1(V). Hence (X, 11) is a OT}-space. O

Proposition 3.2.8. Let f : X — Y be an injective, ordinary smooth continuous map with
respect to the ordinary smooth topologies 71 and 75 respectively. If (Y, 72) is a OT}-space,

then so is (X, 71).

Proof. Letxy, x5 € X with zy # x4, since f is an injective, we have f(x1) # f(x3). Since
(Y, 12) is a OT}-space, then there exist U,V € S(72) such that f(z;) € U, f(z2) ¢ U and

f(zg) €V, f(x1) ¢ V. Since f is an injective and ordinary smooth continuous, it follows

that
n(f71(U)) = (V) >0,
n(f71(V)) =2 (V) >0,
vy = [T (f(21) € fTHU), 2= T (f(22)) ¢ fH(U)
and

zy = [T (f(x)) € FTHV), a1 = fH(f(20) & FHV).
So f~YU), f1(V) € S(r1) suchthatx; € f~Y(U), zo ¢ f~(U)andzy € fH(V), 2, ¢
f~1(V). Hence (X, 1) is a OT}-space. O

Proposition 3.2.9. An osts (X, 71) is a OTy-space. If f : X — Y is an injective and

ordinary smooth continuous, then (f(X), 725(x)) is a OT;-space.

Proof. Let (f(X), T25(x)) be an ordinary smooth subspace of (Y, 73). For any a,b € f(X)
such that a # b. Since f is an injective, then f~!(a) # f~1(b). Since (X, 1) is a OT}-
space, then there exist U,V € S(;) such that f~*(a) € U, f~1(b) ¢ U and f~1(b) €
V, f~'(a) ¢ V. Since f is an ordinary smooth continuous and (f (X), To(x)) is an ordinary
smooth subspace of (Y, ) and f(U), f(V) C f(X), then

0 <7n(U) < 7a(f(U)) < mopex) (f(U)),

0<7(V) <n(f(V)) < mpx)(f(V)).
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Thus f(U), f(V) € S(72f(x)). Since f is an injective, then a € f(U), b ¢ f(U) and
be f(V), a¢ f(V). Hence (f(X), Tap(x)) is a OT;-space. O

Proposition 3.2.10. An osts (Y, 7,) is a OTi-space. If f : X — Y is an injective and
ordinary smooth open, then (f~'(Y"), 71 -1(y)) is a OT-space.

Proof. Let (f~*(Y'), 714-1(v)) be an ordinary smooth subspace of (X, 7). For any a,b €
f7YY) such that a # b. Since f is an injective, then f(a) # f(b). Since (Y, 7) is a
OT;-space, then there exist U,V € S(72) such that f(a) € U, f(b) ¢ U and f(b) €
V, f(a) ¢ V. Since f is an ordinary smooth open and (f~*(Y"), 714-1(y)) is an ordinary
smooth subspace of (X, 7;) and f~1(U), f~1(V) C X, then

T (fTH0)) 2 n(f7H(U)) = (V) >0,

T (1 (V) 2 n(f7H(V) = (V) > 0.
Thus f~4(U), f~1(V) € S(m1-1y)) Since f is an injective, thena € f~1(U), b ¢ f~(U)
andbe f7Y(V), a¢ f71(V). Hence (f'(Y), 714-1(y)) is a OT}-space. O

3.3 OTs-spaces

In this section, we will introduce the notion of OT5-spaces and investigate some

of their properties.

Definition 3.3.1. An osts (X, 7) is called a OT5-space if and only if for each x,y € X
with z # y, there exist U,V € S(7) suchthatx € U,y € Vand U NV = (.

Example 3.3.2. Let X be a nonempty set. We define a mapping 7 : 2%X — I as follows:
T(A) =1,

for each A € 2%.

Then pair (X, 7) is called an ordinary smooth discrete topological space on X. For each
xz,y € X which x # y. Since 7({z}) = 1,7({y}) = 1, Then {z},{y} € S(r) and
{z} Nn{y} = 0. Therefore (X, 7) is a OTy-space.

&7 Mahasarakham University



19

Remark 3.3.3. If an osts (X, 7) is a OT5-space, then (X, 7) is a OT}-space.
Since (X, 7) is a OTs-space and =,y € X with x # y, there exist U,V € S(7) such that
relU,yeVandUNV =(.Hencex € U, y¢ Uandy € V, x ¢ V. Therefore (X, 7)

is a OT;-space.

Remark 3.3.4. If an osts (X, 7) is a OT}-space, then (X, 7) is not a OT5,-space, be seen

from the following example.

Example 3.3.5. By example 3.2.2. Let X be a infinite set. We define amapping 7 : 2% — I

as follows:

1, if A= () or A°is finite,
T(4) =

0, otherwise,

for each A € 2%
Clearly, (X, 1) is a OT}-space. But is not (X, 7) is a OT5-space. It is enough to prove
that UNV # () forall U,V € S(r) and U,V # (). By the definition of 7, we have that
U= X\{z1,29,....xp,} and V = X\{y1, Y2, ..., Y } for some 1, zo, ..., Tp, Y1, Y2, .-, Ym
and m,n € N. Then
UNV = (X\{x1, 22, ..., o }) 0 (X\{v1,v2, -, Ym })
= X\({z1, 2o, ...,z }) U{y1, Y25 s Ym })
£ 0.

Hence (X, 7) is not a OT5-space.
Proposition 3.3.6. Every subspace of OT5-spaces is also OT5-spaces.

Proof. Let (X, 1) be an OTs-space, let (A, 74) be an ordinary smooth subspace of (X, 7).
For any a;,ay € A such that a; # as. Since (X, 7) is a OT,-space, then there exist
UV € S(r)suchthata; € Ujaa € VandUNV =0. Let B=UNAand C =V N A.
Then

TA(B) = \/{T(U) :Ue2¥andUNA=DB)
> 7(U)

> 0,
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7a(C) =\/{r(V):V e2¥andV N A =C}
>7(V)

> 0,
and

BNC=(UNANVANA
—(UNV)NA

fnA
0.

So B,C € S(74) suchthat a; € B, ay; € C and BN C = (). Hence (A4, 74) is a OT)-
space. [

The next theorem, we give the equivalent conditions to be OT5-spaces.
Theorem 3.3.7. Let (X, 7) be an osts. Then the following conditions are equivalent:
(1) (X, 7)isa OT;-space.
(ii) Letp € X for ¢ # p there exists U € S(7),p € U such that ¢ ¢ U.
(iii) Foreachp € X, {U : U € S(r),p e U} = {p}.

Proof. (1) = (ii) Let p, g € X with g # p. Since (X, 7) is a OT3-space, there exist U, V €
S(7) such thatp € U,q € Vand U NV = (), then U C X\V. By Proposition 2.3.7 (i),
we have U C X—\V and by Proposition 2.3.10 (ii), then X—\V = X\V. Since g € V, then
q¢ X\V.Henceq ¢ U.

(ii) = (iii) Let p € X. We will show that N{U : U € S(7),p € U} = {p}. Clearly,
{p} CN{U : U € S(7),p € U}. Sufficient to proof that \{U : U € S(7),p € U} C {p}.
Let g € X,q # p, then g ¢ {p}. By (ii), then there exists U; € S(7),p € U such that
q¢ Uy Theng ¢ N{U : U € S(7),p € U}. Hence N{U : U € S(7),p € U} C {p}.
Therefore N{U : U € S(1),p € U} = {p}.

(iii)= (i) Assume that {p} = N{U : U € S(7),p € U}. Let p,q € X with p # ¢, then
q ¢ {pt =n{U :U € S(7),p € U}. Then there exists U; € S(7) such that p € U, and
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q ¢ U,. Since Uy = N{V € 2X : U; C V and 7(V*) > 0}, then there exists V' € 2% such
that U; CV, 7(V¢) >0andq ¢ V. Let K = V°. Since g ¢ V, then g € V¢ = K. Next,
we will show that K € S(7). Since K = V¢, then 7(K) = 7(V°¢) > 0. Hence K € S(7).
Next, to show that K N U; = (. Since VNV¢=0and U; C V. Then K NU; = (). Hence
(X, 1) 1s a OTs-space. O

The following results are the properties of O75-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.3.8. Let (X, 71) and (Y, 75) be two osts and let f : X — Y be an ordinary
smooth homeomorphism. Then (X, 75) is an OT5-space if and only if (Y, 75) is an OT5-

space.

Proof. (=) : Let y1,y> € Y such that y; # ys. Since f is a bijective, then there are
x1,x9 € X suchthaty; = f(x1),y2 = f(x2) and z1 # x5. Since (X, 1) is a OT;,-space,
then there exist U,V € S(7;) such that y € U,z € Vand U NV = (). Since f is an

ordinary smooth open, it follows that
m(f(U)) > (U) >0,

and

n(f(V)) > n (V) > 0.

Thus f(U), f(V) € S(r). Since f is a bijective, then y; € f(U),y, € f(V) and f(U) N
f(V)) = 0. Hence (Y, 75) is a OT»-space.

(<) : Let x1, 25 € X such that x; # x5. Since f is a bijective, then there are y;,y, € Y
such that 71 = f~1(y1), 2o = [~ (y2) and y; # yo. Since (Y, ) is a OTy-space, then exist
U,V € S(3) such that y; € U,y, € V and U NV = (). Since f is an ordinary smooth
continuous, it follows that

n(f7H(U)) 2 n(U) >0,

and

n(f7 (V) = (V) > 0.

Thus f~Y(U), f~1(V) € S(m). Since f is a bijective, thenz; € f~1(U), 2o € f~1(V) and
FHU)YN f7YV) = . Hence (X, 1) is a OT,-space. O
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Proposition 3.3.9. Let f : X — Y be an injective, ordinary smooth continuous map with
respect to the ordinary smooth topologies 71 and 75 respectively. If (Y, 72) is a OT;-space,

then so is a (X, 79).

Proof. Let x1, x5 € X such that z; # xs. Since f is an injective, we have f(x1) # f(z2).
Since (Y, 72) is a OTy-space, then there exist U, V' € S(72) such that f(z,) € U, f(z2) € V

and U N'V = (). Since f is an injective and ordinary smooth continuous, it follows that

([T (U)) = n(U) > 0,

and
zy = [TH(f(x2)) € fTHV).

So f~HU), f~4(V) € S(1) suchthatz, € f~1(U), 2y € f~1(V)and f~H(U)Nf~L(V) =
() . Hence (X, 1) is a OT5-space. O

Proposition 3.3.10. An osts (X, 7) is a OT,-space. If f : X — Y is an injective and
ordinary smooth open, then (f(X), 7o5(x)) is a OT5-space.

Proof. Let (f(X), T25(x)) be an ordinary smooth subspace of (Y, 73). For any a,b € f(X)
such that a # b. Since f is an injective, then f~!(a) # f~1(b). Since (X, 1) is a OT)-
space, then there exist U,V € S(7) such that f~*(a) € U, f71(b) e VandU NV = 0.
Since f is an ordinary smooth open and (f(X), T2¢(x)) is an ordinary smooth subspace of

(Y, ) and f(U), f(V) € f(X), then
0 <n(U) <7a(f(U)) < 72500 (f(U)),

0<7m(V)<n(f(V)) < mpx)(f(V)).

Thus f(U), f(V) € S(tauss(x)).Since f is an injective, then a € f(U),b € f(V) and
FU)N f(V) = 0. Hence, (f(X), Ta5(x)) is a OT»-space. O
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Proposition 3.3.11. An osts (Y, 73) is a OTs-space. If f : X — Y is an injective and

ordinary smooth continuous, then (f~'(Y"), 71 ¢-1(y)) is a OT,-space.

Proof. Let (f~(Y), #-1(v)) be an ordinary smooth subspace of (X, 7). For any a,b €
f7H(Y) such that a # b. Since f is an injective, then f(a) # f(b). Since (Y, ) is a OT5-
space, then there exist U,V € S(73) such that f(a) € U, f(b) € Vand U NV = (). Since
[ is an ordinary smooth continuous and (f~*(Y’), 71 y-1(y) is an ordinary smooth subspace

of (X, ) and f~H(U), f~1(V) C X, then
T (f 1 (U)) 2 (V) 2 n(U) >0,

Ty (fV) 2> m(fH(V)) > m(V) > 0.

Thus f~1(U), f~1(V) € S(71-1(y)). Since f isaninjective, thena € f~H(U),b e f~1(V)
and f~1(U) N f~4(V) = 0. Hence (f ~*(Y), T14-1(v)) is a OTy-space. O

3.4 OT;s-spaces

In this section, we will introduce the notion of OT3-spaces and investigate some

of their properties.

Definition 3.4.1. An osts (X, 7) is called a OT5-space if and only if for each A C X,
satisfying 7(A°) > 0, and each b € X, satisfying b ¢ A, there exist U, V' € S(7) such that
ACU,beVandUNV = 0.

Example 3.4.2. Let X = {a,b, c} and we define the mapping 7 : 2% — [ as follows:
7(X)=70)=1,7({a}) =0.6,7({b,c}) =0.4and 7(A) = 0if A ¢ {X,0,{a},{b,c}}.
Clearly, (X, 7) is an osts. Since {a}, {b, c} € S(7) such that {a} N {b,c} = 0. Hence (X, T

) is a OT5s-space. But (X, 7) is a OT5-space, because b, c are not disjoint.
We now give an example of an osts which is not a O7T3-space.

Example 3.4.3. Let X = {a, b} and we define a mapping 7 : 2% — I as follows: 7(X) =
7(0) = 1,7({a}) = 0.9,7({b}) = 0. Clearly, (X, 7) is an osts. Since X is the only set in
S(7) which contains {a, c}, that means there are no U € S(7) such that X NU # (). Hence

(X, 1) is not a OT3-space.
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Definition 3.4.4. An osts (X, 7) is said to be a OT-regular space if (X, 1) is a OT3-space
and OT7-space.

Theorem 3.4.5. Let an osts (X, 7) is a OT -regular space, then (X, 7) is a OT»-space.

Proof. Let (X, 1) is a OT-regular space. Then (X, 7) is a OT3-space and OT;-space. We
will show that (X, 7) is a OT;y-space. Let z,y € X such that x # y. Since (X, 7) is a
OT-space, there exist U,V € S(7) suchthatx € U, y ¢ Uandy € V, x ¢ V. Since
x € U,thenz ¢ X\U and

T(X\U)°) =7(U) > 0.

Since (X, 7) is a OT3-space, there exist W, Z € S(7) such that X\U C W, z € Z and
WnNZ=4. Sincey ¢ U,theny € X\U C Wandx € Zand W N Z = (). Therefore
(X, 1) is a OTs-space. [

Theorem 3.4.6. Every subspace of OT3-spaces is also OT5-spaces.

Proof. Let osts (X, 7) be a OTj3-space and let (A, 74) be an ordinary smooth subspace of
(X, 7). Forany B C A, satisfying 74(B°) > 0, and each a € A, satisfying a ¢ B. Since

Ta(B) = \/{7(C): C €2¥ and C N A = B*4}.

Then CNA = B, s0 AN B4 C Cand BNC = (). Let 74(B*) = 4. Since
§=\V{7(C): C € 2¥ and CN A = B4}, then there exists C’ C 2%, C'N A = B such

that

) b 4
T(Cl)>TA(BCA>—§:(5—§:§>O.

Since (X, 7) is a OTj3-space, there exist U,V € S(7) such that (C')* C U, a € V and
UNV=0.LetE=UNAand F =V N A,
Ta(E) = \/{r(U): U €2 and UN A = E}
> 7(U)
>0
TA(F) :\/{T(V) Ve2XandVNA=FE}
>7(V)

> 0
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and ENF={UnNANVNA)

=UnNnV)NnA

DN A
0.

Then E,F € S(74) suchthat B C F,a € F and EN F = (). Hence (A, 74) is a OT3-
space. 0

The next theorem, we give the equivalent conditions to be OT3-spaces.
Theorem 3.4.7. Let (X, 7) be an osts. Then the following conditions are equivalent:

(i) (X,7)is a OT;-space.

(ii) For each x € X and each U containing x, satisfying 7(U) > 0, there exists

a set V containing z, satisfying 7(V) > O suchthatz € V C V C U.

(iii) For each x € X, and each A not containing x, satisfying 7(A°) > 0, there

exists a set V, satisfying 7(V') > 0 containing z such that V' N A = (.

Proof. (1) = (ii) Let x € X and each U containing z, satisfying 7(U) > 0, then x ¢ X\U
and

T(X\U)) = 7(U) > 0.

Since (X, 7) is a OT3s-space, there exist V. W € S(7) such that z € V, X\U C W and
VAW = (), then V C X\W. By Proposition 2.3.7 (i), then V C X\—W and by Proposition
2.3.10 (i), then X\W = X\W. SoV C X\W,but X\W C U. Hence V C U. Therefore
reVCVCU.

(ii) = (iii) Let x € X and A C X, satisfying 7(A°) > 0,2 ¢ A, then z € X\ A. By (ii),
then there exists V/, satisfying 7(V) > 0,7 € V such thatz € V C V C X\A. Since
AN (X\A) =0,hence VN A=0.

(iii) = (i) Assume that A C X, satisfying 7(A¢) > 0, and let b € X, satisfying b ¢ A.
By (iii), then there exists V, satisfying 7(V') > O such that V. N A = (), b € V. Since
VNA=0andV =n{F € 2X : V C F and 7(F°) > 0}, then there exist F' € 2% such
that V C F, 7(F°) >0and AN F = (). Hence A C F°,b € V and F*°,V € S(7). Since
V C Fand FNF°=(,then V N F° = (). Hence (X, 7) is a OT3-space. O
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The following results are the properties of O73-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.4.8. Let (X, 1) and (Y, 75) be two osts and let f : X — Y be an ordinary
smooth homeomorphism. Then (X, 75) is an OTj3-space if and only if (Y, ) is an OT5-

space.

Proof. (=) : Let f : X — Y be an ordinary smooth homeomorphism and let A C Y,
satisfying (m2(A°) > 0) and b € Y/, satisfying b ¢ A. Since f is a bijective and ordinary
smooth continuous, then f~1(b) ¢ f~1(A) and

T (fHA)Y) = 1 (fHAY) > 7(A°) > 0.

Since (X, 71) is a OT3-space, then there exist U, V' € S(7;) suchthat f~1(A) C U, f~1(b) €

Vand U NV = (). Since f is an ordinary smooth open, it follows that
0< T1(U) < TQ(f(U)) and 0 < 7'1(V) < T2(f<V))

Thus f(U), f(V) € S(2) since f is an injective, then A C f(U),b € f(V)and f(U) N
f(V)) = 0. Hence (Y, 5) is a OT3-space.

(<) : Let A C X, satisfying (11(A°) > 0) and b € X, satisfying b ¢ A. Since f is a
bijective, then f(b) ¢ f(A). Since f is an ordinary smooth closed

To(f(A)°) = 1 (f(A°)) > T (A°) > 0.

Since (Y, 72) is a OT3-space, then there exist U,V € S(m,) such that f(A) C U, f(b) € V

and U NV = (). Since f is an ordinary smooth continuous, it follows that
0<7(U) <n(f'(U))and 0 < n(V) < 1 (fH(V)).

Thus f~Y(U), f~(V) € S(m1). Since f is an injective, then A C f~1(U),b € f~(V) and
Y U)N f7YV) = 0. Hence (X, 11) is a OTs-space.
[

Proposition 3.4.9. Let f : X — Y be injective, ordinary smooth closed and ordinary

smooth continuous map with respect to the ordinary smooth topologies 71 and 7, respec-
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tively. If (Y, 75) is a OT}-space, then so is a (X, 7).
Proof. Let A C X, satisfying 71(A°) > 0 and b € X satisfying b ¢ A. Since f is an
injective and ordinary smooth closed, then f(b) ¢ f(A) and

72(f(A)) = 1a(f(A%)) = 7 (A°) > 0

Since (Y, 12) is a OTj3-space, then there exist U,V € S(7y) such that f(A) C U, f(b) € V

and U N'V = (). Since f is an injective and ordinary smooth continuous, it follows that
n(fHU)) > 1(U) > 0and 71 (f1(V)) > (V) >0,

AN V) =0,
A= [N (f(A) C U,

and

b=f(f(b) € fH(V).

So f~YU), f~1(V) € S(m1)suchthat A C f~Y(U),b e f~1(V)and f~1({U)Nf~YV) =0
. Hence (X, 11) is a OT}-space. [

Proposition 3.4.10. An osts (X, 7y) is a OT5-space. If f : X — Y is an injective,ordinary

smooth continuous and ordinary smooth open, then (f(X), 725(x)) is a OT3-space.

Proof. Leta € f(X)and A C f(X), satisfying Tof(X (A%‘(X)) >0anda ¢ A. Since
Topx) (A9) = \/{n(C) : € € 2" and C' N f(X) = A%},

then CNf(X) = A%, Hence f(X)NA%® C C'and ANC = 0. Let 7op(x)(AY) = 6.
Then 6 = \/{7(C) : C € 2¥ and C N f(X) = A% }. Thus there exist C' C 2¥,C' N
f(X) = A% such that

, 1)
75(C") > Topx)(AT0) — 3
1)
=5-3

_9
2
> 0.
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Since f is ordinary smooth continuous we have

n(fH(C") = n((C") > 0.

And since a ¢ A, thena € A0, But A% = "N f(X). Thusa € C"and a € f(X).
Hence a ¢ (C")°. Since f is an injective, then f~!(a) ¢ f~1((C")°) = (f~1(C"))°. Since
(X, 1) is a OT3-space, then there exist U, V' € S(7;) such that f~!((C")¢) C U,a € V and
UNV =0. Since f is an ordinary smooth open and (f(X), 7o7(x)) is an ordinary smooth
subspace of (Y, 73) and f(U), f(V) C f(X), then

0 <7n(U) <7a(f(U)) < mopex) (f(T)),

0<7(V) < n(f(V)) < mpx)(f(V)),

Thus f(U),(f(V)) € S(mpx)). Since f is an injective, then a € f(V), (C')° =
FUH(C)9)) C f(U)and f(U) N f(V) = 0. Hence (f(X), Tap(x)) is a OTs-space. [

Proposition 3.4.11. An osts (Y, 73) is a OT3-space. If f : X — Y is an injective, ordinary

smooth closed and ordinary smooth open, then (f~1(Y), 7 F-1(v)) is a OT3-space.
Proof. Leta € f~'(Y)and A C f~1(Y), satisfying 7 4-1(y)(A“'™) > Oand a ¢ A.
Since f is an injective, then f(a) ¢ f(A). Since

7—1f‘1(Y)(ACf71(Y)) = \/{Tl(C) Ce2¥and N fﬁl(Y) = A},

Then C' N f~1(Y) = A% ™. Hence f[~{(Y)N AY'o» C Cand ANC = (. Let
Tip-1(vy (A7) = 6. Then 6 = \/{r(C): C € 2¥ and C' N f~1(Y) = A~' }. Thus
there exist C’ C 2%, C' N f~1(Y) = A% '™ such that
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Since f is an ordinary smooth open we have
7 (f(C) > 1 (C") > 0.

And since a ¢ A, thena € A%, But A%') = ' N f~4Y). Thus a € C’ and
a € f~1(Y). Hence a ¢ (C")°. Since f is an injective, then f(a) & f((C")¢) = (f(C"))".
Since (Y, 72) is a OT3-space, there exist U,V € S(7y) such that f(C’) C U, f(a) € V
and U NV = (. Since f is an ordinary smooth continuous and (f~'(Y'), 71 4-1(y))) is an

ordinary smooth subspace of (X, 7;) and f~1(U), f~1(V) C X, then
0<7(U) <ni(fH(U)) < g0 (f7HU)),

0<n(V)<n(f (V) <o (fH V).

Thus f~*(U), (V) € S(r1-1(v))- Since f is an injective, then a € f~1(V), (C")* C
f7HU) and f~HU) N f~1(V) = 0. Hence (f ' (Y'), 714-1(y)) is a OT}3-space. O

3.5 OT},-spaces

In this section, we will introduce the notion of OT}-spaces and investigate some

of their properties.

Definition 3.5.1. Anosts (X, 7)is called a OT}-space if and only if for each A, B C X are
disjoint in X, satisfying 7(A°) > 0,7(B¢) > 0, there exist U,V € S(7) such that A C U,
BCVandUNV =.

Example 3.5.2. Let X = {a,b, ¢} and we define the mapping 7 : 2% — I as follows:
7(X) = 7(0) = 1,7({a}) = 0.6, 7({b}) = 0.4,7({a,b}) = 0.5 and 7(A) = 0if A ¢
{X,0,{a}{b},{a,b}}. Clearly, (X, ) is an osts. Let consider X, 0, {c}, {a, b} and {qa, c}
such that X, 0, {c}¢,{a,b}c € S(r). Then AN B # ( for all A,B C X such that
7(A°) > 0,7(B°) > 0 which A # B and A, B # (). Hence (X,7 ) is a OT,-space.
Furthermore, (X, 7 ) is a not a OTs-space. Since a ¢ {c}, which 7({c}) > 0 and there

exists X € S(7) contains a.

Definition 3.5.3. An osts (X, 7) is said to be a OT-normal space if (X, 7) is a OT-space
and OT}-space.
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Theorem 3.5.4. Let an osts (X, 7) is a OT-normal space, then (X, 7) is a OT-regular

space.

Proof. Let (X, 7) be an OT-normal space. Then (X, 7) is a OT}-space and OT;-space. We
will show that (X, 7) is a OT-regular space. sufficient to proof that (X, 7) is a OT3-space.
Let ' C X, satisfying 7(F°) > 0, and let € X, satisfying z ¢ F, then z € X\F.
Since F' N F° = (), then {z} N F = (. Since (X, 7) is a OT}-space, then {z} = {z}, then
{z} N F = . Hence, there exists U € 2% such that {z} C U, 7(U¢) > 0and FNU = {.
Since (X, 7) is a OT}-space, then there exist W, Z € S(7) such that U C W, F' C Z and
W N Z ={. Since x € U, then x € W. Hence (X, 7) is a OT3-space. Therefore (X, 7) is
a OT'-regular space. [

Theorem 3.5.5. Every subspace of OT-space is also OT-space.

Proof. Let an osts (X, 7) be a OT}-space and let (A, 74) be an ordinary smooth subspace
of (X,7)and let £, F C A, satisfying E4, F°4 € S(14) and E N F = (). Since

Ta(E) = \/{r(C): C €2¥ and C N A = E*1},

Ta(F) = \/{r(C): C€2¥and C N A = F*'},

thenCNA=FEACNA=F Hence ANE4 CC ANFAC Cand ENC =
0, FNC =10. Let To(E4) = 61 and 74(F“4) = J,. Since

o = \/{T(C) :Cc2¥and C N A= E“)},

6 =\/{r(C):C €2 and CN A =F},

then there exist C’, C” C 2%, 0" N A = E°4 and C" N A = F*°4 such that

7(C') > Ta(E) —%
)
_&_é
_ 0
2
>0,
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)
7(C") > 7 (FCA)—E2
)
_52_52
_ %
2
>0

Since (X, 7) is a OT}-space, there exist U,V € S(7) such that (C")¢ C U, (C")¢ C V and
UNV=0.LetW=UnNAand Z =V N A,

TA(W) I\/{T(U) Ue2XandUNA=W}
> 7(U)

>0,

a(Z) =\/{r(V):Ve2¥ad VNA=2}
>7(V)

> 0,

and WNnZ=UnAnnNA,

=(UNV)NA,
=0NA,
0.

SoW,Z € S(ta) suchthat E C W, F C Zand W N Z = (). Hence (A, 7,4) is a OT}-
space. [

The next theorem, we give the equivalent conditions to be OT-spaces.
Theorem 3.5.6. Let (X, 7) be an osts. Then the following conditions are equivalent:
(i) (X,7)is a OTy-space.

(il) IfU C X, satisfying 7(U) > 0 is a superset of a set A, satisfying 7(A°) > 0,
then there exists V, satisfying 7(V) > Osuchthat ACV CV C U.
M
12
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(iii) For each pair of disjoint sets A, B satisfying 7(A¢) > 0,7(B¢) > 0, there
exists U, satisfying 7(U) > 0 which A C Uand U N B = ().

(iv) For each pair of disjoint sets A, B C X, satisfying 7(A°) > 0,7(B¢) > 0,
there exist sets U,V € S(7) suchthat AC U, BCV andU NV = 0.

Proof. (1) = (ii) Let A C X, satisfying 7(A°) > 0 and U C X, satisfying 7(U) > 0 such
that A C U. Let F = X\U which

T((X\F)) = 7(X\(X\U)) = 7(U) > 0,

and ANF = (). Since (X, 7) is a OT}-space, there exist V, W € S(7)suchthat A C V| F C
Wand VAW = 0. SoV C X\W. By Proposition 2.3.7 (i), then V. C X\IW. And by
Proposition 2.3.10 (ii), then X\W = X\W. Thus V C X\W, but X\W C X\F = U.
Hence V C U . Therefore ACV CV C U.

(if) = (iii) Let A, B C X, satisfying 7(A¢) > 0,7(B¢) > 0 which AN B = (). By (ii),
then ACU CU C X\B. Hence UN B = ().

(i) = (iv) Let A, B C X, satisfying 7(A¢) > 0, 7(B°) > 0 which AN B = 0. By (i),
then there exists U, 7(U) > Owith A C Uand U N B = (). Since U = N{F € 2X : U C
Fand 7(F°) > 0}, then there exists F' € 2% suchthat U C F, 7(F¢) > 0and BN F = ().
By assumption, then there exists V' %S r((ﬁ f#ﬁvﬁand V N F = (. Consider,

VNF
0.

Hence V N U = (). Therefore Hence (iv) is true.

(iv) = (i) Let A, B C X, satisfying 7(A¢) > 0,7(B¢) > 0 and A N B = (). By (iv), then
there exist set U,V € S(7) suchthat AC U BC VandUNV = (. Since U C U and
V C Vthen U NV = (). Hence (X, 7) is a OT}-space. [

The following results are the properties of O7);-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.5.7. Let (X, 1) and (Y, 75) be two osts and let f : X — Y be an ordinary
smooth homeomorphism. Then (X, 75) is an OTy-space if and only if (Y, ) is an OT}-

space.
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Proof. (=) : Let A, B are disjoint in Y/, satisfying A¢, B¢ € S(1y) . Since f is a bijective

and an ordinary smooth continuous, then
AN fH(B) =0

T(fTHA)) = nu(f (A7) = (A7) > 0,

and

n(f1(B)*) = nu(f1(B°)) = n(B°) > 0.

So f71(A), f~1(B)¢ € S(m). Since (X, 1) is a OT}-space, then there exist U, V € S(7;)
such that f~1(A) C U, f~1(B) CV and U NV = (). Since f is an ordinary smooth open,
it follows that

0<7(U) <7(f(U))

and

0 <n(V) <n(f(V)).

Thus f(U), f(V) € S(m). Since f is a bijective, then A C f(U), B C f(V) and
FU)N f(V)=0. Hence (Y, 2) is a OTy-space.

(<=): Let A, B are disjoint in X, satisfying A°, B¢ € S(m) . Since f is a bijective and an
ordinary smooth closed, then

f(A)Nf(B)=10
72(f(A)%) = 72 (f(A%)) = 1 (A%) >0,

and

n(f(B)°) = n(f(B%)) > n(B°) > 0.

So f(A)¢, f(B)° € S(m). Since (Y, 72) is a OTy-space, then there exist U, V' € S(72) such
that f(A) C U, f(B) C Vand U NV = (. Since f is an ordinary smooth continuous, it
follows that

0<n(U) <7n(f1(V))
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and

0 <m(V) < n(fH(V)).

Thus f~Y(U), f~(V) € S(m). Since f is a bijective, then A C f~*(U), B C f~(V)
and f~H(U)N f~Y(V) =0 . Hence (X, 1) is a OT-space. O

Proposition 3.5.8. Let f : X — Y be an injective, ordinary smooth closed and ordinary
smooth continuous map with respect to the ordinary smooth topologies 7, and 7, respec-

tively. If (Y, 75) is a OT);-space, then so is a (X, 7).

Proof. Let A, B C X, satisfying A¢, B € S(m). Since f is an injective and ordinary

smooth closed, it follows that

Since (Y, 12) is a OT}-space, there exist U,V € S(7,) such that f(A) C U, f(B) C V and

UNV =(. Since f is an injective and an ordinary smooth continuous, it follows that
n(f71(U)) = (V) >0,

n(f71(V)) = (V) >0,
[O)nfHv) =0,
A= [THf(A) € 1)
and
B=f(f(B)) S fH(V).

So f~X(U), f7Y(V) € S(r)suchthat A C f~Y(U),B C f~*(V)and f~H{U)Nf~Y(V) =
(). Hence (X, 1) is a OT}-space. O

Proposition 3.5.9. An osts (X, 1) is a OTy-space. If f : X — Y is an injective, ordinary

smooth continuous and ordinary smooth open, then (f(X), 725(x)) is a OT}-space.
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Proof. Let A, B are disjoint in f(X), satisfying A0, BX) € S(7y5(x)) . Since f is an

injective, there exist f~1(A), f~!(B) are disjoint in X. Since
Tapx) (AT \/{7'2 :Ce2¥and ON f(X) = A%},

Top0) (A7) = \/{n(C) : € € 2" and C' N f(X) = BYM},

then C' N f(X) = A%, C N f(X) = B, Hence f(X) N A% C C, f(X)N
B C Cand ANC =0, BNC = 0. Let myp(x) (A7) = 61 and o (x) (BY) = b
Then

01 = V{T2(C) :Ce2¥and CN f(X) = A0},
02 = \/{TQ(C) :Ce2¥and CN f(X)=Bso},
Thus, there exist ¢, C” C 2V, C" N f(X) = A%, C" N f(X) = B such that

7(C") > Top(x) (AT) — 52—1

0
:@_é
_a
2
>0

0.
(") > Tagon (A7) = 2

)
:52_52
_%
2
>0

Since f is an ordinary smooth continuous we have
n(f7H(C") = =((C") > 0,

n(f7H(C") = n((C")) > 0

Since (X, 11) is a OT-space, there exist U, V' € S(71) such that f~*(C")¢ C U, f~1(C")* C
Vand UNV = 0. Since f is an ordinary smooth open and (f(X), 727(x)) is an ordinary
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smooth subspace of (Y, 72) and f(U), f(V) C f(X), then
0 <m(U) <7a(f(U)) < 7p00) (f(U)),

0 <n(V) < 7(f(V)) < 500 (f(V)).
Thus f(U), (f(V)) € S(72px)). Since f is an injective, then A C (C")* C f(U),B C

(C")e C f(V)and f(U)N f(V) = 0. Hence, (f(X), T25(x)) is a OTy-space. O

Proposition 3.5.10. An osts (Y, 1) is a OTy-space. If f : X — Y is an injective, ordinary

smooth open and ordinary smooth continuous, then (f~'(Y'), 795-1(yy) is a OT}-space.
Proof. Let A, B are disjoint in f~'(Y'), satisfying A", B~ € S(7y4-1(y)) . Since
f is an injective, there exist f(A), f(B) are disjoint in Y. Since

i1y (AT O =\{n(C):Ce2¥and C N f(Y) = A},

T1p-1(v)(A° 7o \/{ﬁ Ce2Xand CN f—l(Y) - BC?W)})

then C'N f(Y) = Ao, C' N f71(Y) = B '™, Hence f~H(Y) N A% ') C
C,fMY)NB% ' CCand ANC = 0,BNC = 0. Let 7y7-1(y) (A7) = 6, and
Tip-1(v) (B 7' ) = 0,. Then

0 = \/{71(0) Ce2¥and CN ffl(Y) = A%},

b =\/{n(C):Ce2¥and C N (V) = B},

Thus, there exists C',C” C 2% . C' N f~Y(Y) = A%'on, C" N f~Y(Y) = B~ such
that

)
7'1(0/) > Tlf—l Y)(Acfil(y)) — 51

)
:51_51
2
>0
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Since f is an ordinary smooth open we have
7(f(C") =2 1(C') > 0, (f(C")) = n(C") >0

Since (Y, 12) is a OTj-space, there exist U,V € S(73) such that f(C")c C U, f(C")* CV
and U NV = (. Since f is an ordinary smooth continuous and (f~'(Y'), 714-1(y)) is an

ordinary smooth subspace of (X, 7;) and f~1(U), f~1(V) C X, then
0<7(U) <n(fH(U)) < mipaony (f7H(0)),

0 < (V) <7i(f (V) < mopron)(f V)

Thus f~1(U), (f~*(V)) € S(714-1(y))- Since f is aninjective, then A C (C") C f~1(U),B C
(C") C f~YV)and f~HU)NfH(V) = 0. Hence, (f~1(Y), T15-1(yv)) isa OTy-space. [

3.6 OTs-spaces

In this section, we will introduce the notion of OT5-spaces and investigate some

of their properties.

Definition 3.6.1. An osts (X, 7) is called a OT5-space if and only if for each A, B are
separated sets in X (AN B = () and AN B = () there exist U, V € S(7) such that A C U,
BCVandUNV = 0.

Example 3.6.2. Let X = {a,b, ¢} and we define the mapping 7 : 2% — [ as follows:
7(X)=70)=1,7({b}) = 0.6,7({a,c}) =0.4and 7(A) = 0if A ¢ {X,0,{b},{a,c}}.
Clearly, (X,7) is an osts. Since {b} = {b} and {a,c} = {a,c}, then {b} N {a,c} = 0
and {b} N {a,c} = (. Hence {b}, {a,c} are separated sets in X and {b},{a,c} € S(7).
Therefore (X, 7) is a OT5-space.

Theorem 3.6.3. Let an osts (X, 7) be a OTs-space, then (X, 7) is a OT)-space.
Proof. Let (X, 7) be an OT5-space and A, B C X, with AN B = {) such that 7(A°) >

0,7(B°) > 0. By Proposition 2.3.10 (ii), then A = A, B = B. Since AN B = () we have
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ANB =(and AN B = (. Since (X, 7) is a OTs-space, there exist U, V € S(7) such that
ACU,BCVandUNV = (. Thus (X, 7) is a OT}-space. O

Theorem 3.6.4. Every subspace of OT5-space is also OT5-space.

Proof. Letan osts (X, 7) is a OTs-space and let (A, 74) be an ordinary smooth subspace of
(X, 7)and let M, N are separated sets in A, (M NN =@ and M NN = ()). Since A C X,
then M, N C X. Since M, NinX are subset of M, N € A, respectively. Then M, N are
separated sets in X. And since (X, 7) is a OTs-space, there exist U,V € S(7) such that
MCUNCVandUNV =0.LetW =UnNAandZ =V NA,

Ta(W)=\/{r(U): U €2 andUN A=W}
> 7(U)

>0

ma(2)=\/{r(V):V €2 and VN A = 2}
>7(V)

>0

and
WnNnzZ=UnAnN{VNA),
=(UNV)NA,

0N A,
0.

SoW,Z € S(7a) suchthat M C W, N C Zand W N Z = (). Hence (A, 74) is a OT5-
space. [

The following results are the properties of OT5-spaces under some kinds of ordi-

nary smooth maps.

Proposition 3.6.5. Let (X, 1) and (Y, 75) be two osts and let f : X — Y be an ordinary
smooth homeomorphism. Then (X, 75) is an OTs-space if and only if (Y, 75)is an OT}-

space.
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Proof. (=) : Let A, B are separated sets in Y. Since f is a bijective,ordinary smooth

continuous and ordinary smooth closed, then

and

AN B = (AN f(B)=AnB =0.
So f7Y(A), f~1(B) are separated sets in X. Since (X, 1) is a OTs-space, then there exist
U,V € S(r1) such that f~'(A) C U, f~4(B) C Vand U NV = {). Since f is ordinary

smooth open, it follows that

0 <n(U) <7(f(U))

and

0<7n(V)<m(f(V)).

Thus f(U), f(V) € S(7). Since f is a injective, then

and
FO)YNfV)=0.

Hence (Y, 75) is a OT5-space.
(<) : Let A, B are separated sets in X. Since f is a bijective,ordinary smooth continuous

and ordinary smooth closed, then

FANf(B)=f(A)Nf(B)=ANB =0

and

F(A)NFB) = FA)Nf(B) = AnB =0,

So f(A), f(B) are separated sets in Y. Since (Y, 72) is a OTs-space, then there exist U, V' €
S(72) such that f(A) C U, f(B) € Vand U NV = (). Since f is ordinary smooth
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continuous, it follows that
0<mU) <n(f(U))

and

0 <m(V) < n(f (V).

Thus f~1(U), f~(V) € S(r1). Since f is a injective, then

A= fYf(A) C ),

and

Hence (X, 11) is a OT5-space. O

Proposition 3.6.6. Let f : X — Y be an injective,ordinary smooth closed and ordinary
smooth continuous map with respect to the ordinary smooth topologies 7, and 7, respec-

tively. If (Y, 75) is a OT5-space, then so is a (X, 7).

Proof. Let A, B are separated set in X. Since f is a bijective,ordinary smooth continuous

and ordinary smooth closed, then

fFAYNFB)=f(ANf(B)=AnB=0

and

FAANF(B)=f(A)Nf(B)=AnB=0.

So f(A), f(B) are separated sets in Y. Since (Y, 72) is a OTs-space, then there exist U, V' €
S(7) such that f(A) C U, f(B) € Vand UNV = (). Since f is an injective and ordinary

smooth continuous, it follows that
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fo)nfiv) =0,
A=fTH(f(A) c fFU)
and
B=[7'(f(B) C f(V).
Hence (X, 11) is a OT5-space. O
Proposition 3.6.7. An osts (X, ;) is a OTs-space. If f : X — Y is an injective, ordinary

smooth continuous, ordinary smooth closed and ordinary smooth open, then (f(X), Tof(x))

is a OT5-space.

Proof. Let A, B are separated set in f(X). Since A, B in Y are subset of A, B in f(X)
respectively, then A, B are separated set in Y. Since f is an injective, ordinary smooth

continuous and ordinary smooth closed, then

FFHANHB) = AN (B)=AnB =0
and

AN fUB) = (AN fH(B)=ANB =0.

Hence f~1(A), f~1(B) are separated set in X. Since (X, 7;) is a OTs-space, then there
exist U,V € S(7;) such that f~}(A) C U,f*(B) C VandUNV = (. Since f is
an ordinary smooth open and (f(X), 72f(x)) is an ordinary smooth subspace of (Y, 7,) and

f(U), f(V) C f(X), then
0 <n1(U) <7(f(U)) < 7a50x)(F(U)),

0<m(V) <7n(f(V)) < 1mpx)(f(V)).

Since f is an injective, then

AC f(U),BC f(V),
fU)nfv)=0.

So, there exist f(U), (f(V)) € S(72fx)) such that A C f(U),B C f(V)and f(U) N
f(V) = 0. Hence, (f(X), 7fx)) is a OT5-space.
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Proposition 3.6.8. An osts (Y, 73) is a OTs-space. If f : X — Y is injective, ordinary

smooth continuous and ordinary smooth open, then (f~'(Y'), 714-1(y)) is a OTs-space.

Proof. Let A, B are separated setsin f~*(Y"). Since A, Bin X are subsetof A, Bin f~(Y)
respectively, then A, B are separated sets in X. Since f is an injective, ordinary smooth

continuous and ordinary smooth closed, then

fANf(B)=f(A)Nf(B)y=ANB=1
and
f(A) N TB) = (AN J(B) = AnB =0.

Hence f(A), f(B) are separated set in Y. Since (Y, 72) is a OT5-space, then there exist
U,V € S(m) such that f(A) C U, f(B) CVandUNV = (. Since f is an ordinary
smooth continuous and (f~*(Y"), 71 y-1(y)) is an ordinary smooth subspace of (X, 71) and

fFHU), f7YV) C X, then
0<nU) <n(f(U) < (1)),

0<n(V)<n(f (V) <mpon(f (V).

Since f is an injective

So, there exist [~ (U), f~'(V) € S(mi-1(vy) such that A C f~1(U),B C f~(V) and
f7HU) N fH(V) = 0. Hence, (f ~*(Y), T14-1(v)) is a OTs-space. O

The following diagram illustrates the relationship between the spaces discussed in

this chapter.
OTy-spaces OT3-spaces

1 |

OTs-spaces — OT-normal — OT-regular

|

OTy-spaces ~—— OT;-spaces ~—— (OT;-spaces




CHAPTER 4

OST-DENSE SETS

In this chapter, we introduce the concepts of O.ST-dense sets on ordinary smooth

topological spaces and study some fundamental of their properties.

4.1 OST-dense sets

In this section, we will introduce the notion of O ST'-dense sets on ordinary smooth

topological spaces and investigate some of their properties.
Definition 4.1.1. A set A is a OST-dense set in X if and only if A = X.

Example 4.1.2. Let X = {1,2,3} and we define the mapping 7 : 2X — [ as follows:
7(X) =7(0) = 1,7({1}) = 0.7,7({3}) = 0.4,7({1,3}) = 0.5,7({2,3}) = 0.3 and
T(A) =0if A ¢ {X,0,{1},{3},{1,3},{2,3}} . Thus {1,3} = X, and we have {1,3} is
a OST-dense setin X.

The following results therefore follows directly from the definition of O.S'T-dense

sets.

Lemma 4.1.3. A set A is a OST-dense set in X if and only if U° N A # () for all subset U
of X with U° # ().

Proof. (=) : Assume that A is a OST-dense setin X. Then A = X. We will show that
U° N A # () for all subset U of X with U° # (). Let U° # (). Suppose that U° N A = ().
Since U° # (), there exists Vo C U, 7(Vp) > 0 and Vy # 0. Since U° N A = (J, then

VonA=0.SoAC (Vy)®and 7(Vp) > 0. By Proposition 2.3.7 (i), then A C (V). From
Proposition 2.3.10 (ii), we have (Vj)¢ = (V5). Hence A C (V;)°. Thus

0#Vo=X\ (Vo) C X\ A

Which contradicts with A = X . Therefore U° N A # .
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(<) : Assume that U° N A # () for all subset U of X with U° # (). To show that
A= X.Since U°NA # (), then A # (). So A # (). Suppose that A # X. Then X \ A # ().
Since X \ A = (X \ A)°, by assumption,

0#(X\A°NAC(X\A)NA.

It is a contradiction. Therefore A = X. O]

Theorem 4.1.4. Let (X, 7) is an osts and A C X. Then the following conditions are

equivalent:
(i) Aisa OST-dense setin X.

(ii) If F' is a nonempty subset of X, satisfying 7(F°) > 0 and A C F', then
F=X.

(iii) If for all subset U of X with U° # (), then U° N A # .

Proof. (i) = (ii) : Assume that A is a O.ST-dense set in X.Let F' be a nonempty subset of
X, satisfying 7(F°) > 0 and A C F. We will show that /' = X. By Proposition 2.3.7 (i),
we have A C F. From Proposition 2.3.10 (ii), we have F' = F. Since A is OST-dense set
inX,then A=X. Thus X =AC F=Fand F C X. Hence F = X.

(ii) = (iii) : Assume that (ii) holds. We will show that U° N A # () for all subset U of X
with U° # (). Let U be a subset of X such that U° # (). Suppose that U° N A = (). Since
U° # (), there exists Vo C U, 7(Vp) > 0and Vj # (). Since U°NA = ), then VN A = 0. So
A C (V)¢ and 7(Vp) > 0. By assumption, (V5)¢ = X, then Vy = (). Tt is a contradiction.
Therefore U° N A # .

(i11) = (1) : It follows from Lemma 4.1.3. [

Theorem 4.1.5. Let X be an osts and A be a subset of X. Then A is OST-dense set in X
if and only if (X \ A)°=10.

Proof. (=) : Assume that A is OST-dense setin X, i.e., A = X. Then X \ A = (). By
Proposition 2.3.7 (v), then X \ A = (X \ A)°. Hence (X \ A)° = ().

(<=) : Assume that (X \ A)° = (). By Proposition 2.3.7 (v), we have X \ A = (.

Hence A = X. Therefore A is OST-dense set in X. ]
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CHAPTER 5§

CONCLUSIONS

The aim of this thesis is to introduce of concepts of some separation axioms
in ordinary smooth topological space by using S(7). And we study some properties of
OTy, 0Ty, 07T;,0Ts5,0T), and OTj spaces. Moreover, we introduce the concepts of O.ST-
dense set on ordinary smooth topological spaces and study some of their properties. The

results are follows:

1) An osts (X, 7) is called a OTy-space if and only if for each z,y € X with z # y there
exists U € S(7)suchthatz € Uandy ¢ Uory € U and x ¢ U. From the above

definitions. I have the following theorems are derived:

1.1) An osts (X, 7) is a OTy-space if and only if for every z,y € X such that
x # 1y we have that {z} # {y}.

1.2) Every subspace of OTj-space is also OTj-space.

1.3) Let (X, 1) and (Y, 75) be two osts and let f : X — Y be an ordinary smooth
homeomorphism. Then (X, 1) is an OTj-space if and only if (Y, 73) is an
OTy-space.

1.4) Let f : X — Y be an injective, ordinary smooth continuous map with
respect to the ordinary smooth topologies 7, and 7, respectively. If (Y, 75) is

a OTj-space, then so is (X, 7).

1.5) Anosts (X, ;) is a OTy-space. If f : X — Y is an injective and ordinary
smooth open, then (f(X), 725(x)) is a OTp-space.

1.6) An osts (Y, 7) is a OTy-space. If f : X — Y be injective and ordinary

smooth continuous, then (f~1(Y'), To4-1(y)) is a OT,-space.
2) An osts (X, 7) is called a OTi-space if and only if for each x,y € X with z # y, there

exist U,V € S(r)suchthatx e U,y ¢ U andy eV, z ¢ V.

From the above definitions. I have the following theorems are derived:
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2.1) Ifan osts (X, 7) is a OT}-space, then (X, 7) is a OTj-space.
2.2) An osts (X,7)is a OT}-space if and only {z} = {z} for every z € X.
2.3) Every subspace of OT}-space is also OT7-space.

2.4) Let (X, 1) and (Y, 73) be two osts and let f : X — Y be an ordinary smooth
homeomorphism. Then (X, 1) is an OT}-space if and only if (Y, 73) is an
OT1-space.

2.5) Let f : X — Y be an injective, ordinary smooth continuous map with
respect to the ordinary smooth topologies 7, and 7 respectively. If (Y, 75) is

a OT}-space, then so is (X, 7).

2.6) Anosts (X, 711)is a OTi-space. If f : X — Y is an injective and ordinary

smooth continuous, then (f(X), 72¢(x)) is a OT}-space.
2.7) Anosts (Y, 75) is a OTy-space. If f : X — Y is an injective and ordinary
smooth open, then (f~'(Y'), 71¢-1(y)) is a OTy-space.
3) Anosts (X, 7) is called a OT5-space if and only if for each x,y € X with x # y, there
exist U,V € S(r) suchthatz e U,y € Vand U NV = ().

From the above definitions. I have the following theorems are derived:

3.1) If an osts (X, 7) is a OTy-space, then (X, 7) is a OT}-space.
3.2) Ifan osts (X, 7) is a OT}-space, then (X, 7) is not a OT5-space.
3.3) Every subspace of OTs-space is also OTs-space.
3.4) Let (X, 7) be an osts. Then the following conditions are equivalent:
(1) (X, 7)isa OT;-space.
(ii) Letp € X for ¢ # p there exists U € S(7),p € U such that ¢ ¢ U.
(iii) Foreachp € X,N{U : U € S(7),p € U} = {p}.

3.5) Let (X, ) and (Y, 75) be two osts and let f : X — Y be an ordinary smooth
homeomorphism. Then (X, 1) is an OT5-space if and only if (Y, 7») is an
OTs-space.
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3.6) Let f : X — Y be an injective, ordinary smooth continuous map with
respect to the ordinary smooth topologies 7, and 7 respectively. If (Y, 75) is

a OT;-space, then so is a (X, 7).

3.7) Anosts (X, 7)is a OTs-space. If f : X — Y is an injective and ordinary
smooth open, then (f(X), 725(x)) is a OT5-space.

3.8) Anosts (Y, 1) is a OTy-space. If f : X — Y is an injective and ordinary

smooth continuous, then (f~1(Y'), 71 4-1(y)) is a OT,-space.

4) Anosts (X, 7)is called a OT3-space if and only if for each A C X, satisfying 7(A¢) > 0,
and each b € X, satisfying b ¢ A, there exist U,V € S(7) suchthat A C U,b € V and
unv =0.

From the above definitions. I have the following theorems are derived:

4.1) Every subspace of OT3-space is also OT}s-space.
4.2) Let (X, 7) be an osts. Then the following conditions are equivalent:
(i) (X,7)isa OT3-space.
(ii) For each z € X and each U containing x, satisfying 7(U) > 0, there
exists a set V' containing z, satisfying 7(V') > O such that x € V C
VCu.
(iii) For each x € X, and each A not containing z, satisfying 7(A¢) > 0,

there exists a set V, satisfying 7(V') > 0 containing = such that VN A =
0.

4.3) Let(X,7)and (Y, 73) betwo osts and let f : X — Y be an ordinary smooth
homeomorphism. Then (X, ;) is an OT}-space if and only if (Y, 75) is an
OT;-space.

4.4) Let f : X — Y be an injective, ordinary smooth closed and ordinary smooth
continuous map with respect to the ordinary smooth topologies 7 and 7

respectively. If (Y, 1) is a OT5-space, then so is a (X, 7).

4.5) An osts (X, 7y) is a OTs-space. If f : X — Y is an injective, ordinary
smooth continuous and ordinary smooth open, then (f(X), T25(x)) is a OT5-

space.
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4.6) Anosts (Y, ) isaOT;s-space. If f : X — Y isaninjective, ordinary smooth

closed and ordinary smooth open, then (f~'(Y'), 7¢-1(y)) is a OT3-space.

5) Anosts (X, 1) is said to be a OT-regular space if (X, T) is a OT3-space and OT}-space.

From the above definitions. I have the following theorems are derived:
5.1) Let an osts (X, 7) is a OT-regular space, then (X, 7) is a OT,-space.

6) An osts (X, 7) is called a OT}-space if and only if for each A, B C X are disjoint in
X, satisfying 7(A¢) > 0, 7(B¢) > 0, there exist U,V € S(7) suchthat AC U, BCV
andUNV = 0.

From the above definitions. I have the following theorems are derived:

6.1) Every subspace of OTy-space is also OT}-space.
6.2) Let (X, 7) be an osts. Then the following conditions are equivalent:

(i) (X,7)isa OTjy-space.

(i) If U C X, satisfying 7(U) > 0 is a superset of a set A, satisfying
7(A¢) > 0, then there exists set V, satisfying 7(V') > 0 such that
ACVCVCU.

(iii) For each pair of disjoint sets A, B satisfying 7(A°) > 0,7(B¢) > 0,
there exists set U, satisfying 7(U) > 0 which A C U and U N B = .

(iv) For each pair of disjoint sets A, B C X, satisfying 7(A°) > 0, 7(B°) >
0, there existsets U, V € S(7)suchthat A C U, B C VandUNV = ().

6.3) Let (X, ) and (Y, 75) be two osts and let f : X — Y be an ordinary smooth
homeomorphism. Then (X, ;) is an OT}-space if and only if (Y, 75) is an
OTy-space.

6.4) Let f : X — Y be an injective, ordinary smooth closed and ordinary smooth
continuous map with respect to the ordinary smooth topologies 7 and 7

respectively. If (Y, 1) is a OT);-space, then so is a (X, 7).

6.5) An osts (X, 71) is a OTy-space. If f : X — Y is an injective, ordinary
smooth continuous and ordinary smooth open, then (f(X), To7(x)) is a OT}-

space.
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6.6) An osts (Y, 1) is a OTy-space. If f : X — Y is an injective, ordinary
smooth open and ordinary smooth continuous, then (f~'(Y'), Top-1(y)) is a

OTy-space.

7) Anosts (X, 7) is said to be a OT-normal space if (X, 7) is a OTy-space and OT -space.

From the above definitions. I have the following theorems are derived:

7.1) Let an osts (X, 7) is a OT-normal space, then (X, 7) is a OT-regular space.

8) An osts (X, 7) is called a OT5-space if and only if for each A, B are separated sets in
X (ANB=0and AN B = () there exist U,V € S(7) such that A C U, B C V and
unv=40.

From the above definitions. I have the following theorems are derived:

8.1) Let an osts (X, 7) be a OTs-space, then (X, 7) is a OT-space.
8.2) Every subspace of OT5-space is also OT5-space.

8.3) Let (X, )and (Y, ) betwo osts and let f : X — Y be an ordinary smooth
homeomorphism. Then (X, ;) is an OT5-space if and only if (Y, 75) is an
OT}-space.

8.4) Let f : X — Y be an injective,ordinary smooth closed and ordinary smooth
continuous map with respect to the ordinary smooth topologies 7, and 7
respectively. If (Y, 73) is a OT5-space, then so is a (X, 7y).

8.5) An osts (X, 71) is a OTs-space. If f : X — Y is an injective, ordinary
smooth continuous, ordinary smooth closed and ordinary smooth open, then
(f(X), T25(x)) is a OT}5-space.

8.6) An osts (Y, 75) is a OTs-space. If f : X — Y is an injective, ordinary
smooth continuous and ordinary smooth open, then (f~(Y), 71 5-1(y)) is a

OT5s-space.

9) A set Aisa OST-dense setin X if and only if A = X.

From the above definitions. I have the following theorems are derived:
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9.1) A set AisaOST-dense setin X if and only if (Of N A # () for all subset U
of X with U # 0.

9.2) Let (X, 7)is an osts and A C X. Then the following conditions are equiva-
lent:
(1) Aisa OST-dense setin X.
(ii) If F' is a nonempty subset of X, satisfying 7(F¢) > Oand A C F,
then F' = X.
(i) If for all subset U of X with U % 0, then U/ N A % ).

9.3) Let X be an osts and A be a subset of X. Then A is OST-dense set in X if
and only if (X \ A) = 0.

‘/ \W
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