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ABSTRACT 

  

Food image recognition plays an important role in healthcare applications 

that monitor eating habits, dietary, nutrition, etc. Therefore, different deep learning 

approaches are proposed to address food image recognition. This dissertation presents 

three methods to deal with several challenges in recognizing food images. 

Chapter 1 briefly introduces food image recognition systems and the 

research questions. Additionally, the objectives of the dissertation and contributions 

are described. 

Chapter 2 proposed a new CNN model that modified MobileNetV1 

architecture by decreasing the parameters but still achieved high accuracy. I replaced 

the average pooling layer and the fully connected layer (FC) with the global average 

pooling layer (GAP), followed by the batch normalization layer (BN) and rectified 

linear unit (ReLU) activation function. Moreover, I added the dropout layer to 

consider avoiding overfitting. The experimental results show that modified 

MobileNetV1 architecture significantly outperforms other architectures when the data 

augmentation techniques are combined. 

Chapter 3 concentrated extracted robust features using the deep feature 

extraction technique. Firstly, I extracted the spatial features using CNN architectures. 

The spatial features were transferred into the Conv1D-LSTM network to extract the 

temporal feature. Finally, the deep features were classified using the softmax function. 

I presented six state-of-the-art CNN architectures, VGG16, VGG19, ResNet50, 

DenseNet201, MobileNetV1, and MobileNetV2, to extract the robust spatial features. 

The experimental results found that the ResNet50+Conv1D-LSTM network 

significantly outperformed other CNNs on the ETH food-101 dataset. 

Chapter 4 presented an adaptive feature fusion network (ASTFF-Net) 

combining state-of-the-art CNN models and the LSTM network. Firstly, I extracted 

the spatial features using state-of-the-art ResNet50 architecture. Secondly, the 

temporal features were extracted using the LSTM network. Thirdly, the spatial-

temporal features mapped to a similar resolution before concatenating. The 

experimental results showed that the ASTFF-Net achieved the best performances and 

outperformed other methods on Food11, UEC Food-100, UEC Food-256, and ETH 
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Food-101. 

Chapter 5 comprises two main sections: the answers to the research 

questions and suggestions for future work. This chapter briefly explains the proposed 

approaches and answers three main research questions in food image recognition. 

Two main methods are planned and will be focused on in future work. The first is to 

reduce the training data size by applying the instance selection techniques to decrease 

computation time. The second is to focus on an instance segmentation technique that 

can segment and learn only at the exact food location, which will improve the 

performance of the food image recognition system. 

 

Keyword : Food Image Recognition, Convolution Neural Network, Data 

Augmentation, Deep Feature Extraction Method, Long short-term memory, Adaptive 

Feature Fusion Technique, Spatial and Temporal Features 
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Chapter 1 

Introduction 

 

 According to the World Health Organization (WHO), worldwide obesity has 

nearly tripled, with more than 1.9 billion adults overweight; of these, over 650 million 

were obese (World Health Organization, 2018). Some 340 million children and 

adolescents aged 5 - 19 and 39 million children under the age of 5 were overweight or 

obese. Almost half of the children under five who were overweight lived in Asia, and 

obesity is now on the rise in low- and middle-income countries (World Health 

Organization, 2018). Obesity rates vary significantly by country as they are 

influenced by different lifestyles and diets. Southeast Asia has seen alarming 

increases in obesity rates within the past five years. Nauru has the highest obesity rate 

at 61.0%, while Vietnam has the lowest rate at 2.1%. Thailand has the 139th highest 

obesity rate globally of 36.2% out of a total population of 69 million (World 

Population Review, 2021).  WHO used body mass index (BMI) to screen for 

overweight or obesity because it is a reliable indicator of body fatness. Still, it does 

not diagnose the health of an individual. Adults with a BMI greater than 25 and 30 

indicate that they are overweight and obese, respectively. 

Nowadays, overweight and obesity have become global problems that I have 

to be concern about. When I gain too much weight, I will have fat tissue that occurs as 

a consequence of consuming the extra calories in the diet. It is a common problem of 

dyslipidemia, cardiovascular diseases, and also increases the risk of diabetes. 

Moreover, other diseases might eventuate, such as escalating hypertension, respiratory 

problems and sleep disorder (Al-Abed, 2021). About 4.7 million people have died in 

2017 because of obesity (Ritchie & Roser, 2017). 

Many countries educate people to do daily physical activity and in awareness 

of nutrition and lifestyle. The nutritionists also recommend that people who are 

overweight should take care of themselves more than regular people. The best choice 

is to observe themself by recording their daily food intake and nutritional information 

each day in a process called called ‘food logging’. Also, people who observe themself 
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by recording their daily food intake lost more weight than people who do not do so. 

People can monitor what they eat and track their nutritional eating patterns (Butryn, 

Phelan, Hill, & Wing, 2007). 

The rapid developments in smartphone technology provide an opportunity to 

develop healthcare applications that monitor eating habits, dietary, nutrition, etc. For 

example, Chaput, Klingenberg, Astrup, & Sjödin (2011) developed an application that 

monitors the eating and exercise habits of people. The application collects data 

relating to exercise using pulse monitors and performs analysis to provide advice on 

the health of users. Burke, Wang, & Sevick (2011) developed a weight management 

application that runs on a mobile platform. The personal information and daily food 

intake were recorded which helped a person to control their weight. 

Due to the rapid development of artificial intelligence (AI) technology, many 

algorithms have been designed to recognize and calculate the daily food intake using 

food images. The application developer also invented food recognition systems that 

involved AI and other technologies. It allows people to manage their food 

consumption behavior themselves. Moreover, the deep learning approach has become 

more popular and has been proposed to address food image recognition. I will briefly 

introduce the food image recognition systems as follows. 

1.1  Food Image Recognition Systems 

Food image recognition systems using the deep learning method are successful 

methods to help people track their dietary habits based on real-world food images. 

Indeed, deep learning to extract the information from the food images is a relatively 

low-cost and robust method. However, it is extremely challenging to extract 

information from real-world food images because people can take photos in different 

styles and sometimes several objects appear in the photo, not just the food. 

Krizhevsky et al. (2012) proposed the convolutional neural network (CNN) 

architecture, a type of deep learning method, namely AlexNet, to address many 

problems in image recognition systems. Consequently, various CNN architectures 

were invented, such as VGGNet, GoogLeNet, ResNet, and DenseNet (K. He, Zhang, 

Ren, & J., 2016; Huang, Liu, Van Der Maaten, & Weinberger, 2017; Simonyan & 



 

 

 

 3 

Zisserman, 2014; Szegedy et al., 2015). Currently, the CNN method is widely 

employed for image recognition problems.  

Although, the CNN methods require a large amount of training data to create a 

robust model. The food images are usually downloaded from social media or the 

internet; such as the Food-101 dataset, the well-known food image dataset, which 

collected all the images from the foodspoting.com website. It contains more than 

100,000 images of 101 food categories (Bossard & Gool, 2014). Further, the image 

processing methods such as adjustment and transformation are proposed to reduce the 

noise from resolution inconsistency and nonuniform illumination (Jiang, Qiu, Liu, 

Huang, & Lin, 2020; Ng, Xue, Wang, & Qi, 2019; B. T. Nguyen, Dang-Nguyen, 

Tien, Phat, & Gurrin, 2018; Park et al., 2019). 

When the food images are insufficient, I can also perform data augmentation 

techniques, such as random cropping, rotation, and flipping, to enlarge the number of 

images used while training to create the deep learning models (J. He et al., 2021; 

Jiang et al., 2020; Ng et al., 2019; Sahoo et al., 2019). Hence, all images are divided 

into training, validation, and test sets to create a robust model. In this process, the 

robust model is derived by tuning the deep learning hyperparameters. 

The following section describes the CNN architecture in detail with three main 

parts, including CNNs, CNNs for food image recognition, and deep feature extraction 

for food image recognition. 

1.1.1 Convolutional Neural Networks  

Deep learning is a type of machine learning based on artificial neural networks 

(Hinton, 2009). The deep learning algorithm is designed to solve complex 

classification problems, such as image recognition, language translation, and speech 

recognition (Fayyaz & Ayaz, 2019; Haque, Verma, Alex, & Venkatesan, 2020; Kesav 

& Jibukumar, 2021). However, it requires high-performance hardware because it 

involves several complex mathematical calculations that compute from a large 

amount of data (McAllister, Zheng, Bond, & Moorhead, 2018). The popular deep 

learning algorithms are convolutional neural networks (CNNs), long short-term 

memory networks (LSTMs), recurrent neural networks (RNNs), and deep belief 

networks (DBNs) (Shrestha & Mahmood, 2019). 
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In this section, I mainly focus on CNN architectures. LeCun et al. (1989) 

proposed the first CNN architecture to recognize handwritten digit recognition, called 

LeNet-5. The architecture of LeNet-5 is shown in Figure 1. The figure shows that 

LeNet-5 consists of five layers, including 1) a convolution layer with six feature 

maps, 2) a pooling layer with six feature maps, 3) a convolution layer with 16 layers, 

4) a pooling layer with 16 layers, and 5) a fully connected layer with the size of 120, 

80, and 10, respectively. Hence, the basic convolution operations are described in the 

following section. 

 

Figure 1 Illustration of LeNet-5 architecture (Y. A. LeCun, Kavukcuoglu, & 

Farabet, 2010) 

 

  1.1.1.1 Convolution Layer 

   A convolution layer is the main building block of a CNN 

architecture and is proposed to extract robust features from images (Y. LeCun, 

Bottou, Bengio, & Haffner, 1998). The operation of the convolution layer was 

designed to be similar to the convolution method in computer vision. The tiny kernel 

sizes, such as 3x3, 5x5, and 7x7, are aimed to calculate with the original image to 

create the new feature map. It computes the kernel over the original image from the 

top left until the right button regions. The convolution operation is calculated by 

multiplying the corresponding values from the original image and kernel and adding 

them together. An illustration of the convolution layer is shown in Figure 2. 
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Figure 2 Examples of the convolution operation. The hyperparameters used in the 

example are a filter size of 3 x 3, no padding, and a stride of 1. 

However, the size of the original image and the feature map do 

not show equal size after applying the convolution operation (see Figure 2). In this 

case, I proposed to use the padding operation when producing and image of equal size 

as the original image is required. The padding operation is shown in Figure 3. 
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Figure 3  Illustration of the convolution operation by adding the padding operation. 

  1.1.1.2 Pooling Layer 

    Pooling layers are designed to downsample the dimensionality 

of the feature maps and decrease the number of learnable parameters (Boureau, 

Ponce, & LeCun, 2010). The pooling layer is usually attached to the network after the 

convolution layer. It usually speeds up computation and makes features more robust. 

The pooling operation requires a 2D filter slide above feature maps and calculating 

the features, such as maximum and average pixel values within the region are covered 

by the 2D filter. The traditional and popular pooling layers are max and average 

pooling layers. In the max pooling layer, the maximum value in each pool is chosen 

as the representative. While with average pooling, the average value in each pool is 

chosen. Examples of the pooling layers are shown in Figure 4. 
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Figure 4 Examples of (a) max pooling layer and (b) average pooling layers with a 

filter size of 2x2, no padding, and a stride of 2. 

The global average pooling (GAP) layer was invented to minimize the 

parameters of a 3D feature map in the CNN model (Lin, Chen, & Yan, 2014). The 

pixel values of each region in each feature map are averages and represented as the 

vector. The GAP layer is proposed to replace the flattened layers (see Figure 5b). 

Then the vector generated by the GAP layer is transferred immediately toward the 

softmax layer. The operation of the GAP layer is shown in Figure 5a. 

 

Figure 5  Illustration of the (a) GAP layer and (b) flatten layer with 

hyperparameters of width (w) = 4, height (h) = 4, dimension (d) = 3. The 

output vector of the GAP layer is the only vector of 3 values and the flatten 

layer is the vector of 16 values.  

  1.1.1.3 Fully Connected Layer 

The fully connected (FC) layer (Y. LeCun et al., 1998) was 

designed to connect all the neurons between two different layers; the previous and 
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current layers. The FC layer is permanently attached at the end of the CNN 

architecture and combined with an activation function, such as softmax and sigmoid 

functions, to perform the output of CNN networks (Nwankpa, Ijomah, Gachagan, & 

Marshall, 2018) The outputs of the CNN model are probabilities that are employed to 

predict the objects. 

 1.1.2 CNNs for Food Image Recognition 

For food image recognition, many CNN architectures have been 

proposed to recognize food images. Hassannejad et al. (2016) presented a 54-layer 

network to classify food images. It achieved an accuracy of 88.28%, 81.45%, and 

76.17% in Food-101, UEC-FOOD100, and UEC-FOOD256, respectively. Liu et al. 

(2016) invented the DeepFood network, which modified the Inception module using a 

1×1 convolutional kernel to reduce the input size and feed it to the next layer. The 

DeepFood network obtained an accuracy of 76.30% on UEC-FOOD100 and 54.70% 

on UEC-FOOD256.  

Subsequently, Aguilar et al. (2017b) presented a Fusion CNN method 

that combined state-of-the-art CNN architectures; ResNet and Inception. The Fusion 

CNN model achieved an accuracy of 86.71% on the Food-101 dataset and 72.12% on 

the Food-11. Pandey et al. (2017) proposed the ensemble CNN network, including 

ResNet, AlexNet, and GoogLeNet. The accuracy of 72.12% was achieved from the 

ensemble CNN network. 

1.1.3 Deep Feature Extraction for Food Image Recognition 

  CNN architecture contains two main components; feature extraction 

and classification. Many state-of-the-art CNN architectures, such as AlexNet, VGG-

16, GoogLeNet, have been proposed to extract the robust feature, called the deep 

feature method (Sengur, Akbulut, & Budak, 2019; Zheng, Zou, & Wang, 2018). 

Therefore, the deep features can be sent to the machine learning techniques, such as 

support vector machine (SVM) and random forest, to create a model and recognize 

the food images. Ragusa et al. (2016) proposed to use the VGG-S, Network-in-

Network, and AlexNet, to extract deep features and then train with the SVM method. 

The experimental results showed that the VGG-S combined with the SVM method 

achieved an accuracy of 92.47%, the VGG-S and the Network-in-Network achieved 
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an accuracy of 90.82% and 84.95%, respectively. In addition, Farooq and Sazonov 

(2017) extracted the deep features using AlexNet architecture. The deep features were 

extracted from layers 6, 7, and 8. The deep features of each layer were fed to the 

linear SVM method for recognition. The result showed that the extracted deep 

features from layer 6 obtained the highest accuracy of 94.01% on the PFID dataset.  

1.2 Research Aim 

This research aimed to design novel deep learning methods to improve the 

performance of food image recognition systems. 

1.3 Research Questions and Research Studies 

The main research question that motivates this dissertation is: How can I 

enhance the performance of the food image recognition system using the deep 

learning method? This dissertation proposes to contribute novel solutions to deal with 

the problems of food image recognition. I address the following research questions: 

RQ1: Training the model with deep learning methods such as convolutional 

neural network (CNN) typically requires a large amount of training data to create an 

effective model (Russakovsky et al., 2015). The benchmark food image datasets, such 

as the ETH food-101, contain 101,000 real-world food images (Bossard & Gool, 

2014). Indeed, the CNN architectures  spent expensive training time to create the 

effective CNN models. Is it possible to decrease the size of the training data but still 

provide the same performance of recognition?  

To find out the answer, I will focus on modifying a state-of-the-art lightweight 

CNN model. The hyperparameters and computational layers of the CNN model are 

also considered. Moreover, I will consider the data augmentation techniques that 

benefit learning to build an effective CNN model from distinctive food images. Will 

these methods encourage improved performance of food image recognition systems? 

RQ2: In computer vision, hand-crafted feature techniques are presented to 

extract the specific information existing in the image. Indeed, it mainly focuses on 

extracting local features. The well-known hand-crafted feature techniques, include 

local binary pattern (LBP) (Ojala, Pietikainen, & Harwood, 1994), histogram of 
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oriented gradient (HOG) (Dalal & Triggs, 2005), scale-invariant feature transform 

(SIFT) (Lowe, 2004), and speeded up robust features (SURF) (Bay, Ess, Tuytelaars, 

& Van Gool, 2008). Nowadays, the CNN technique is a capable technique that 

includes feature extraction and recognition. As for the feature extraction, the CNN can 

extract robust special features, including low-level and high-level features, called the 

deep feature method (Y. Chen, Jiang, Li, Jia, & Ghamisi, 2016; Paul et al., 2016). Is 

this a potential approach to manipulate real-world food images that also have many 

categories? If possible, I will then be interested in using state-of-the-art CNN 

architecture to extract the deep features and enhance the food image recognition 

system. 

RQ3: The deep feature extraction method always provides robust features and 

guarantees high accuracy performance on the real-world food image dataset 

(Phiphitphatphaisit & Surinta, 2021). Is there any approach that will prevent the deep 

feature extraction method using Conv1D and LSTM networks? 

In order to answer all these research questions, Chapter 2 to Chapter 4 

describe the research that succeeded. I will present concrete solutions to these 

research questions in Chapter 5. 

1.4 Contributions 

The contribution of the dissertation is a novel deep learning technique to 

extract the robust features and provide the best performance for food image 

recognition systems. The work reported in this dissertation involved experiments on 

four real-world food image datasets containing Food-11, UEC Food-100, UEC Food-

256, and ETH Food-101. The contributions of the dissertation are as follows. 

In chapter 2, I modified the state-of-the-art lightweight MobileNetV1, called 

modified MobileNetV1. In this approach, I eliminated the two last layers; the average 

pooling layer and fully connected layer (FC), and then attached three new layers into 

the MobileNetV1 architecture, which were; the global average pooling layer (GAP), 

the batch normalization layer (BN), and rectified linear unit (ReLU) activation 

function. Additionally, data augmentation techniques were proposed to address the 
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problem when amount of training data was decreased, consisting of rescaling, 

rotation, width shift, height shift, horizontal flip, shear, zoom, and random cropping. 

This chapter is based on the following publication.- 

Phiphiphatphaisit, S., & Surinta, O. (2020). Food Image Classification with 

Improved MobileNet Architecture and Data Augmentation. In The 3rd International 

Conference on Information Science and Systems (ICISS), pages 51–56. ACM. 

In chapter 3, the main focus is extracting the powerful features using the deep 

feature extraction technique. I extracted the spatial features with state-of-the-art 

convolutional neural network (CNN) architectures. Subsequently, the spatial features 

were given to the convolutional 1D (Conv1D), followed by the LSTM network to 

compute and extract the temporal feature, called Conv1D-LSTM. Therefore, I 

decrease the dimensionality of the feature maps before classifying the food images 

using the global average pooling (GAP) layer. The content of this chapter is based on 

the following publication.- 

Phiphitphatphaisit, S., & Surinta, O. (2021). Deep feature extraction 

technique based on Conv1D and LSTM network for food image 

recognition. Engineering and Applied Science Research, 48(5), pages 581-592. 

Finally, Chapter 4 proposes the adaptive feature fusion network, called 

ASTFF-Net, to improve the accuracy of the food image recognition systems. The 

proposed ASTFF-Net was the combination between state-of-the-art CNN models and 

the LSTM network. The ASTFF-Net is closely related to the Conv1D-LSTM. 

However, the Conv1D-LSTM network was created as a sequential model, while the 

ASTFF-Net was designed to connect the deep features extracted from CNN and 

LSTM networks by applying a concatenation operation. I achieved high accuracies on 

real-world food image datasets; Food11, UEC Food-100, UEC Food-256, and ETH 

Food-101. 



 

 

 

Chapter 2 

Deep Learning Techniques 

The real-world food image is a challenging problem for food image 

classification, because food images can be captured from different perspective and 

patterns. Also, many objects can appear in the image, not just foods. To recognize 

food images, in this chapter, I propose a modified MobileNetV1 architecture that is 

applies the global average pooling layers to avoid overfitting the food images, batch 

normalization, rectified linear unit, dropout layers, and the last layer is softmax. The 

state-of-the-art and the proposed MobileNetV1 architectures are trained according to 

the fine-tuned model. The experimental results show that the proposed version of the 

MobileNetV1 architecture achieves significantly higher accuracies than the original 

MobileNetV1 architecture. The proposed MobileNetV1 architecture significantly 

outperforms other architectures when the data augmentation techniques are combined. 

2.1 Introduction 

Nowadays, people are becoming obese and overweight due to the imbalance 

between calorific intake and use. This increases the risk of other diseases such as 

diabetes, sleep apnea, acid reflux, and heart disease (Must et al., 1999). Nutritionists 

advise obese and overweight people to exercise and to monitor their daily 

consumption of calories (Fatehah, Poh, Shanita, & Wong, 2018). Due to the 

assessment of calorie intakes into the body, Ege and Yani (2017) proposed a multi-

task convolutional neural network (CNN) method that allows the CNN architecture to 

learn from food calories, categories, ingredients, and cooking directions data. 

Furthermore, Myers et al. (2015) presented a system that recognizes the contents of 

food from a single image, and then predict calories using the CNN based classifier. 

Then, people can estimate calories from food images.  

In recent years, most research in food image classification has focused on 

hand-crafted features that consist of a color histogram (Martinel, Piciarelli, & 

Micheloni, 2016; Yanai & Kawano, 2015), local binary pattern (LBP) (Martinel et al., 

2016; D. T. Nguyen, Zong, Ogunbona, Probst, & Li, 2014), scale invariant feature 

transform (SIFT) (Martinel et al., 2016), histogram of oriented gradients (HOG) 
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(Martinel et al., 2016; Yanai & Kawano, 2015), and speeded up robust feature 

(SURF) (Bossard & Gool, 2014). These hand-crafted methods are combined with 

machine learning algorithms to classify food images. Due to the large-scale of food 

image datasets, researchers proposed to use deep learning algorithms to learn from the 

large-scale food image dataset such as the ETH Food-101 dataset which contains 

101,000 images from 101 food categories; Food-256 dataset, a data set of 256 food 

categories with approximately 32,000 food images (Bossard & Gool, 2014; 

Hassannejad et al., 2016; Kawano & Yanai, 2014b). Yanai and Kawano (2015) used a 

pre-trained model of AlexNet architecture for the feature extraction method. This 

method extracts 6,144 features from the image. In Hassannejad et al. (2016), the data 

augmentation techniques consist of brightness, contrast, saturation, and hue and are 

applied to food images before feeding to the Inception V3 network. Ming et al. (2018) 

proposed the DietLens, which is a prototype of tracking dietary intake system for 

Singapore hawker food. The core architecture of the DietLens is the ResNet-50, 

which contains 50 convolutional layers and one fully connected layer and experiments 

on 87,470 images. The FoodNet (Pandey et al., 2017), which is an ensemble deep 

neural network, is proposed to classify the ETH Food-101 dataset. This network 

combined three well-known networks (AlexNet, GoogLeNet, and ResNet) as the 

ensemble network. The output of three networks and concatenate are passed to a fully 

connected layer to classify food images. 

 

Figure 6  Example of ETH Food-101 dataset. a) The apple pie category and b) the 

similarity shape between two categories of apple pie (first row) and 

Baklava (second row). 

The challenge of food image classification is that food images from the same 

category are captured with different patterns, shapes, and perspective, accordingly to 

the people who take the image. For example, there are many objects such as forks and 
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spoons, glasses, and bottles that appear in the image. For example of ETH Food-101 

dataset, has many different apple pie images (that include other objects, patterns, 

shapes, and scenes) that appear in the apple pie category, as shown in Figure 6a). 

Even the similarity shape and pattern between the two categories of apple pie and 

Baklava, as shown in Figure 6b). These kinds of images can decrease the performance 

of the food image classification. 

Contributions: In this research, the main contribution is the use of the state-

of-the-art deep convolutional neural network, called MobileNetV1 architecture and 

our modified MobileNetV1 architecture is applied to recognize a challenging ETH 

Food image dataset that contains 101 food categories. In our modified version, I 

reduce the number of parameters in the model by replacing the average pooling with 

the global average pooling (GAP) layers; then the overfitting is decreased. 

Subsequently, the batch normalization (BN), rectified linear unit (ReLU), and dropout 

layers, are utilized instead of the fully connected layers. Finally, the softmax layer is 

calculated. The results show that the modified MobileNetV1 architecture outperforms 

when compared to the original MobileNetV1 architecture. Moreover, I evaluate most 

effective data augmentation techniques to random creating images in the ETH Food-

101 dataset. I compared data augmentations and combined with the cropping image 

before passing to train the model. Also, the accuracy increased by approximately 5%. 

Finally, the modified MobileNetV1 architecture when combined with the data 

augmentation techniques outperforms the other methods. 

Outline of the chapter. The chapter is organized as follows. Section 2.2 

briefly explains machine learning methods in food image classification. In section 2.3, 

the MobileNetV1 and the modified MobileNetV1 architecture are explained. In 

section 2.4, the data augmentation techniques are presented. Experimental results are 

reported in section 2.5. The last section is the conclusion and future work. 

2.2 Related Work 

Hand-crafted feature extraction methods (Nanni, Ghidoni, & Brahnam, 2017) 

are used in many image classification applications. In D. T. Nguyen et al. (2014), two 

feature extraction methods consisting of a non-redundant local binary pattern 

(NRLBP) and the shape context descriptor of the interest points, called structure 
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information are used to describe the local appearance information of food images. The 

achieved accuracy shows that the combination of the two features can improve 

classification performance. In Yanai and Kawano (2015), the first step uses, the color 

patches and RootHOG patches, (which is a square root of the L1 normalized HOG) to 

extract the data from the images. In the second step, the information from the first 

step is sent to a Fisher vector to encoding and used as the feature vector. This method 

achieved an accuracy of 65.3% on the UEC Food-100 dataset. In addition, Martinel et 

al. (2016) presented the supervised extreme learning committee approach (ELM) to 

learning attributes of color, shape, texture, and local features. Then, the output of the 

ELMs is fed into the structured support vector machine (SVM) to classify food 

images. The performance achieved by this method is 55.89% and 84.34% on ETH 

Food-101 and UEC Food-100, respectively. 

Nowadays, convolutional neural networks (CNNs), which are the most 

successful, and widely used for image classification problems (Russakovsky et al., 

2015). Although, many CNN architectures can compute due to the large-scale images 

(Russakovsky et al., 2015) and obtain very high accuracy (C. Liu et al., 2018; Ming et 

al., 2018). In the area of food image classification, state-of-the-art CNN architectures 

such as AlexNet, GoogLeNet, and ResNet are proposed (Pandey et al., 2017), 

although, the experimental results obtained with them did not obtain high accuracy. 

Pandey et al. (2017) invented a CNN-based ensemble network, called FoodNet 

architecture. This architecture consists of a fine-tuned model of AlexNet, GoogLeNet, 

and ResNet. The networks compute feature vectors and then concatenate all of the 

feature vectors, and a rectified linear unit (ReLU) used as a non-linear activation. 

Then, data is passed to a fully connected layer and the softmax function used to 

predict the output of the food image. The experiments showed that the FoodNet 

architecture obtained the Top-1 accuracy of 72.12% on ETH Food-101 and 73.50% 

on Indian food database. Also, the result was not good when the feature vector from 

the FoodNet architecture was fed into the SVM classifier. 

As for the pre-trained model, In Yanai and Kawano (2015), the fine-tuning of 

the deep CNN pre-trained model based on AlexNet network, called DCNN was 

proposed to examine three food image datasets. The results showed that the fine-tuned 

DCNN achieved the Top-1 accuracy of 78.77%, 67.57%, and 70.40% on UEC Food-
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100, UEC Food-256, and ETH Food-101 datasets, respectively. The Inception 

networks (Hassannejad et al., 2016; C. Liu et al., 2016) are proposed to address the 

food image classification. Lin et al. (2016) presented the DeepFood network to 

recognize the food image for computer-aided dietary assessment. The DeepFood 

network, which is applied to an Inception module by adding 1x1 convolutional layers 

and then connected with two inception modules via an additional max-pooling layer. 

The best Top-1 accuracy results on UEC Food-256, UEC Food-100, and ETH Food-

101 were 54.7%, 76.3%, and 77.4%, respectively. Hassannejad et al. (2016) invented 

a deep network with 54 layers based on Inception V3 to classify three well-known 

food image datasets and achieved 88.28% on ETH Food-101, 81.45% on UEC Food-

100, and 76.17% on UEC Food-256 datasets as top-1 accuracy. 

Additionally, data augmentation is proposed to address the problem of 

insufficient data and to increase the performance of the image classification 

(Attokaren, Fernandes, Sriram, Murthy, & Koolagudi, 2017; Yunus et al., 2019). The 

data augmentation is also widely used in plant (Pawara, Okafor, & Schomaker, 2017) 

and animal (Okafor, Schomaker, & Wiering, 2018), and food (Yunus et al., 2019) 

image recognition. 

2.3 MobileNetV1 Architecture 

I used MobileNetV1 architecture presented by Howard et al. (2017) that is 

designed and based on depthwise separable convolutions to build a lightweight deep 

CNN that makes a model too small and reduces the computation time. The diagram in 

Figure 7a) illustrates the MobileNetV1 architecture. Consequently, MobileNetV1 can 

be implemented for several recognition problems such as object detection, face 

attributes, fine-grain classification, and landmark recognition. 

1.3.1 Our Modified MobileNetV1 Architecture 

Our modified MobileNetV1 architecture was as follows. First, I used 

the pre-trained model of MobileNetV1 architecture. I decided to remove three layers, 

including the average pooling, fully connected, and softmax layers from the original 

network. Second, three extra layers; the global average pooling (GAP) layers, the 

batch normalization (BN), and softmax layers are attached. The main objective of our 

modified MobileNetV1 architecture is helping the network to train faster and 
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achieving higher accuracy. Then, the dropout method is proposed to prevent 

overfitting. Also, the batch normalization layer helps the network to train faster. The 

activation function called the rectified linear unit (ReLU) is computed between the 

batch normalization layer and the dropout layer. After I applied the GAP layers 

instead of the average pooling, it shows that the parameters in the model are 

decreased, and impact directly on the size of the model. Finally, for training the 

proposed network, I used the fine-tuned MobileNetV1 to train the network on the 

ETH Food-101 dataset. The modified MobileNetV1 architecture as shown in Figure 

7b). 

 

 

(a) (b) 

Figure 7  The architectures of the MobileNetV1. (a) the original MobileNetV1 and, 

(b) the modified MobileNetV1 architectures. 

1.3.2 Depthwise Separable Convolutions  

  The MobileNetV1 architecture is computed based on depthwise 

separable convolutions (DS). The concept of decomposition of convolution called 

factorization is considered to factorize a standard convolution into a depthwise 

convolution. After that, all depthwise convolution layers are computed with 1x1 

convolution called a pointwise convolution, and then combined as the outputs to the 

next layer. The diagram in Figure 7a) shows the detail of the MobileNetV1 that 

includes convolutional, depthwise separable convolutions (DS), average pooling, fully 

connected (FC), and softmax layers. Figure 7b) shows an in-depth explanation of the 
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DS layer consisting of depthwise convolution, batch normalization (BN), and rectified 

linear unit (ReLU), respectively. 

2.4 Data Augmentation Techniques 

 Data augmentation is a technique to generate new training image data that 

relate to the same image. Many data augmentation techniques such as rotation, 

horizontal, vertical, flip, width shift, height shift techniques are applied to the image 

recognition problems and the accuracy performance is improved (Yunus et al., 2019). 

Samples of image augmentation are shown in Figure 8. In this thesis, the data 

augmentation techniques applied to our experiments consists of rescaling, rotation, 

width shift, height shift, horizontal flip, shear, and zoom. 

     

(a) (b) (c) (d) (e) 

Figure 8  Example of the data augmentation images: (a) original, (b) rotation, (c) 

width shift, (d) height shift, and (e) horizontal flip images. 

Additionally, the image randomly changes to generate a new image in each 

training epoch, according to the range of the parameters. Furthermore, random 

cropping is applied (Takahashi, Matsubara, & Uehara, 2020). In this method, the 

position of points (𝑥, 𝑦) are random, then it automatically crops and resizes to the 

target size, as shown in Figure 9. In this experiment, the size of the image is 224x224 

pixel dimension. 
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(a) (b) (c) 

Figure 9  Illustration of the random cropping method. (a) Original food image,     

(b) random points (𝑥, 𝑦) and crop sizes of the cropped image (𝑤, ℎ), and 

(c) the random cropping image used in training process. 

2.5 Experimental Setup and Results 

2.5.1 ETH Food-101 dataset 

  In this study, I evaluate the deep CNN architectures on the benchmark 

food image dataset. The real-world food images were collected by downloading from 

foodspotting.com website. The food images are a mix of eastern and western meals 

such as apple pie, hamburger, sashimi, ramen, peking duck. The challenging dataset 

consists of 101,000 food images from 101 food categories, called the ETH Food-101 

dataset (Bossard & Gool, 2014). Examples of the food images are shown in Figure 10. 

 

Figure 10  Sample real-world food images from the ETH Food-101 dataset. 

1.5.2 Experimental setup 

  Due to the large number of images in the dataset, I divided it into four 

subsets (Set I, Set II, Set III, and Set IV) sizes of 10,100 (randomly selected 100 
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images from each category), 20,200, 30,300, and 40,400 images to perform all of the 

experiments. Images in each subset were divided into training, validation, and testing 

sets of 70%, 10%, and 20%, respectively. For the training of the deep CNN 

architectures, I used the transfer learning with the following parameter settings: 

stochastic gradient descent (SGD) solver, batch size of 16, learning rate at 0.0001. I 

note that entire experiments were carried out using the TensorFlow platform running 

on Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 8GB RAM. 

  In the experiments, firstly, I used the original food images from the 

ETH Food-101 dataset to experimented with the MobileNetV1 architectures in order 

to find the appropriate training epoch. Secondly, the first data augmentation called 

random cropping was employed. The program randomly cropped from a part of a 

food image and resize to the target size, which was 224x224 pixel dimension. Thirdly, 

the data augmentation techniques consisted of rescaling, rotation, width shift, height 

shift, horizontal flip, shear, and zoom applied according to the random parameters. 

Suddenly, the food images randomly change in each training epoch. Finally, the 

random cropping image and the data augmentation techniques are combined. 

1.5.3 Experimental results 

  I used the accuracy and standard deviation to evaluate the performance 

of the deep CNN architectures on ETH Food-101 dataset. From the first experiment, it 

is essential to indicate that a huge number of food images can increase recognition 

performance. I set up the number of training to 50 epochs, which is similar to 

previous reports (Attokaren et al., 2017; Pandey et al., 2017; Zheng et al., 2018). The 

accuracy of Set I with 10,100 images and Set IV with 40,400 images were 

significantly different. The accuracy results improved from around 42% to 57% when 

testted on the original MobileNetV1 architecture. Moreover, the results improve from 

46% to 67% when performed on the modified MobileNetV1 architecture, when 

accuracy increased by more than 10%, as shown in Figure 11. This clearly indicates 

that recognition performance is increased when using more food images. However, I 

found that modified MobileNetV1 will decrease number of parameter and testing time 

around 24% and 7.5%, respectively, as show in Table 1. 
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Figure 11  The performance of the MobileNetV1 and modified MobileNetV1 

architectures versus the different number of training samples (Set I –      

Set IV) on the ETH Food-101 dataset. 

Table 1  The performance results of food image recognition on four subsets on ETH 

Food-101 dataset using the approach MobileNetV1 architecture. 

Methods No. of Parameters Testing Time 

MobileNetV1 4.2 M 26m:40s 

Modified MobileNetV1 3.2 M 24m:40s 

Table 2  The performance results of food image recognition on four subsets on ETH 

Food-101 dataset using the approach MobileNetV1 architecture. 

Methods Subsets of the ETH Food-101 dataset 

I II III IV 

Without data augmentation 45.84 51.29 60.26 66.78 

Random cropping 45.79 55.82 59.52 67.44 

With data augmentation 48.71 56.71 62.49 69.86 

With data augmentation + random 

cropping 

51.39 59.68 65.97 72.59 

I show the obtained results of second to fourth experiments using the proposed 

MobileNetV1 architecture on four subsets of the ETH Food-101 dataset in Table 2. 

The table shows that the combination of the data augmentation and random cropping 

was the best approach in our experiments. This approach outperformed other methods 

with an increase of around 3-5% accuracy. 
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Table 3  Performances of the five different techniques on ETH Food-101 dataset 

Methods The number of 

image per class 

Accuracy 

Random Forest Discriminative Components 

(Bossard & Gool, 2014) 

1000 50.76 

Supervised Extreme Learning Committee 

(Martinel et al., 2016) 

1000 55.89 

Data Augmentation + MobileNet 400 57.90 

Data Augmentation + Inception V3 (Yanai & 

Kawano, 2015) 

1000 70.41 

FoodNet: Ensemble Net (Pandey et al., 2017) 1000 72.10 

DeepFood (C. Liu et al., 2018) 1000 77.00 

Our proposed (Data Augmentation + 

MobileNetV1) 

400 72.59 

1000 78.23 

From the results in Table 3, the DeepFood architecture obtains the best 

performances on the ETH Food-101 dataset with an accuracy rate of 77%. Due to the 

computer used in the experiments, I decided to use the food image only 400 images 

per class to examine our proposed architecture. However, our modified MobileNetV1 

architecture reached an accuracy of 72.59%. It is only 4.41% less than DeepFood 

architecture. As a result, our modified MobileNetV1 architecture outperforms the 

random forest discriminative components (Bossard & Gool, 2014), supervised 

extreme learning committee (Martinel et al., 2016) and three deep CNN architectures; 

MobileNetV1, Inception V3 (Yanai & Kawano, 2015) and FoodNet (Pandey et al., 

2017). In addition, the modified MobileNetV1 created a model size of 22.4MB, which 

less than the MobileNet architecture 10MB.  

2.6 Conclusion 

In this study, I used the state-of-the-art MobileNetV1 architecture on the food 

image dataset. I also described a MobileNetV1 architecture, which was designed to 

address the overfitting problem. In this modified MobileNetV1 architecture, the 

number of parameters is decreased by applying the global average pooling (GAP) 
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layers. Moreover, the batch normalization (BN), rectified linear unit (ReLU), and 

dropout layers are combined. Also, the last layer is the softmax. In addition, the data 

augmentation techniques are computed before transferring to the training process. 

From the experimental results, to the best of our knowledge, I trained the 

MobileNetV1 architecture according to the fine-tuned model. The modified 

MobileNetV1 architecture is competitive when compared to the original 

MobileNetV1 architecture on the ETH Food-101 dataset. I also demonstrated the 

impact of the data augmentation techniques; rotation, shift, flip, shear, zoom, and crop 

when implemented before assigning to the modified MobileNetV1 architecture to 

process. The best performance achieved when the combination of the various data 

augmentation techniques and the modified MobileNetV1 architecture. 

In future work, I plan to construct the deep ensemble convolutional neural 

network (CNN) architectures, which are a combination of the state-of-the-art deep 

CNN architectures. I am interested in extracting the feature vector from the 

convolutional layers which may work better than individual deep CNN architecture.



 

 

 

Chapter 3 

Deep Feature Extraction Techniques 

There is a global increase in health awareness. The awareness of changing 

eating habits and choosing foods wisely are key factors that make for a healthy life. In 

order to design a food image recognition system, many food images were captured 

from a mobile device but sometimes include non-food objects such as people, cutlery, 

and even food decoration styles, called noise food images. These issues decreased the 

performance of the system. Convolutional neural network (CNN) architectures are 

proposed to address this issue and obtain good performance. In this chapter, I 

proposed to use the ResNet50-LSTM network to improve the efficiency of the food 

image recognition system. The state-of-the-art ResNet architecture was invented to 

extract the robust features from food images and was employed as the input data for 

the Conv1D combined with a long short-term memory (LSTM) network called 

Conv1D-LSTM. Then, the output of the LSTM was assigned to the global average 

pooling layer before passing to the softmax function to create a probability 

distribution. While training the CNN model, mixed data augmentation techniques 

were applied and increased by 0.6%. The results showed that the ResNet50+Conv1D-

LSTM network outperformed the previous works on the Food-101 dataset. The best 

performance of the ResNet50+Conv1D-LSTM network achieved an accuracy of 

90.87%. 

3.1 Introduction 

Overweight and obesity are the most significant factors for chronic diseases 

such as diabetes and cardiovascular diseases. The easiest way to avoid chronic 

diseases is to monitor and control people’s dietary behavior. The advancement of 

artificial intelligence might help people to monitor and estimate daily calorie intake. 

Hence, food recognition systems are the most straightforward solution. Many systems 

can recognize several foods based on images. However, when people take a 

photograph several food characteristics (e.g. the shape and decoration of food, 

brightness adjustment, and non-food objects, called noise food images) are sent to the 
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system to compute and predict the food type and calorific content. These issues can be 

a cause of weaknesses of food imaging systems. Computer vision and machine 

learning techniques are proposed to address the problems mentioned above. Many 

researchers employ computer vision techniques to generate hand-crafted visual 

features and send robust features to the novel machine learning techniques, such as 

support vector machine (SVM), multilayer perceptron (MLP), random forest, and 

Naive Bayes techniques (Farooq & Sazonov, 2017; McAllister, Zheng, Bond, & 

Moorhead, 2018; Ragusa et al., 2016) to classify objects (Anthimopoulos, Gianola, 

Scarnato, Diem, & Mougiakkou, 2014; Martinel et al., 2016). 

Furthermore, many studies have extracted the robust features, called the 

spatial features, using convolution neural network (CNN) architectures. The greatest 

benefit of this technique is that I can extract robust features with various CNN 

architectures. The robust features, however, are sent to be classified using traditional 

machine learning techniques. Additionally, the CNN architecture combined with a 

long short-term memory (LSTM) network has been applied for classification tasks. 

Nevertheless, a few researchers have invented CNN architectures and LSTM 

networks for food image recognition. In this research, I focus on improving the 

accuracy performance of the food image recognition based on CNN architectures and 

LSTM networks. 

The significant contributions of this research are summarized in the following: 

1. I propose the deep learning framework that combines state-of-the-art 

ResNet50, which is the convolutional neural network (CNN) and long short-term 

memory (LSTM) network, called ResNet50+Conv1D-LSTM network. This 

framework can extract robust features that are spatial and temporal features, from the 

food images. Mixed data augmentation techniques are also involved while training the 

CNN model. The data augmentation technique insignificantly increases the 

performance of food image recognition. 

2. In these experiments, LSTM and Conv1D-LSTM networks were proposed 

to create robust temporal features. For the Conv1D network, various layers were 

combined, including zero padding, batch normalization, Convolution 1D, ReLU, 

batch normalization, dropout, and average pooling layers. In the training scheme, 

batch size, which was the number of training examples, were applied as 16, 32, and 
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64. The LSTM network results showed that a batch size of 32 provided a better result 

than batch sizes of 16 and 64. 

Outline of the chapter. This chapter is organized as follows. Section 3.2 

briefly explains deep learning researches in food image recognition systems and 

describes the different deep learning techniques. Section 3.3 describes the proposed 

approach for the food image recognition system. In section 3.4, the experimental 

settings and the results of the deep learning methods are presented. The conclusion 

and directions for future work are given in Section 3.5. 

3.2 Related Work 

In previous studies, many researchers have proposed using feature extraction 

methods based on handcrafted methods to extract features from images. Novel feature 

extraction methods such as local binary patterns (LBP) (Ojala et al., 1994), the scale-

invariant feature transform (SIFT) (Lowe, 2004) the histogram of oriented gradients 

(HOG) (Dalal & Triggs, 2005), the speed-up robust features (SURF) (Bay et al., 

2008) and a bag of visual words (BoVW) (Coates et al., 2011; Csurka, 2004) methods 

became popular and were proposed in many applications. Also, they achieved high 

accuracy performance. Secondly, the robust features extracted from the novel 

methods, are then given to machine learning algorithms such as support vector 

machine (SVM) (Cortes & Vapnik, 1995), K-nearest neighbor (KNN) (Altman, 

1992), and multi-layer perceptron (MLP) for a task of classification. 

The food image recognition, Anthimopoulos et al. (2014) proposed an 

automatic food recognition system to recognize 11 different central European foods. 

In the food recognition system, the features, namely visual words, are computed from 

the bag-of-features method and the k-means clustering algorithm. Then the linear 

SVM is used as a classifier. This method obtained a recognition performance of 78%. 

Furthermore, Martinel et al. (2016) introduced an extreme learning committee 

approach. This approach was divided into three parts; feature extraction methods, 

extreme learning committee, and supervised classification. First, various feature 

extraction methods were proposed to extract color, shape, texture, local, and data-

driven features. Second, each feature vector was given to the extreme learning 

machine (ELM). Finally, the output from each ELM was sent to the SVM algorithm 
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for classification. The extreme learning committee outperformed the state-of-the-art 

methods on four benchmark food image datasets. 

Deep learning techniques are becoming increasingly popular in food image 

recognition. In this section, I describe the research that has applied deep learning to 

solve the image recognition problem, including 1) deep learning for food image 

recognition and 2) deep feature extraction methods. 

3.2.1 Deep learning for food images recognition 

  Convolution Neural Networks (CNNs) have been extensively used in 

food image recognition research. In 2016, Hassannejad et al. (2016) and Liu et al. 

(2016)  used Google’s image recognition architecture Inception. Hassannejad et al. 

(2016) proposed a network composed of 54 layers with fine-tuned architecture for 

classifying food images from three benchmark food image datasets: ETH Food-101, 

UECFOOD100, and UEC-FOOD256. On these datasets, the achieved accuracy was 

88.28%, 81.45%, and 76.17%, respectively. Liu et al. (2016) invented the DeepFood 

network that modified the Inception module by introducing a 1×1 convolutional layer 

to reduce the input dimension to the next layers. It allows a less complicated network. 

The accuracy achieved was 77.40% with the ETH Food-101 dataset, 76.30%, and 

54.70% with UEC-FOOD100, and UEC-FOOD256, respectively. In addition, the 

Inception architecture, the ResNet architecture is widely popular for food image 

recognition. Pandey et al. (2017) used ResNet, AlexNet, and GoogLeNet to propose 

an ensemble network architecture. The network consisted of three fine-tuned CNN in 

the first layer. All of the output was concatenated before being fed into ReLU 

nonlinear activation and passed to a fully connected layer followed by a softmax layer 

for image classification. Aguilar, Bolaños, and Radeva (2017) proposed the CNN 

Fusion methodology, which is composed of two main steps. First, training with state-

of-the-art CNN models consisting of ResNet and Inception. Second, fusing the CNN 

outputs using the decision template scheme for classifiers fusion. The two proposed 

methods achieved accuracies of 72.12% and 86.71% with the ETH Food-101 dataset, 

respectively. Table 4 summarizes different food classification approaches. The 

accuracies reported along with the food databases used in the evaluation and the 

underlying CNN architecture 
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Table 4  Performance evaluation of classification results on the food datasets using 

deep learning techniques. 

Datasets Architectures Accuracy References 

UEC-FOOD100  

(Matsuda & Yanai, 

2012) 

DeepFood  76.30 Liu et al. (2016)   

InceptionV3 81.45 Hassannejad et al. (2016)  

WISeR 89.58 Martinel et al. (2018) 

UEC-FOOD256  

(Kawano & Yanai, 

2015) 

DeepFood 54.70 Liu et al. (2016) 

GoogLeNet 63.16 Bolanos and Radeva (2016) 

InceptionV3 76.17 Hassannejad et al. (2016) 

WISeR 83.15 Martinel et al. (2018) 

ETH Food-101 

(Bossard & Gool, 

2014) 

Inception  77.40 Lie et al. (2016) 

GoogLeNet 79.20 Bolanos and Radeva (2016) 

InceptionV3 88.28 Hassannejad et al. (2016) 

Ensemble Net  72.12 Pandey et al. (2017) 

CNNs Fusion  86.71 Aguilar et al. (2017) 

ResNet152 64.98 McAllister et al. (2018) 

WISeR 90.27 Martinel et al. (2018) 

 3.2.2 Deep feature extraction methods 

  Many researchers have focused on extracting features using several 

CNN architectures, called deep feature extraction (Y. Chen et al., 2016; Paul et al., 

2016) that have been applied in many image recognition systems. With the deep 

feature extraction method, the pre-trained models of the state-ofthe-art CNN 

architectures are employed to train a set of images. Then, the deep features are 

extracted from the layer before the fully connected layer. After that, I can use the deep 

features as the input vector to a traditional machine learning algorithm, such as SVM, 

KNN, and MLP. Indeed, the state-of-the-art CNN architectures, such as VGG, 

ResNet, and Inception, have been proposed and widely used in the food image 

recognition system (Hassannejad et al., 2016; McAllister et al., 2018). 
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Table 5  Performance evaluation of classification results on the food datasets using 

deep feature and machine learning techniques  

Datasets Classes Deep 

Feature 

Methods 

Classifiers Accuracy References 

PFID  7 AlexNet SVM-linear 94.01 Farooq et al. 

(2017)  

PFID  61 AlexNet SVM-linear 70.13 Farooq et al. 

(2017) 

UNICT-FD889 2 AlexNet SVM-sigmoid  94.86 Ragusa et al. 

(2016) 

Food-5K 2 ResNet152 SVM-RBF 99.4 McAllister et al. 

(2018) 

Food11  11 ResNet152 ANN 91.34 McAllister et al. 

(2018) 

RawFooT-DB 46 ResNet152 ANN 99.28 McAllister et al. 

(2018) 

ETH Food-101 101 ResNet152 SVM-RBF 64.68 McAllister et al. 

(2018) 

 

  To classify the food and non-food images, Ragusa et al. (2016) 

proposed to use three deep feature methods called the Network in Network, the 

AlexNet, and the VGG-s models to extract features and then use a support vector 

machine (SVM) as a classifier. The best performance result was the AlexNet model 

combined with a binary SVM classifier on the Food-5k dataset. For multi-class food 

images, Farooq and Sazonov (2017) proposed the deep feature method called AlexNet 

to extract features from the PFID food image dataset. This method extracts the feature 

of 4,096, 4,096, and 1,000 channels from three fully connected (FC) layers; FC6, 

FC7, and FC8. Also, the linear SVM technique is applied as a classifier. The results 

showed that the features extracted from FC6 outperformed features from other FC 

layers. Moreover, McAllister et al. (2018) applied ResNet152 and GoogLeNet for 

deep feature methods performed on five datasets consisting of Food-5k, Food11, 

RawFooT-DB, and ETH Food-101 dataset. The deep features were then classified 

using traditional machine learning comprising SVM, artificial neural networks, 

Random Forest, and Naive Bayes. The experimental result with these methods had 
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accuracies above 90% on food image datasets, except for the ETH Food-101 dataset 

that obtained only 64.68% accuracy. A summary of food classification using the deep 

feature methods is shown in Table 5. 

3.3 Proposed Approach for The Food Image Recognition System 

This section explains the framework of food image recognition. Two main 

architectures, convolutional neural network (CNN) and long short-term memory 

(LSTM) network, are proposed to extract the robust features from the food images. 

Hence, the robust spatial and temporal features are extracted from state-ofthe-art 

ResNet architecture and the LSTM network. The temporal features extracted from the 

LSTM network are transformed into a probability distribution using the softmax 

function. 

 

 

Figure 12  Architecture of our proposed framework for food image classification. 

According to our framework, as shown in Figure 12, I examine the transfer 

learning strategy to train the ResNet architecture. Hence, this architecture considers 

only the color image and the resolution of the images is decided to be 224x224x3 

pixels. I also normalize all food images to the values between 0 and 1 by dividing the 

pixel values with 255, which is the maximum value of the RGB color. Other schemes 

are described in the section of the spatial feature extraction method using CNN 

architecture and temporal feature extraction method using LSTM network, as follows. 

In this section, I propose an effective CNN architecture to extract a robust 

spatial feature. According to the computation power and time, the transfer learning 

approach is applied in the training scheme, then the pre-trained models of CNN 

architectures are trained on the food image and then examined to discover the best 

robust spatial feature. As a result, the last pooling layer of the CNN model is 
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employed as the spatial feature, as shown in Figure 13. I can also call this method a 

deep feature extraction technique. 

 

Figure 13  Diagram of the deep feature extraction technique. (1) food images are fed 

to the pre-processing step to resize and normalize. In the spatial feature 

extraction process, (2) food images are trained using state-of-the-art CNN 

architectures to find weights with low validation loss. Then, (3) the spatial 

features of the food images are extracted according to the best CNN 

model. 

To extract the robust spatial features, in this study, I propose state-of-the-art 

CNNs, VGG16, VGG19, ResNet50, DenseNet201, MobileNetV1, and MobileNetV2. 

An overview of each CNN will now be described. 

3.3.1 Spatial Feature Extraction using Convolutional Neural Network 

Architecture 

  3.3.1.1 VGGNet Architecture 

   Simonyan and Zisserman (2014) proposed a network to 

increase the stack of convolutional networks into 16 and 19 weight layers by using an 

architecture with a size of 3x3 pixels convolution filters, called VGGNet. With this 

network, the input images are the color image and are resized to 224x224 pixels 

resolution. The convolutional layers are downsized from 224x224 pixels to 7x7 

pixels. Nevertheless, the number of feature maps is increased from 64 to 512 layers. 

The rectified linear unit (ReLU) is used as the activation function. Also, spatial 

pooling is computed by the max-pooling method with the size of a 2x2 pixel window. 
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Three fully connected (FC) layers follow VGGNet. The first two FC layers have 

4,096 channels and the last FC layer contains 1,000 channels. The VGGNet is 

designed as a plain network, but still obtained the best performance on many image 

classification applications, such as remote sensing classification (X. Liu, Chi, Zhang, 

& Qin, 2018), and plant recognition (Abas, Ismail, Yassin, & Taib, 2018; Habiba, 

Islam, & Ahsan, 2019; Pearline, Vajravelu, & Harini, 2019). 

  3.3.1.2 ResNet Architecture 

   According to the plain network, the deeper convolutional layers 

were performed from 34-Layer until 152-layer plain networks (K. He, Zhang, Ren, & 

J., 2016). Firstly, the color image is resized to 224x224 pixels resolution and 

employed as the input of the deeper network. Secondly, the convolutional layers are 

divided into five convolutional blocks, namely building blocks. Remarkably, the 

output of each building block is always decreased by half of the input. For example, 

the output of the first, second, and fifth building blocks are 112x112, 56x56, and 7x7 

pixels resolution, respectively. Finally, the average-pooling method is applied to the 

last building block and followed by the FC layer with 1,000 channels and the softmax 

function. As a result, the deeper plain network gave a higher error rate on the CIFAR-

10 dataset. 

  

(a) (b) 

Figure 14  Illustration (a) a building block and the residual function and (b) a sample 

of bottleneck network for ResNet 50, 101, and 152. 

   According to the higher error rate, He et al. (2016) proposed to 

add the residual network, which is the shortcut connection, to train the deeper 

network, called ResNet. Hence, the shortcut connections are computed using the 

residual function that allows the network to skip two convolutional layers, as shown 
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in Figure 14a). The residual function is calculated by 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 when the 

feature maps of the input and output have identical dimensions. The original function 

changes to 𝐹(𝑥) + 𝑥 . Furthermore, bottleneck architectures are presented when the 

deeper convolutional layers are implemented as 50, 101, and 152 layers. The 

bottleneck architectures allow the network to skip three convolutional layers, as 

shown in Figure 14b). Consequently, ResNet obtained a top-5 error rate of 3.57% on 

the ImageNet validation set and showed fast computation compared to the plain 

network. The ResNet also won the ILSVRC-2015 classification task. 

  3.3.1.3 DenseNet Architecture 

   Huang et al. (2017) proposed a dense network called DenseNet 

architecture. The different depth convolutional layers were experimented with 

consisted of 121, 169, 201, and 264. The result showed that the DenseNet with 264-

layer provided the lowest top 1 error rate on the ImageNet validation set and yielded a 

better error rate than the ResNet architecture. Also, the parameter of the DenseNet is 

approximately 3-time less than the ResNet. According to the connection of the 

DenseNet, the network can connect to other layers in a feed-forward method. The 

number of direct connections can be computed using L(L+1)/2, where L is the number 

of layers. To further improve the DenseNet architecture, the convolutional layers are 

divided into four blocks, namely dense blocks. In each dense block, the bottleneck 

layers with a size of 1x1 and 3x3 convolution are used to reduce the number of input 

feature maps. The transition layers are combined with the dense blocks 1-3 to reduce 

the size of the feature maps to the half size of the convolutional layer in the dense 

block. The output size of each block is decreased from 112x112 to 7x7 pixels. As for 

the classification layer, the global average-pooling, FC layer, and softmax are applied. 

The differences between ResNet and DenseNet architectures are shown in Figure 15. 
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(a) (b) 

Figure 15  Illustration of the difference of the connections between (a) the ResNet and 

(b) the DenseNet architectures. 

  3.3.1.4 MobileNet Architecture 

   The lightweight CNN architecture called MobileNet is 

proposed for mobile and embedded devices (Howard et al., 2017). In order to reduce 

the size of the model, the depthwise separable convolution layer, a core layer of the 

MobileNet, is designed to factorize the standard convolution into 3x3 depthwise 

convolutions and then factorize the depthwise convolution layer into 1x1, called 

pointwise convolution. Due to MobileNet architecture, the depthwise and pointwise 

convolution layers are always followed by batch normalization (batchnorm) and 

ReLU, as shown in Figure 16a). 

  

(a) (b) 

Figure 16  Network architectures of MobileNet. Examples of (a) the depthwise 

separable convolution and (b) inverted residual and linear bottleneck. 
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   Furthermore, Sandler et al. (2018) proposed MobileNetV2 

architecture. The new mobile architecture, called inverted residuals and linear 

bottlenecks, is combined with the linear bottleneck layer and inverted residual 

network. The inverted residuals and linear bottlenecks block consist of three layers. 

First, 1x1 convolution combined with batchnorm and ReLU. Second, depthwise 

convolution combined with batchnorm and ReLU. Third, 1x1 convolution combined 

with batchnorm and without non-linearity, as shown in Figure 16b). In MobileNetV2 

architecture, the number of operations is decreased, so that is was of small size and 

low memory usage. A summary of the state-of-the-art CNN architectures is presented 

in Table 6. 

Table 6  Summary of the state-of-the-art CNN architectures. 

CNN 

Architectures 

Parameters 

No. of 

Conv 

Layer 

Filter 

Size 

Stride Pooling No. of 

FC 

Layers 

No. of 

Parameters 

VGG16 13 3 1 Max 3 138M 

VGG19 16 3 1 Max, 3 143M 

ResNet50 49 1, 3, 7 1, 2 Max, Average 1 25.6M 

DenseNet201 200 1, 3, 7 1, 2 Max, Average 1 20.2M 

MobileNetV1 13 1, 3 1, 2 Average 2 4.2M 

MobileNetV2 13 3 1, 2 Average 1 3.2M 

3.3.2 Temporal Feature Extraction 

  In this section, I propose two deep learning networks to extract 

temporal features, called long short-term memory and Conv1D-LSTM networks. The 

detail of deep learning networks is will now be described 

  3.3.2.1 Long Short-Term Memory 

   Hochreiter and Schmidhuber (1997) invented a novel gradient-

based method and developed the network based on a recurrent neural network (RNN) 

called a long short-term memory (LSTM) network, as shown in Figure 18. It proposed 

to address the computational complexity, error flow, constraints of the feedforward 

neural network, and sequence problems of time series data (Jain, Gupta, & Moghe, 

2018; Yan, Qi, & Rao, 2018). The LSTM network comprised special units that 
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connect to other units and are designed to cope with the sequence of data; video and 

speech data, called memory blocks. Each memory block contained the various 

functions consisting of the forget gate, input gate, update cell state, and the output 

gate. 

 

Figure 17  The architecture of the long short-term memory network (Hochreiter & 

Schmidhuber, 1997). 

  The memory block presented in Figure 17 is calculated as follows; 

  𝑓𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)     (1) 

  𝑖𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   

  𝐶̌𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)     

  𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶̌𝑡      

  𝑂𝑡 = 𝜎(𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   

  ℎ𝑡 = 𝑜𝑓 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)  

where 𝑓𝑡 is forget gate’s activation vector, 𝑖𝑡 is input/update gate’s activation vector, 

𝐶̌𝑡 is cell input activation vector, 𝐶𝑡 is current cell memory, 𝑂𝑡 is output gate’s 

activation vector, ℎ𝑡 is current cell output, , b and W denote the bias vector and 

weight matrices for the input gate (i), output gate (o), forget gate (f), and memory cell 

(c), ℎ𝑡−1 is previous cell output, 𝐶𝑡−1 is previous cell memory, σ is sigmoid function, 

and ' ∙ ' is the Hadamard product (Hochreiter & Schmidhuber, 1997) 
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  3.3.2.2 Conv1D-LSTM 

   In this study, I propose the Conv1D-LSTM framework to 

extract temporal feature from the spatial features, as shown in Figure 18. In the 

Conv1D block, the batch normalization layer was added so as to normalize the input 

data and speed up the process of learning. The dropout layer was implemented to 

prevent over-fitting, then some units were ignored during learning. After that, the 

average pooling layer which selected the average component from the sub-region of 

the feature map, was considered as the feature vector. The feature vector was sent to 

the LSTM Cells to learn and generate the temporal feature. Consequently, I again 

decreased the size of the feature using global average pooling layer (GAP) before 

giving the feature to the softmax function. 

 

 

Figure 18  Illustration of extract temporal features using the Conv1D-LSTM network. 

3.4 Experimental Setup and Results 

3.4.1 Food Image Dataset 

  In this research, I focused on experimenting with the benchmark food 

image dataset, namely the ETH Food-101 dataset (Bossard & Gool, 2014). The 

training set contained the wrong labels and some noise images, such as food images 

taken from different camera angles that made other objects such as people, tables, and 

bottles, appear in the image. It consists of 75,750 training images and 25,250 test 

images. The sample images of the ETH Food-101 dataset are shown in Figure 19. The 

challenge of this dataset is that the training set contained some noise images, such as 

food images taken from different camera angles that made other objects such as 
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people, tables, and bottles, appear in the image, as shown in Figure 20(a) and 

similarities of shape, color, and decoration between two categories (chocolate cake 

and chocolate mousse), as shown in Figure 20(b). The researchers assume that 

computer vision can handle noise images and wrong labels. 

 

Figure 19  Sample images of the ETH Food-101 dataset 

 

 

Figure 20  Some examples of the ETH Food-101 dataset that containing (a) other 

objects (e.g., people, cake shelves, tables, and glasses of beer) and (b) 

similarities of chocolate cake and mousse. 

3.4.2 Experimental Setup 

  As explained in Section 3, I first used pre-trained models of six CNN 

architectures; VGG16, VGG19, ResNet50, DenseNet201, MobileNetV1, and 

MobileNetV2, to train and extract the spatial feature from food images. All CNNs 

were trained using the stochastic gradient descent (SGD) optimizer, rectified linear 

unit (ReLU) for activation function, and learning rate between 0.01 to 0.0001. 

Second, the spatial features were then sent to Conv1D-LSTM and LSTM networks to 
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extract temporal features. In the LSTM network, the fraction of the units was 

employed to drop the linear transformation of the inputs. The initial weights were 

randomly selected by using a Gaussian distribution where the mean is zero. 

I decided to train only 100 epochs to avoid overfitting when training 

the model. Figure 21 shows loss values while training the Conv1D-LSTM and LSTM 

model. According to loss values, better loss values were obtained after epoch 50 when 

they became stable values until epoch 100. 

 

Figure 21  Illustration of loss values of (a) Conv1D-LSTM and (b) LSTM networks 

when using ResNet50, VGG16, and MobileNetV1 as a deep feature 

method. 

3.4.3 Evaluation Metrics 

  The evaluation metrics used for food image recognition were accuracy 

and F1-score. I used the accuracy score to evaluate the performance of the deep 

learning models on the test set and used the F1-score to examine the individual 

accuracy of each class. The accuracy and the F1-score were computed by Equations 2 

and 3. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑘+𝑇𝑁𝑘

𝑇𝑃𝑘+𝑇𝑁𝑘+𝐹𝑃𝑘+𝐹𝑁𝑘
     (2) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(

𝑇𝑃𝑘
𝑇𝑃𝑘+𝐹𝑁𝑘

×
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑃𝑘
)

(
𝑇𝑃𝑘

𝑇𝑃𝑘+𝐹𝑁𝑘
+

𝑇𝑃𝑘
𝑇𝑃𝑘+𝐹𝑃𝑘

)
     (3) 

where 𝑇𝑃𝑘 called true positives, is the number of correctly classified images from 

class 𝑘, 𝐹𝑃𝑘 called false positives, is the number of misclassified images from class 𝑘. 

𝑇𝑁𝑘 called true negatives, is the number of correctly classified image that does not 
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belong to class 𝑘, and 𝐹𝑁𝑘 called false negatives is the number of misclassified 

images belong to class 𝑘. 

3.4.4 Experiments with Deep Learning Methods 

  In the experiments with deep learning methods, I first trained the ETH 

Food-101 dataset using a pre-trained model of six state-of-the-art CNNs; VGG16, 

VGG19, MobileNetV1, MobileNetV2, ResNet50, and DenseNet201. Second, I 

proposed the deep feature method to extract the spatial feature from the last pooling 

layer of each CNN. The deep feature method extracted a high dimension of the spatial 

feature. The number of spatial features is reported in Table 7. It can be seen that 

ResNet50 provided 99,176 features. On the other hand, VGG16 produced only 25,088 

features. Finally, I trained the high dimension of the spatial features using Conv1D-

LSTM and LSTM networks. 

Table 7  Illustration of the number of spatial features extract from different CNN 

architectures and size of each model 

Deep Feature Methods No. of Parameters No. of Features 

VGG16  14.7M 25,088 

VGG19 20M 25,088 

ResNet50 23.5M 99,176 

DenseNet201 18.3M 94,080 

MobileNetV1 3.2M 50,176 

MobileNetV2 2.2M 62,720 

  Table 8 and Figure 22 present the accuracy results on the test set of the 

ETH Food-101 dataset for CNN, Conv1D-LSTM, and LSTM networks. The results 

show that the Conv1D-LSTM achieved the best performance with 89.82% accuracy 

when using a batch size of 32 and extracting features with ResNet50. As a result, the 

Conv1D-LSTM network with the batch size of 32 always showed better accuracy than 

other batch sizes. According to our experiments, however, the CNN architectures 

presented worse performance compared to the Conv1D-LSTM and LSTM networks. 

In terms of the deep feature methods, the ResNet50 outperforms all CNN 

architectures when training with the CNN, Conv1D-LSTM, and LSTM networks. The 

result of the CNN architectures shows that the ResNet50 provided 42.66% accuracy 
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higher than the MobileNetV2. I concluded that the ResNet50 extracted the spatial 

feature with a high dimension and still provided higher accuracy when training with 

Conv1D-LSTM and LSTM networks. Hence, the ResNet50 combined with the 

Conv1D-LSTM, namely ResNet50+Conv1D-LSTM, performed best on the ETH 

Food-101 dataset. 

Table 8  Evaluation of the classification results for the ETH Food-101 dataset using 

different deep learning consisting of CNN, LSTM, and Conv1D-LSTM. The 

first column shows the deep feature methods that used to extract spatial 

features. 

Model CNN LSTM Conv1D-LSTM 

No 

Pooling 

Layer 

Global 

Average 

Pooling 

No 

Pooling 

Layer 

Average 

Pooling 

Max 

Pooling 

VGG16 67.40 78.55 80.44 75.94 85.91 84.61 

VGG19 65.54 77.15 79.94 75.02 85.66 84.52 

MobileNetV1 50.60 58.59 60.32 64.80 65.88 65.75 

MobileNetV2 37.20 50.33 51.94 55.14 56.73 56.71 

DenseNet201 39.29 38.08 38.98 42.25 42.87 38.11 

ResNet50 79.86 88.90 88.92 86.83 89.82 89.01 

The experimental results show that the Conv1D-LSTM outperformed 

LSTM because I combined necessary layers toward the Conv1D network, such as 

batch normalization, ReLU activation function, and dropout. These layers produced 

the Conv1D network to normalize the inputs to each feature map and cope with the 

linear activation function. For Conv1D, I experimented with pooling layers; global 

average pooling and global max pooling to decrease the size of the feature vector 

before giving it to classified with the softmax function. The success of the pooling 

layer is no parameter to optimize and robust to perform the spatial feature. 
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Figure 22  Performance evaluation of three classifiers consisted of CNN, Conv1D-

LSTM, and LSTM architectures that extract features based on six different 

deep CNN architectures on the ETH Food-101 dataset. 

To study the effect of the data augmentation techniques, I applied six 

data augmentation techniques; rotation, width shift, height shift, horizontal flip, shear, 

and zoom while training the CNN architecture because Phiphiphatphaisit and Surinta 

(2020) reported that data augmentation techniques could increase the accuracy of 

CNN, especially for food image recognition. In this experiment, ResNet50+Conv1D-

LSTM using the batch size of 32 was considered. 

Table 9  The classification results for the ETH Food-101 dataset using features that 

extracting from the ResNet50 architecture and data augmentation 

techniques. 

Data Augmentation LSTM Conv1D-LSTM 

No 88.92 89.82 

Yes 89.49 90.87 

  Table 9 showed that LSTM and Conv1D-LSTM perform better when 

data augmentation techniques were applied. The accuracy of the Conv1D-LSTM with 

the data augmentation technique was slightly increasing compared with the LSTM 

with the data augmentation technique. As a result, the ResNet50+Conv1D-LSTM 

network with the data augmentation technique provided an accuracy of 90.87% on the 

ETH Food-101 dataset. The data augmentation can generate more food images while 

training, and then it increases the robustness of the model without decreasing the 
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effectiveness. Table 10 showed number of parameters and testing time of ResNet50 

and ResNet50+Conv1D-LSTM. 

Table 10 The performance results of food image recognition on four subsets on ETH 

Food-101 dataset using the approach MobileNetV1 architecture. 

Methods No. of Parameters Testing Time 

ResNet50 24.6 M 30m:50s 

ResNet50+Conv1D-LSTM 38.3 M 32m:30s 

 

Figure 23  The result of the F1-score on the ETH Food-101 dataset using the 

ResNet50 and LSTM architectures. 

 

 

Figure 24  Examples of misclassified results according to the noise images. 



 

 

 

 44 

The F1-score value of the ResNet50+Conv1D-LSTM network was 

computed according to Equation (3) and is illustrated in Figure 23. I found that only 

two categories, chocolate mousse and Filet mignon (see red bar) provided an F1-score 

of less than 80%. The F1-score also reported that 42 categories (see green bar) 

obtained a score above 90%. However, when I examined the ResNet50+Conv1D-

LSTM network with non-food elements, called noise images, our proposed network 

could not classify these noise images correctly. Some noise images are shown in 

Figure 20a) and the misclassified results of the noise images are shown in Figure 24. 

Also, misclassification of similar categories such as chocolate cake and chocolate 

mousse were found, as shown in Figure 25. 

 

Figure 25  An example of the similarity categories between chocolate cake and 

chocolate mousse contains in the ETH Food-101 dataset. 

4.4.5 Comparison between ResNet50+Conv1D-LSTM Network and 

Previous Methods 

  I made extensive comparisons between our ResNet50+Conv1D-LSTM 

network and existing state-of-the-art CNN architectures. The experimental results 

showed that our network performed better than all CNN architectures. The accuracy 

of 90.87% was obtained from the ResNet50+Conv1D-LSTM, while, the performance 

of the state-of-the-art WISeR architecture was 90.27% accuracy. The comparative 
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results between the existing CNN architectures and our proposed architecture on the 

ETH Food-101 dataset are shown in Table 11. 

Table 11 Recognition performance on the ETH Food-101 dataset when compared 

with different deep learning techniques. 

Architectures No. of training 

images per 

class 

Accuracy References 

ResNet152 750 64.98 McAllister et al. (2018)  

EnsembleNet  750 72.12 Pandey et al. (2017) 

Modified MobileNetV1 400 72.59 Phiphiphatphaisit & Surinta (2020) 

DeepFood 750 77.40 Liu et al. (2016) 

GoogLeNet 750 79.20 Bolanos & Radeva (2016)  

CNNs Fusion 750 86.71 Aguilar et al. (2017) 

InceptionV3 750 88.28 Hassannejad et al. (2016) 

WISeR 750 90.27 Martinel et al. (2018) 

ResNet50+Conv1D-LSTM 750 90.87 Our proposed  

  From the experimental results shown in Table 11, it can be seen that 

the Conv1D-LSTM yielded better performance than other techniques. Our Conv1D 

network included many layers consists of batch normalization layer, ReLU activation 

function, and dropout layer. In our Conv1D, I used the batch normalization layer to 

normalize the input data to each feature map and this layer works better with the 

ReLU activation function. The dropout layer was attached to the Conv1D network to 

prevent the over-fitting, then it allows the network to ignored some units during 

training. 

3.5 Conclusions 

This study proposed the ResNet50+Conv1D-LSTM network for accurate food 

image recognition. First, our network took advantage of extracting the robust spatial 

feature using a state-of-the-art convolutional neural network (CNN), called ResNet50 

architecture. Second, I used the robust feature as input data for the Conv1D combined 
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with the long short-term memory (LSTM) network, namely Conv1D-LSTM. The 

primary function of the Conv1D-LSTM network was to extract a temporal feature. 

Finally, the softmax function was employed to transforms the output of the Conv1D-

LSTM into a probability distribution. 

In the experiments, I evaluated six CNNs; VGG16, VGG19, ResNet50, 

DenseNet201, MobileNetV1, and MobileNetV2 to extract the feature, then classify 

with Conv1D-LSTM and LSTM networks on the Food101 dataset. The results 

showed that the ResNet50 combined with the Conv1D-LSTM network, called 

ResNet+Conv1D-LSTM network, provided the best performance (see Table 7). 

Additionally, I experimented with mixed data augmentation techniques; rotation, 

width shift, height shift, horizontal flip, shear, and zoom. The result of the data 

augmentation also insignificantly increased accuracy by 0.27%. Our experiments 

presented better results than previous work (see Table 9). The best result of the 

ResNet+Conv1D-LSTM obtained 90.87% on the ETH Food-101 dataset. 

In future work, I will experiment on increasing the performance of the food 

image recognition. I will consider other novel data augmentation techniques, which 

could be more efficient in the noise food images. Also, the ensemble and parallel 

networks will be involved in future work. 

 

 

 

 



 

 

 

Chapter 4 

Adaptive Deep Feature Learning Techniques 

Various deep learning methods have been proposed to address the challenge of 

food image classification, such as convolutional neural networks (CNN), deep feature 

extraction, and ensemble CNNs. However, the existing methods do not perform with 

high accuracy on the benchmark food image datasets. In this research, I proposed a 

robust adaptive spatial-temporal feature fusion network, called ASTFF-Net, to 

enhance the performance of the food image recognition system. The architecture of 

ASTFF-Net is divided into three parts; spatial feature extraction network, temporal 

feature extraction network, and adaptive feature fusion network. In the first part, I 

extracted the spatial features using the ResNet50 and then minimized the size of the 

parameters using the reduction operation. Further, the convolutional 1D (Conv1D) 

block was applied to fit the features into the recurrent neural networks. In the second 

part, the spatial features from the first part were given to the long short-term memory 

(LSTM) that allows learning various patterns from sequence features. In the final part, 

the spatial features from the first part and temporal features from the second part were 

concatenated and assigned to the Conv1D, followed by the softmax layer. The 

advantage of ASTFF-Net is that the proposed network can prevent overfitting 

problems due to the attachment of the global average pooling and dropout layers. 

These layers decreased the number of network parameters and dropped the number of 

connections between layers, respectively. In the experiments, I evaluated four 

different adaptive feature fusion networks (ASTFF-NetB1 to B4) on four benchmark 

food image datasets; Food11, UEC Food-100, UEC Food-256, and ETH Food-101. 

As a result, the proposed ASTFF-NetB3 achieved the best performance on four 

benchmark food image datasets. It also significantly outperformed the existing 

methods. 

4.1 Introduction 

Nowadays, people care about their health and make sure they live a fit and 

good life. Many food image recognition applications, such as dietary, personal food 

logging, nutrition assessment, and social media applications (Jiang et al., 2020; C. Liu 
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et al., 2016; Sahoo et al., 2019; Dong, Sun, & Zhang, 2019; Nordin, Xin, & Aziz, 

2019), were invented to yield the users' requirements. In order to use the program to 

its full potential, many applications were then built as mobile applications on 

smartphones. They allow people who use the smartphone to take food photos and 

measure nutrition themselves. 

To make the food image recognition applications achieve more accurate 

results in classification, the artificial intelligence algorithms should deal with 

uncontrolled photos taken by the users with variations such as brightness, orientation, 

noise, and other objects in the food images. Figure 26a shows some different 

orientations of spaghetti. The Peking duck, as shown in Figure 26b, is decorated in 

different styles. Furthermore, Figure 26c shows other objects in the food images, such 

as glasses, plates, forks, spoons, and knives. Many techniques have been proposed to 

address these challenges.  

 

   
(a) (b) (c) 

Figure 26 Illustrated food images (a) similarities in different food types (b) different 

decoration and (c) non-food items. 

Many convolutional neural network (CNN) architectures are currently 

proposed for food image recognition systems that make it more effective to analyze 

and classify real-world food images. CNNs have also shown state-of-the-art 

performance on food image recognition. The fine-tuned models of AlexNet and 

InceptionV3 architectures were used to recognize the real-world food images on the 

benchmark food image datasets; ETH Food-101, UEC Food-100, and UEC Food-256 

(Yanai and Kawano, 2015; Hassannejad et al., 2016). In their experiments, Yanai and 

Kawano (2015) obtained the recognition accuracy of 78.77% and 65.57% on UEC 

Food-100 and Food-256, respectively. In comparison, Hassannejad et al. (2016) 

achieved an accuracy of 88.28% on ETH Food-101, 81.45% on UEC Food-100, and 

76.17% on UEC Food-256.  
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The concept of the ensemble CNNs network, called Ensemble Net, was 

proposed by Pandey et al. (2017). In their ensemble Net, the input images were first 

changed to HSV color space and then histogram equalization was applied to only the 

brightness channel. Second, the food images were sent to fine-tuned CNNs consisting 

of AlexNet, GoogLeNet, and ResNet. Third, the feature maps that had been extracted 

from three CNNs were concatenated and sent to the fully connected layers. Finally, 

their proposed network was classified using the softmax function. Ensemble Net 

performed with a recognition accuracy of 72.12% on the ETH food-101 and 73.5% on 

the Indian food database. 

The deep feature extraction technique became the popular method that 

extracted the robust deep features based on the convolutional neural networks 

(CNNs). The CNN architecture emphasizes that it computes the weighted parameters 

from the input images and then creates unique spatial features. Şengür et al. (2019) 

extracted deep features using two CNN architectures; VGG16 and AlexNet. The deep 

features were then concatenated and sent to classify using the support vector machine 

(SVM) technique. Phiphitphatphaisit and Surinta (2021) extracted both spatial and 

temporal features. First, the spatial features were extracted using ResNet50 and spatial 

features were subsequently transferred to the Conv1D-LSTM network to extract the 

temporal features. Finally, the deep features were classified using the softmax 

function.  

To better extract the unique deep features from real-world food images, the 

significant contributions of this thesis are summarized in the following. I introduce a 

novel CNN-based network for encoding food images to extract robust deep features, 

namely adaptive spatial-temporal feature fusion network (ASTFF-Net). ASTFF-Net 

has three main networks; spatial feature extraction, temporal feature extraction, and 

adaptive feature fusion. The advantage of our proposed network is that it captures the 

spatial and temporal to represent real-world food image characteristics. I then show 

that ASTFF-Net significantly outperforms existing state-of-the-art deep learning 

techniques on four real-world food image datasets; Food11, UEC Food-100, UEC 

Food-256, and ETH Food-101. 

The remainder of this chapter is organized as follows. Section 4.2 summarizes 

the overview of related work. Section 4.3 describes the proposed ASTFF-Net. The 
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real-world food image datasets are explained in Section 4.4. The experimental results 

and discussion are presented in Section 4.5. The conclusion and future work are given 

in Section 4.6. 

4.2 Related Work 

Recently, many approaches have been proposed to address the challenge of 

real-world food image recognition. The related works are described in this section, 

including convolutional neural networks, deep feature extraction methods, and deep 

feature fusion methods. 

4.2.1 Convolutional Neural Networks (CNNs) 

CNN architectures are popular and have been proposed to address the 

recognition problems in many domains. Many CNN architectures were proposed to 

recognize food images, such as VGG16, GoogLeNet, InceptionV3 (Hassannejad et 

al., 2016; Liu et al., 2016; Ege and Yanai, 2017; Vijayakumar and Sneha, 2021). Ng 

et al. (2019) proposed to use several state-of-the-art CNN architectures comprising 

MobileNetV2, ResNet50, InceptionV3, InceptionResNetV2, Xception, and NASNet-

Large for food image recognition. In their experiments, they evaluated the 

performance of the CNN architectures on several parameters, including the impact of 

the training images, data augmentation techniques, class imbalance, and image 

resolutions. The results showed that the Xception perform better than other CNNs on 

UEC Food-100, ETH Food-101, and Vireo-Food 172 datasets.  

Martinel et al. (2018) invented wide-slice residual networks (WISeR) 

based on a residual network. The WISeR architecture contained two parts; residual 

network and slice network. In the first part, the residual network was employed.  In 

the second part, the slice convolution kernel was proposed. The slice convolution 

kernel was designed using the rectangle kernel. The width of the rectangle kernel was 

the same size as the width of the input image. It was different from the standard 

convolution kernel in that the kernel of the standard convolution was designed as the 

square kernel. Further, two parts were concatenated and given to fully connected 

layers. The WISeR architecture obtained an accuracy of 89.58% on the UEC Food-

100, 83.15% on the UEC Food-256, and 90.27% on the ETH Food-101 datasets.  
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Moreover, Tasci (2020) proposed ensemble CNNs using voting 

combination rules, called voting-based CNNs.  For the CNN architectures, five 

CNNs, including VGG16, VGG19, GoogLeNet, ResNet101, and InceptionV3, were 

experimented with. In the ensemble method, six voting methods (minimum, average, 

median, max, product, and weighted probabilities) were evaluated. The voting-based 

CNNs yielded 84.28%, 84.52%, and 77.20% accuracy rates on ETH Food-101, UEC 

Food-100, and UEC Food-256 respectively. 

4.2.2 Deep Feature Extraction methods  

Deep feature extraction methods aim to extract the spatial features 

from the input images. They are designed to extract features from different layers of 

deep CNN architectures to enhance accuracy performance. Hence, the deep features 

are transferred to the recurrent networks and other machine learning techniques to 

train and create a robust model. Further, the deep features can also be assigned to the 

LSTM network to extract the temporal features.  

Ragusa et al. (2016) used AlexNet, VGG, and Network-in-Network 

models to extract the deep features from food images. The deep features were then 

given to classify using the support vector machine (SVM) techniques. The results 

showed that extracted deep features using AlexNet architecture and classified using 

the binary SVM outperformed extracted deep features using other CNNs. As a result, 

training the binary SVM technique on the deep features performed approximately 8% 

better than classification using only the CNN technique. 

Aguilar et al. (2017a) proposed to use GoogLeNet architecture as the 

feature extraction method. In their method, first, the deep features were transformed 

and the best discriminant components selected using principal component analysis 

(PCA). Second, the best components were trained using the SVM technique. 

Moreover, in SVM, the grid-search method was used to find the best 

hyperparameters; cost and gamma. Finally, the optimal SVM model was trained on 

the best components with the best hyperparameters, then the input images were  

classified as the food or non-food images. It obtained an accuracy of 94.86% on the 

RagusaDS and 99.01% on the FCD datasets. 
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The idea of extracting the deep features from various convolution 

layers was proposed by Farooq and Sazonov (2017). In their method, the deep high-

level features were extracted from convolution layers 6, 7, and 8 of the AlexNet 

architecture. It extracted 4,096, 4,096, and 1,000 features from the images, 

respectively. Consequently, the SVM classifier trained deep features from layers 6, 7, 

and 8 separately. As a result, the extracted deep feature from layer 6 achieved the 

highest accuracy with 70.13% on the Pittsburgh fast-food image dataset. Furthermore, 

McAllister et al. (2017) extracted the deep features using ResNet-152 and GoogLeNet 

architectures from food image datasets. The deep features were then classified using 

four classifiers consisting of SVM, random forest, neural network, and Naive Bayes. 

The experimental results showed that it obtained a very high accuracy of 99.4% on 

the Food-5k dataset. Subsequently, it obtained an accuracy above 90% on Food11 and 

RawFooT-DB datasets. However, it achieved only 64.98% on the ETH Food-101 

dataset. 

4.2.3 Deep Feature Fusion Methods 

The previous research mentioned above has shown that deep CNN 

features achieve high performance in classifying food images. In this section, I will 

discuss deep feature fusion for food image recognition. Pandey et al. (2017) presented 

a fusion of three deep CNN features consisting of AlexNet, GoogLeNet, and ResNet 

to classify benchmark food datasets. In the first layer, three fine-tuned CNNs were 

used for feature extraction, and the output was concatenated before being passed to 

ReLU activation followed by a fully connected layer and fed into the softmax 

function for classification. The experimental result on the ETH Food-101 dataset 

achieved 72.12% accuracy. Aguilar et al. (2017b) proposed the CNN fusion method 

based on Inception Modules and Residual Networks. The first step involved 

separately training two CNN models. Second, the best results in the validation dataset 

were used in the fusion step using the decision template scheme. The method 

achieved an accuracy of 86.71% with the ETH Food-101 dataset.  

In addition to the featured fusion methods, adaptive feature fusion has 

also been introduced for image classification. For example, Li et al. (2020) proposed 

multi-exemplar images and adaptive fusion of features to enhance blind face 
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restoration. Kumar, Namboodiri, and Jawahar (2020) used the adaptive feature 

aggregation to recognize a person. The method was to combine the pooled features 

from multiple locations of the shared feature maps with adaptive weights produced by 

the attention module. Zhao et al. (2021) introduced a tracking algorithm with a multi-

level adaptive feature fusion method. From all the research mentioned above, it was 

found that the adaptive feature fusion approach increases the efficiency of image 

recognition. In our study, I used the deep feature technique to extract the feature of 

the food image and fused the feature with the adaptive spatial-temporal feature fusion 

method, descript as follows in section 4.3.  

4.3 Adaptive Spatial-Temporal Feature Fusion Network (ASTFF-Net) 

 Overview of the network. The architecture of the adaptive spatial-temporal 

feature fusion network, called ASTFF-Net, is shown in Figure 27. ASTFF-Net is 

proposed to improve the robustness of the deep features extracted using the deep 

learning methods. It is divided into three schemes; spatial feature extraction network, 

temporal feature extraction network, and adaptive feature fusion network. 

For the first scheme, the deep features are extracted using the deep 

convolutional neural network (CNN) from food images, with ResNet50 architecture. 

The reduction operation is then applied to minimize the size of the network 

parameters. Further, I provide the data to fit the recurrent neural networks, such as 

long short-term memory networks (LSTMs) and gated recurrent units (GRUs), by 

applying the convolutional 1D block. I describe the details of the spatial feature 

extraction network in Section 4.3.1. 

For the second scheme, the spatial features from the previous scheme are 

assigned to the LSTM network to extract the temporal features. The LSTM network 

was proposed by combining feedback connections to learn many sequence tasks. The 

details of the LSTM network are explained in Section 4.3.2. 

In the last scheme, I concatenate the spatial and temporal features to obtain the 

advantages from these features, called the adaptive feature fusion network. In 

addition, the convolutional 1D (Conv1D) block is attached to the temporal and spatial 

feature extraction networks and then combined using concatenate operation. The 

explanation of the adaptive feature fusion network is shown in Section 4.3.3.  
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Figure 27  Overall of our ASTFF-Net 

4.3.1 Convolutional Operations 

  This section briefly describes the convolutional operations involved in 

the experiments, including convolutional 1D, batch normalization, rectified linear 

unit, dropout, and pooling layers, as follows. 

  4.3.1.1 Convolutional 1D 

The convolutional layer is the principal layer of CNN 

architecture (LeCun et al., 1998) proposed to extract the spatial feature from the 2D 

image. The convolution operation was used to calculate between the input image and 

the small square filter. The output of the operation is recognized as a feature map. The 

convolutional operation is calculated as follows. 

𝑥𝑗
𝑙 = ∑ 𝑥𝑖

𝑙−1𝑛
𝑙=1 × 𝑤𝑖𝑗

𝑙−1 + 𝑏𝑗
𝑙    (1) 

where 𝑥𝑗
𝑙 is the 𝑗𝑡ℎfeature map in layer 𝑙, 𝑥𝑖

𝑙−1 is the 𝑖𝑡ℎfeature map in layer 𝑙 − 1,  

𝑤𝑖𝑗
𝑙−1 is weights of the 𝑗𝑡ℎ filter that can be updated while training the network, and 𝑏𝑗

𝑙 

is the trainable bias parameter of the 𝑗𝑡ℎfeature map in layer 𝑙. 

Furthermore, the convolutional layer was applied to deal with 

the 1D vector, called convolutional 1D (Conv1D). Therefore, Conv1D was applied to 

the natural language processing (NLP) and forecasting tasks. In our experiments, the 

filter size of 1x3 with a stride of 1 was applied to the Conv1D.     

  4.3.1.2 Batch Normalization 

The batch normalization (BN) is proposed due to the 

parameters of the previous CNN layers changing during the training process of the 
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CNN model (Ioffe and Szegedy, 2015). It provides a uniform distribution before 

sending the weighted parameter to the further CNN layer. The BN benefits by being 

to defeat the vanishing gradient problem, because the slight variations in parameters 

from the current layer to the following layers do not get propagated. Consequently, it 

is possible to use higher learning rates to optimize the model and result in faster 

training. 

The BN operation is computed as follows: 1) Calculate mean  

(𝜇𝐵) and variance (𝜎𝐵
2) of mini-batch (𝐵) (see Equations 2 and 3), 2) Normalize input 

(𝑥) by subtracting 𝑥 with 𝜇𝛽 and dividing mini-batch standard deviation (see 

Equation 4), and 3) Scale and position the dataset by applying norm(𝑥𝑖̂) to calculate 

with scaling parameter (γ) and shifting parameter (β) (see Equation 5), which will be 

added to backward propagation to allow the algorithm to adjust both values during 

training the model.   

𝜇𝛽 ←
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1      (2) 

𝜎𝛽
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝛽)

2𝑚
𝑖=1     (3) 

𝑥𝑖̂ ←
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

      (4) 

𝑦𝑖 ← 𝛾𝑥𝑖̂ + 𝛽 ≡ 𝐵𝑁𝛾,𝛽(𝑥𝑖)    (5) 

where 𝛽 is values of 𝑥 over a mini-batch, 𝜖is the smoothing term that guarantees 

stability numeric within the operation by stopping a division by a zero value, and 𝑚 is 

the input numbers in the mini-batch. 

  4.3.1.3 Rectified Linear Unit 

Rectified Linear Unit (ReLU) is an activation function often 

applied in neural networks (Nair and Hinton, 2010) which has simple and not heavy 

computation. Hence, the CNN model could require less training time. The ReLU 

function is designed as a linear function that returns zero if it gets any negative input. 

Otherwise, the function returns the same value for any positive input value. The 

ReLU function is computed by 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), where 𝑥 is the input value. 
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  4.3.1.4 Dropout 

   The robust network has many weighted layers. It usually 

contains a large number of parameters that have to be adjusted. The overfitting 

problem may occur while training the network. To address the overfitting problem, in 

this study, I proposed to apply the dropout layer (Srivastava et al., 2014) in our 

proposed network. With the dropout layer, the neural nodes and their connections 

were randomly dropped during training the model. 

  4.3.1.5 Pooling Layers 

  1. Average pooling layer 

The pooling layer was proposed by Boureau et al. (2010) to 

create the feature maps in which the size of the feature maps was reduced after 

applying the pooling operation. In this study, I applied the average pooling layer so 

that a small translation of the input image does not affect the output values. The 

pooling operation is regularly applied after a convolutional layer. In order to create 

feature maps, it calculates the average value of pixels in each area of a feature map. 

Further, I aim to decrease both the number of CNN parameters and the computational 

time. The average pooling layer is calculated as follows. 

𝑓𝑎𝑣𝑒(𝑥) =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1     (6) 

where 𝑥 is the vector containing the pixel values from the local pooling region, N is 

the number of pixels. Typically, the size of the pooling operation is 2x2 or 3x3 blocks. 

In our network, an average pooling layer of size 3x3 was applied. 

  2. Global average pooling layer 

Global average pooling (GAP) (Lin et al., 2014) was introduced to replace the 

traditional fully connected layers in the CNN architecture. Hence, the output of the 

GAP layer is given directly to the softmax layer. The purpose of the GAP layer is to 

calculate each corresponding feature map by averaging the values of the 

corresponding feature map and transforming it into only one feature. For example, the 

feature map size of 3x3x2048 would be output as 1x1x2048. In the GAP layer, it does 

not have a parameter to optimize. The spatial information of feature maps is averaged, 
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more robust to spatial translations from the input feature maps. Consequently, the 

overfitting problem is avoided at this layer. 

4.3.2 Spatial Feature Extraction Network 

 In this section, I propose a spatial feature extraction network, as shown 

in Figure 28, to extract the spatial features from the food images. According to 

experimental results given in Phiphiphatphaisit and Surinta (2020), I chose the 

ResNet50 architecture that reached the best performance on the benchmark ETH 

Food-101 dataset. First, the input images were resized to the fixed size of 224x224 

pixels with three channels that fit the input layer of the ResNet50. Second, the last 

pooling layer of ResNet50 was decreased by applying the reduction operation. 

Finally, the convolutional 1D (Conv1D) block was attached to the reduction 

operation. The output of the Conv1D block was the robust spatial features.  

 

Figure 28 Illustrated Spatial Feature Extraction Network 

 4.3.2.1 ResNet  

 Residual Network (ResNet) (He et al., 2016) is the deep 

convolutional network using shortcut connection, namely residual block, that allows 

each layer to skip over one or more layers. Residual block typically contains a batch 
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normalization layer (BN) and ReLU activation function. Further, BN is attached after 

each convolutional layer and followed by the ReLU function. The residual block 

follows two simple rules: 1) when the input from the previous residual block and 

output of the current residual block is presented as the same dimension, called identity 

mapping, it takes outputs from the previous block and adds with the output from the 

skipped layers, as shown in Figure 29a. 2) When the input of the previous residual 

block and output of the current residual block are not the same size, the projection 

shortcut is implemented to ensure that the output of the residual block is the same size 

after applying the addition operation, as shown in Figure 29b. 

  

(a) (b) 

Figure 29  Bottleneck block for ResNet50: (a) identity shortcut, (b) projection 

shortcut. (f denotes the number of filters) 

In this experiment, I trained the model using a pre-trained 

model of ResNet50 to speed up the training process. However, I removed the fully 

connected and extracted the spatial from the last layers of the ResNet50.  

4.3.2.2 Reduction Operation 

I implemented the reduction operation that aimed to adjust the 

size of the feature maps. The size of the feature maps that were extracted using the 

ResNet50 was defined by the three dimensions (width x height x number of feature 
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maps). Hence, the input layer of the convolutional 1D block should be in the form of 

two dimensions. In our study, the reduction operation was installed between the 

ResNet50 and Conv1D block. The reduction operation is calculated as follows 

Equation. 

𝐹𝑣𝑖 = 𝑐𝑎𝑡 (𝑚𝑎𝑥(𝑥𝑗)) , 𝑗𝜖{1,2, … , 𝑘}  (4) 

where 𝐹𝑣  is the feature vector when 𝐹𝑣𝑖𝜖{𝐹𝑣1, 𝐹𝑣2, … , 𝐹𝑣𝑖}, i is the number of 

feature maps, 𝑥𝑗 is the vector of a region with the size of 1 x H when H denotes the 

height of the feature vector in each feature map, cat is concatenate the maximum 

value of 𝑥𝑗, when 𝑗 ∈ {1,2, … , 𝑘} and 𝑘 denotes the width of the feature vector in each 

feature map.  

 4.3.2.3 Convolutional 1D Block 

In our proposed Conv1D, the spatial features extracted using 

the ResNet50 architecture were first given to the reduction operation to transform the 

feature maps into one dimension. Second, I computed the zero-padding operation to 

the spatial features, followed by the BN operation. Then, the 1D convolution 

operation with a filter size of 1x3 and a stride of 1 was calculated through the spatial 

features after applying zero padding. Third, three operations; BN, dropout, and 

average pooling, were attached to the network. Finally, the robust spatial features 

were obtained from the spatial feature extraction network, as shown in Figure 28. 

4.3.3 Temporal Feature Extraction Network 

This section investigated the long short-term memory (LSTM) network 

(Hochreiter and Schmidhuber, 1997) to extract the robust temporal features. The 

LSTM network was proposed to learn patterns in long sequence data by combining 

cell state and three gates; input, output, and forget. In the LSTM network, the cell 

state function is to provide relevant sequence information into gates. The gates in the 

LSTM network are chosen which information is allowed and which information is 

related to keep or forget while training. 

This study applied the LSTM network to learn the sequence data 

extracted using the spatial feature extraction network described in Section 4.3.2. The 

temporal feature is the output of the LSTM network, as shown in Figure 30. 
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Figure 30  Illustration of the LSTM network proposed to extract the temporal 

features. 

4.3.3 Adaptive Feature Fusion Network 

I proposed an adaptive feature fusion network that combines robust 

spatial-temporal feature networks extracted from the spatial feature extraction 

network (see Section 4.3.2) and the temporal feature extraction network (see Section 

4.3.3), as shown in Figure 31. Furthermore, after concatenating two robust features, 

the robust features were given to the GAP layer, followed by the BN layer. The ReLU 

activation function was calculated while training. Finally, the robust feature vector 

was classified using the softmax function. The details of the adaptive feature fusion 

network are shown as follows. 
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Figure 31  Illustrated Adaptive Feature Fusion Network 

 4.3.3.1 Convolutional 1D Block 

In this section, the Conv1D block was different from the 

Conv1D in Section 4.3.2.3. First, the input of the Conv1D block was the temporal 

feature extracted using the LSTM network. Second, the 1D convolution operation 

with a filter size of 1x3 and a stride of 1 was computed. Finally, the ReLU activation 

function and Dropout layer were combined to the last layer of the Conv1D block. 

 4.3.3.2 Concatenate between Conv1D Block and Spatial Features 

The last step of the adaptive feature fusion network was that the 

output of the Conv1D block and spatial features from the spatial feature extraction 

network (Section 4.3.2) were concatenated. In addition, the GAP and the BN layers 

were invented to decrease the network parameters and standardize the feature vector 

before assigning the features to classify with the softmax function. 

4.4 Real-World Food Image Datasets  

I evaluated our proposed adaptive feature fusion network (ASTFF-Net) on 

four benchmark food image datasets, including Food11, UEC Food-100, UEC Food-

256, and ETH Food-100. The details of each food image dataset were as follows: 
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4.4.1 Food11 Dataset 

Singla et al. (2016) proposed the Food11 dataset that consisted of 

16,643 food images of 11 categories that were bread, dairy products, egg, dessert, 

meat, fried food, pasta, seafood, rice, vegetables/fruit, and soup, as shown in Figure 

32. 

 

Figure 32 Sample images of the Food11 datasets 

4.4.2 UEC Food-100 Dataset 

Matsuda et al. (2012) collected the UEC Food-100 dataset. It contains 

14,361 images from 100 categories of famous Japanese foods, such as sushi, eels on 

rice, pilaf, beef curry, fried noodle, and tempura. The UEC Food-100 dataset consists 

of multiple food items in one image (see Figure 33a) and a single food item in one 

image (see Figure 33b). 

 

  

(a) (b) 

Figure 33  Examples of the UEC Food-100 dataset, (a) Multiple food items and 

(b)single food items. 
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4.4.3 UEC Food-256 Dataset 

Kawano & Yanai (2014) proposed the UEC Food-256 image dataset, 

which is the extended version of the UEC Food-101 dataset. First, all the images were 

collected from Flickr, Bing, and Twitter, using a specific query. Second, the 

downloaded images were classified using the Foodness method and categorized as 

food or non-food images. Finally, the UEC Food-256 dataset contained approximately 

32,000 food images and comprised 256 categories with more than 600 food images in 

each category after removing noise images. Examples of the UEC Food-256 dataset 

are shown in Figure 34b. 

  

(a) (b) 

Figure 34  Illustration of (a) the ETH Food-101 dataset (b) the UED-Food256 

dataset. 

4.4.4 ETH Food-101 Dataset 

The ETH Food-101 dataset was proposed by Bossard & Gool (2014), 

which is the real-world food images downloaded from the website foodspotting.com. 

It contains 101,000 food images and has 101 food image categories. The examples of 

the ETH Food-101 dataset are shown in Figure 34a. 

The summary details of four benchmark food image datasets are shown in 

Table 12. 
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Table 12  Illustrated the details of the benchmark food image datasets. 

Datasets Categories No. of 

Images 
No. of 

Training 
No. of 

Testing 
Image per 

Category 
Food11 11 16,643 12,483 4,160 Unbalanced 

UEC Food-100 100 14,361 10,771 3,590 Unbalanced 

UEC Food-256 256 31,395 23,547 7,848 Unbalanced 

ETH Food-101 101 101,000 75,750 25,250 1,000 

4.5 Experimental Results and Discussion 

In this section, I implemented the adaptive feature fusion network with the 

TensorFlow platform running on Google Colab with GPU support for all the 

experiments. The proposed adaptive spatial-temporal feature fusion network (ASTFF-

Net) was evaluated on various benchmark food image datasets, including Food11, 

UEC Food-100, UEC Food-256, and ETH Food-101. I divided the food image 

datasets into training and test sets. The accuracy of the ASTFF-Net was evaluated on 

the test set. Moreover, I employed 5-fold cross-validation (cv) over the training set to 

find the significance of the proposed network and prevent overfitting problems. The 

average accuracy, standard deviation, recall, and F1-score were reported. 

In the ASTFF-Net, I used only the pre-trained model of the ResNet50 

architecture with pre-trained weights from the ImageNet dataset. However, other parts 

of the framework do not transfer from the pre-trained model. I trained the ASTFF-Net 

with the SGD optimizer to optimize the loss function. The adaptive learning rate was 

proposed with the initial value of 0.01 and then reduced to 0.0001 when the loss value 

did not decrease after five epochs. The momentum value was set to 0.9 and the weight 

decay was updated based on the learning rate value and the number of epochs. The 

ASTFF-Net was trained for only 50 epochs. 

To study the efficiency of the ASTFF-Net, I invented four different 

experiments. First, I combined spatial and temporal features, called the ASTFF-NetB1 

model, as shown in Figure 35a. Second, the spatial features were sent to the Conv1d 

block before combining with the temporal features, called the ASTFF-NetB2, as 

shown in Figure 35b. Third, the temporal features were sent to the Conv1D block 

before combining with the spatial features, called the ASTFF-NetB3, as shown in 

Figure 35b. Finally, both spatial and temporal features were given to the Conv1D 

block before combining, called the ASTFF-NetB4, as shown in Figure 35d. 
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(a) (b) 

  
(c) (d) 

Figure 35 Illustration of ASTFF-Nets used in the experiments. (a) the ASTFF-Net 

baseline network, called ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-

NetB3, and (d) ASTFF-NetB4. 
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4.5.2.1 Experiments on the Food11 Dataset 

   I trained four ASTFF-Nets on the Food11 dataset on the 

training data based on five-fold cross-validation (5-cv) and evaluated ASTFF-Net 

models on a separate test set. The results obtained are presented in Table 13. 

Table 13 Evaluation performances (average accuracy, ± standard deviation, test 

accuracy, recall, and F1-score) of the ASTFF-Nets on the Food11 dataset. 

The bold numbers represent the best ASTFF-Net model. 

Model 5-CV Accuracy (%) Recall F1-Score Testing Time 

ASTFF-NetB1 94.26 ± 0.177 93.47 0.935 0.935 5m:22s 

ASTFF-NetB2 94.17 ± 0.291 93.16 0.932 0.932 5m:24s 

ASTFF-NetB3 96.08 ± 0.330 95.04 0.950 0.950 5m:24s 

ASTFF-NetB4 95.54 ± 0.369 94.63 0.946 0.946 5m:25s 

From Table 13, I observed that ASTFF-NetB3, in which the 

temporal features were sent to the Conv1D block before combining with the spatial 

features, outperformed other ASTFF-Nets on the Food-11 image dataset. The ASTFF-

NetB3 achieved 96.08% accuracy on the training set using 5-cv and 95.04% accuracy 

on the test set, which was the best network. On the other hand, ASTFF-NetB2 had the 

worst performance on both training and test sets. However, it was only approximately 

1.8% below that of ASTFF-NetB3. Further, as for the testing time, all ASTFF-Nets 

performed almost a similar computation. It spent approximately 5 minutes on the 

whole test set (approximately 75.28 milliseconds per image).  

Figure 36 illustrates the confusion matrix of four ASTFF-Nets. 

It was found that the ASTFF-NetB3 (see Figure 36c) reduced the misclassified 

number of images from category egg to bread. It reduced the misclassified images 

from 17 images to only two images. Also, the rice category that was misclassified to 

the fruit/veg category was reduced from 4 images to zero. 

Figure 37 shows the probability of the egg (see Figure 37a) and 

rice (see Figure 37b) categories that were classified using ASTFF-NetB3, but other 

ASTFF-Nets misclassified it. 

 

 



 

 

 

 67 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 36  Illustration of confusion matrix of ASTFF-Net on Food11 datasets, (a) 

ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-NetB3, (d) ASTFF-NetB4. 

 

  
(a) (b) 

Figure 37 Example of Food11 classes which are misclassified based on confusion 

matrix generated from ASTFF-NetB3.  
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Table 14  Recognition performance of the Food11 dataset when compared with 

different deep learning techniques. 

 

References Methods Test Accuracy (%) 

McAllister et al. (2018) ResNet152+ANN 91.34 

Akbulut, & Budak (2019) AlexNet+VGGl6+SVM 88.08 

Our Proposed ASTFF-NetB1  93.47 

ASTFF-NetB2 93.16 

ASTFF-NetB3  95.04 

ASTFF-NetB4 94.63 

I present extensive comparisons of our ASTFF-Nets on the 

Food11 dataset with existing state-of-the-art methods, as shown in Table 10. The 

experimental results confirm that our ASTFF-Nets increase the accuracy performance. 

Additionally, our ASTFF-Nets show much better results than extracting the deep 

features using CNN architectures and combining them with machine learning 

techniques, such as artificial neural networks and support vector machines 

(McAllister et al., 2018 Akbulut & Budak, 2019). In conclusion, the ASTFF-NetB3 

results in the highest accuracy performance of 95.04%. 

4.5.2.2 Experiments on the UEC Food-100 Dataset 

   This section showed that our ASTFF-Nets also present the best 

accuracy performance on the UEC Food-100 dataset, which has 100 food categories. 

The results achieved throughout the testing process are shown in Table 15.  

Table 15 Evaluation of the classification results for the UEC Food-100 dataset using 

different ASTFF-Net method. 

Model 5-CV Accuracy (%) Recall F1-Score Testing Time 

ASTFF-NetB1 86.77 ± 0.231 85.70 0.857 0.857 4m:38s 

ASTFF-NetB2 86.99 ± 0.267 86.05 0.861 0.861 4m:39s 

ASTFF-NetB3 92.55 ± 0.168 91.35 0.914 0.914 4m:39s 

ASTFF-NetB4 89.85 ± 0.344 88.85 0.889 0.889 4m:41s 

From Table 15, the results showed that ASTFF-NetB3 

significantly outperforms other ASTFF-Nets on the UEC Food-100 dataset (t-test, p < 

0.05). I observed that the ASTFF-NetB3 performed with higher than 4% accuracy on 
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the 5-cv and higher than 5% accuracy on the test set when compared with other 

ASTFF-Nets. Another observation is that the ASTFF-NetB3 achieved an F1-score of 

more than 0.90, which means that the ASTFF-NetB3 successfully classified food 

images over a specific strength with a low false-positive rate. Moreover, all the 

ASTFF-Net architectures still spent fast on the test set with approximately 73.20 

milliseconds per food image.  

Sauteed vegetable 

  
Rice 

  
Ganmodoki 

  
(a) (b) 

Figure 38  Some examples of sauteed vegetables, rice, and ganmodoki images of the 

UEC Food-100 dataset were classified using the ASTFF-NetB3 model. The 

food images were (a) correctly classified and (b) misclassified. 

I illustrated the food images that were correctly classified when 

using the ASTFF-NetB3 model, as shown in Figure 38a. All the food images 

contained only one dish, which means only one food category appeared in the image. 

On the other hand, the mostly misclassified food images, as shown in Figure 38b, 

always included many objects in one image. For example, the rice dish appears in 

sauteed vegetables and ganmodoki categories. 
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Table 16 Recognition performance of the UEC Food-100 dataset when compared 

with different deep learning techniques. 

References Methods Test Accuracy (%) 

Liu et al. (2016) DeepFood 76.30 

Hassannejad et al. (2016) InceptionV3 81.45 

Martinel et al. (2018) WISeR 89.58 

Tasci (2020) Ensemble CNNs 84.52 

Our Proposed ASTFF-NetB1 85.70 

ASTFF-NetB2 86.05 

ASTFF-NetB3  91.35 

ASTFF-NetB4 88.85 

Table 16 compares the performance of our approach 

architectures on the UEC Food-100 dataset with existing deep learning techniques. 

The accuracy performance of the previous deep learning techniques did not achieve 

very high scores, even using the ensemble CNNs method (Tasci, 2020). The highest 

accuracy was not above 90% with the WISeR method (Martinel et al., 2018). 

However, the ASTFF-NetB1, B2, and B4 did not achieve higher performance than the 

WISeR method. Consequently, the proposed ASTFF-NetB3 network, that directly 

gives the temporal feature to the Conv1D block and then combines it with the spatial 

features, demonstrated the highest performance with 91.35% accuracy. 

4.5.2.3 Experiments on the UEC Food-256 Dataset 

   In this section, I evaluated the proposed adaptive network on 

the UEC Food-256 dataset in terms of 5-cv, test accuracy, recall, and F1-score. It has 

a huge category with 256 menus from Japan and other countries. The proposed 

ASTFF-Nets were evaluated on 23,547 training images and 7,848 test images. 

Table 17 Evaluation of the classification results for the UEC Food-256 dataset using 

different ASTFF-Net method. 

Model 5-CV Accuracy (%) Recall F1-Score Testing Time 

ASTFF-NetB1 92.16 ± 0.192 91.07 0.911 0.911 10m:08s 

ASTFF-NetB2 92.05 ± 0.155 90.90 0.909 0.909 10m:11s 

ASTFF-NetB3 93.21 ± 0.324 92.15 0.921 0.921 10m:11s 

ASTFF-NetB4 92.40 ± 0.301 91.37 0.914 0.914 10m:14s 
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Table 17 shows the evaluation performance of the ASTFF-

Nets. I observed that the ASTFF-NetB3 consistently achieved the highest accuracy 

and significantly outperformed other ASTFF-Nets (t-test, p < 0.05) on both 5-cv and 

test sets. The ASTFF-NetB2 slightly decreased the performance on the UEC Food-

256 dataset. Consequently, our proposed ASTFF-Nets achieved above 90% accuracy. 

It spent approximately 10 minutes on the whole test set (approximately 77.29 

milliseconds per image). 

As illustrated in Figure 39, I discovered that some food images 

have similar texture, color, and pattern characteristics that could harm the proposed 

ASTFF-Nets to misclassification. 

 

                    (a)                                             (b)                                           (c) 

Figure 39  Illustration of the similar food images between (a) ramen noodle and 

tensin noodle, (b) raisin bread and cream puff, and (c) egg sunny side 

up and green curry. 

Table 18  Recognition performance of the UEC Food-256 dataset when compared 

with different deep learning techniques. 

References Methods Test Accuracy (%) 

Liu et al. (2016) DeepFood 54.70 

Hassannejad et al. (2016) InceptionV3 76.17 

Martinel et al. (2018) WISeR 83.15 

Tasci (2020) Ensemble CNNs 77.20 

Our proposed ASTFF-NetB1 91.07 

ASTFF-NetB2 90.90 

ASTFF-NetB3  92.15 

ASTFF-NetB4 91.37 

Table 18, I observed that the existing deep learning methods 

did not show high accuracy. The WISeR method (Martinel et al., 2018) achieved the 
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best performance with an accuracy of only 83.15%. The proposed ASTFF-Nets 

performed much better than the previous methods and achieved above 90% accuracy. 

Consequently, the ASTFF-NetB3 always achieved the best performance with an 

accuracy of 92.15%, which is approximately 9% over the WISeR method.  

4.5.2.4 Experiments on the ETH Food-101 Dataset 

   In this experiment, I tested the proposed adaptive network on 

the ETH-Food101 dataset, which has 75,750 training images and 25,250 test images. 

It is the largest food image dataset that I evaluated in our experiments. The results of 

the proposed ASTFF-Nets are shown in Table 19.   

Table 19 Evaluation of the classification results for the ETH-Food101 dataset using 

different AFF-Net method. 

Model 5-CV Accuracy (%) Recall F1-Score Testing Time 

ASTFF-NetB1 91.88 ± 0.229 91.13 0.911 0.911 32m:35s 

ASTFF-NetB2 90.16 ± 0.276 89.05 0.890 0.890 32m:45s 

ASTFF-NetB3 93.98 ± 0.247 93.06 0.931 0.931 32m:45s 

ASTFF-NetB4 93.56 ± 0.224 92.81 0.928 0.928 32m:55s 

Table 19 reports that the ASTFF-NetB3 still achieved the best 

performance when compared with other ASTFF-Nets (t-test, p < 0.05, significant). It 

achieved a performance of 93.98% accuracy on 5-cv and 93.06% accuracy on the test 

set. Furthermore, I found that the ASTFF-NetB3 achieved the highest accuracy on 

four food image datasets; ETH Food-101, Food11, UEC Food-100, and UEC Food-

256. Considering the computational time, all the ASTFF-Net architectures spent 

approximately 77.11 milliseconds per food image on the test set.  

I also observed that ASTFF-NetB3 achieved an F1-score of 

0.931 with a high true-positive rate. The illustration of the F1-Score, when classified 

using the ASTFF-Nets, is shown in Figure 40. Moreover, for further investigation, I 

found noise and non-food objects in some food categories, such as apple pie and 

Peking duck. The example of the noise and non-food objects is shown in Figure 41.   
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(a) 

 

(b) 

 

(c) 

 (d) 

Figure 40  Illustration of F1-Score using the ASTFF-Net models to classify ETH 

Food-256 dataset. (a) ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-

NetB3, (d) ASTFF-NetB4. 
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(a) (b) 

Figure 41  example of the noise and non-food objects. (a) noise in food image, (b) 

non-food objects. 

Table 20 Recognition performance of the ETH-Food101 dataset when compared with 

different deep learning techniques. 

References Methods Test Accuracy (%) 

Liu et al. (2016) DeepFood 77.40 

Hassannejad et al. (2016) InceptionV3 88.25 

Bolanos and Radev (2016) GoogLeNet 79.20 

Pandey et al. (2017) EnsembleNet 72.12 

Aguilar et al. (2017) CNNs Fusion 86.71 

Martinel et al. (2018) WISeR 90.27 

McAllister et al. (2018) ResNet152 64.98 

Akbulut, & Budak  (2019) AlexNet+VGGl6+SVM 79.86 

Tasci (2020) Ensemble CNNs 84.28 

Phiphiphatphaisit & Surinta (2020) Modified MobileNetV1 72.59 

Phiphiphatphaisit & Surinta (2021) ResNet50+Conv1D-

LSTM 

90.87 

Our proposed ASTFF-NetB1 91.13 

ASTFF-NetB2 89.05 

ASTFF-NetB3  93.06 

ASTFF-NetB4 92.81 
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In table 20, I compared the proposed ASTFF-Nets with other 

methods. I observed that extraction the deep features using CNN, Conv1D, and 

LSTM (Phiphiphatphaisit & Surinta, 2021) performed better than training with only 

CNN architectures and even better than extracting the deep features and combined 

with machine learning techniques. The results in Table 20 show that our ASTFF-

NetB1, B3, and B4 were given an accuracy above 90%. These networks also 

outperformed various existing methods. Consequently, the ASTFF-NetB3 achieved an 

accuracy of 93.06%, which is the highest performance on the ETH Food-101 dataset. 

 4.5.3 Discussion       

In this research, I discussed four important issues that affect the 

performance of the CNN models. 

Overfitting with Robust Network: Naturally, overfitting problems 

occur when very deep CNN layers are proposed to create the robust CNN model and 

also trained with too many example images. With very deep CNN architectures, the 

CNN model actually needs to optimize many hyperparameters. To face this problem, I 

proposed the adaptive spatial-temporal feature fusion network, called ASTFF-Net, 

which was invented to combine both spatial and temporal feature extraction networks. 

The adaptive architectures were designed to extract information on the spatial domain 

and ignore some insignificant information using the temporal network. I evaluated the 

proposed method using a five-fold cross-validation method (5-cv), as shown in Table 

15, and I found that the ASTFF-Nets could learn well with many training examples 

and generalize well with the test set. The 5-cv and the test set results were not given 

an enormous difference.  

Similarity patterns between two categories: The real-world food 

images from the benchmark datasets were downloaded from the internet Some of the 

images contain many noise objects (see Figure 41a), some images have similar 

patterns (see Figure 39b) and some images contain similar food objects (see Figure 

39c) that appear in many food categories. For example, the category of the bread dish 

was classified as the egg category because the bread is actually served with egg. I then 

presented the F1-Score to measure the precision of the ASTFF-Net architecture. 
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Furthermore, the confusion matrix, as shown in Figure 36c, confirmed that the 

ASTFF-NetB3 can address the similarity pattern between two classes; egg and bread.  

Multi-object Problem: The UEC Food-100 dataset usually contains 

the multi-object appearing in one image, as shown in Figure 33a. It is not easy to 

recognize as the correct category because many dishes are included in the image. As a 

result, it is misclassified. With the multi-object problem, I carefully checked the 

recognition results of the proposed ASTFF-Nets and found that the proposed network 

recognized one correct dish from many dishes that appear in one image. For example, 

the image contains fish, soup, rice, and sauteed vegetables in the sauteed vegetable 

category. So, the ASTFF-NetB3 was classified as rice, which was one category from 

many categories from the image. To address the multi-object problem, thus, I 

recommend applying object detection and classifying each object. 

Computational cost and Model size: I designed the ASTFF-Nets 

according to the advantage of extracting the spatial and temporal deep features. 

Further, three networks were included in the ASTFF-Nets; spatial feature extraction, 

temporal feature extraction, and adaptive feature fusion. Indeed, the ASTFF-Nets had 

a larger model size than the CNN and CNN-LSTM networks, as shown in Table 21. 

However, when I evaluated the proposed ASTFF-Nets on the test set, the computation 

cost of the ASTFF-Nets did not significantly increase. It increased only around four 

milliseconds and only 0.6 milliseconds compared with the ResNet50 and CNN-LSTM 

respectively. The comparison of the model size and testing time is shown in Table 21.  

Table 21 The comparison of the computational cost and model size between the 

proposed ASTFF-Nets and other architectures. 

Methods Testing Time  (~ms/im.)  Size (M) 

ResNet50 73.2  24.6  

ResNet50+Conv1D-LSTM  

(Phiphiphatphaisit & Surinta, 2021) 

77.2  38.3  

ASTFF-NetB1 77.4  38.4  

ASTFF-NetB2 77.8  41.5  

ASTFF-NetB3 77.8  41.5  

ASTFF-NetB4 78.2  44.7  
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4.6 Conclusions 

 In this research, the adaptive spatial-temporal feature fusion network, namely 

ASTFF-Net, was invented to improve the food image recognition performance. In 

other food recognition systems, a convolutional neural network (CNN) is usually 

proposed to extract the spatial features from the food images. However, real-world 

food images sometimes contain many noise and non-food objects, resulting in the 

CNN extracting deep features containing information of the object mentioned. 

Consequently, I proposed to use ResNet50 to extract the spatial features and directly 

send them to the convolutional 1D (Conv1D) block, followed by a long short-term 

memory (LSTM) network. The LSTM network has gate operations designed to learn 

sequence patterns from spatial information and allow which information to keep or 

forget during the training scheme. The ASTFF-Net architecture is divided into three 

parts as follows. First, the spatial feature extraction network, I proposed to use the 

state-of-the-art CNN model, namely ResNet50, to extract temporal features. Then, the 

reduction operation was attached to the ResNet50 to minimize the size of the feature 

maps before sending them to the Conv1D block. Second, the temporal feature 

extraction network, the sequence output of the Conv1D block was assigned to the 

LSTM network to create temporal features. Third, the spatial and temporal features 

from the first and second parts were combined using concatenation operation, then 

assigned to the Conv1D, called adaptive feature fusion network. As with the ASTFF-

Net, the softmax function was connected to the ASTFF-Net as the recognition layer 

proposed to recognize real-world food images. The ASTFF-Net architecture was 

proposed to address the overfitting problems because I combined the global average 

pooling (GAP) and dropout layers to the architecture. The most benefit of the GAP 

layer is that the parameter of the ASTFF-Net was reduced. Additionally, the 

unnecessary connections between layers were dropped using the dropout layer. 

In the experiments, I evaluated four ASTFF-Nets on four different real-word 

food image datasets: Food11, UEC Food-100, UEC Food-256, and ETH Food-101. 

The results show that the ASTFF-Nets achieved the highest accuracy on 5-cv and the 

test set. Furthermore, I found that the proposed ASTFF-NetB3 outperformed the 

existing methods on four food image datasets. 
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In future research, I will apply the ASTFF-Nets to address the challenge of the 

unbalanced datasets (Aggarwal, Popescu, & Hudelot, 2020). Another direction will be 

applying the instance selection methods (Branikas, Papastergiou, Zacharaki, & 

Megalooikonomou, 2019) to reduce the training set. It may reduce the training set by 

more than 50%. Then, the computational time will decrease while training the 

ASTFF-Nets. Finally, I will consider the segmentation techniques (Hafiz & Bhat, 

2020) that can select the most relevant food region from the real-world food images.       

  



 

 

 

Chapter 5 

Discussion 

The objective of this thesis is to propose novel deep learning approaches to 

address the problems of food image recognition. Firstly, I proposed a new 

convolutional neural network (CNN) based on MobileNet architecture that decreased 

the parameters of the CNN model. I also concentrated on reducing the training data 

size and proposed using data augmentation techniques to increase the variance of 

training data and prevent overfitting on the test set. Secondly, the robust deep feature 

extraction method based on convolutional 1D (Conv1D) and long short-term memory 

(LSTM) was evaluated on a food image dataset with 101 food categories. Thirdly, to 

overcome the advantage of the Conv1D-LSTM network, an adaptive feature fusion 

network, called ASTFF-Net, was proposed. This network was designed to extract the 

robust deep features that were extracted using Conv1D and LSTM networks. 

Consequently, I have performed the proposed ASTFF-Net on four real-word food 

image datasets; Food-11, UEC Food-100, UEC Food-256, and ETH Food-101. 

I will now briefly describe and discuss the challenges of the food image 

recognition systems using a deep learning approach. 

Chapter 2 showed that, due to the difficulties of real-world food images, food 

images can be taken from different perspectives and many objects can also appear in 

the food image. To solve  this challenge, I proposed a new CNN model that was 

modified from the state-of-the-art MobileNet architecture. Our modified MobileNet 

network decreased the parameters of the CNN model, but still achieved high 

accuracy. In the modified MobileNet, I ignored the average pooling layer and the 

fully connected layer (FC), and replaced them with the global average pooling layer 

(GAP) followed by the batch normalization layer (BN) and rectified linear unit 

(ReLU) activation function. I also considered avoiding overfitting by combining the 

dropout layer after the ReLU function. I also performed the data augmentation 

techniques to avoid overfitting, including rescaling, rotation, width shift, height shift, 

horizontal flip, shear, zoom, and random cropping. I performed experiments on a 
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publicly available dataset, called the ETH food-101 dataset. The experimental results 

showed that the modified MobileNet architecture improved accuracy by 

approximately 5% when training with the data augmentation. 

In Chapter 3, I mainly concentrated on extracting the robust feature using the 

deep feature extraction technique. Firstly, I proposed to use CNN architectures to 

extract the deep features from the food images, called the spatial features. Secondly, I 

then transferred the spatial features into the LSTM network to extract the temporal 

feature. Thirdly, the deep features were extracted using a 1D convolutional and LSTM 

network called Conv1D-LSTM. Finally, the deep features were classified using the 

softmax function. To extract the robust spatial features, I proposed six state-of-the-art 

CNN architectures, consisting of VGG16, VGG19, ResNet50, DenseNet201, 

MobileNetV1, and MobileNetV2.The transfer learning method was proposed due to a 

decrease in the training time. I trained the CNN models with only 100 iterations. 

Furthermore, the loss value of the training decreased quite rapidly becoming very 

close to zero at just iteration 40 to iteration 50. In the experiment, I found that the best 

and robust spatial features were extracted using ResNet50 architecture. I then 

combined the ResNet50 with the Conv1D-LSTM, called ResNet50+Conv1D-LSTM. 

The experimental result showed that the ResNet50+Conv1D-LSTM network 

significantly outperformed other CNNs on the ETH food-101 dataset. 

Moreover, I also experimented with data augmentation techniques, including 

rotation, width shift, height shift, horizontal flip, shear, and zoom. The data 

augmentation techniques consistently achieved better performance. 

In Chapter 4, I improved the efficiency performance for food image 

recognition by investigating an adaptive feature fusion network (ASTFF-Net). With 

the ASTFF-Net, I obtained robust features generated from CNN models at different 

layers. Here, I proposed several ASTFF-Net models that were a combination between 

state-of-the-art CNN models and the LSTM network with improved the performance 

of the food image recognition system. Motivated by the Conv1D-LSTM network 

described in Chapter 3, our ASTFF-Net was invented to capture the robust deep 

features on both spatial and temporal features from the variation of the real-world 
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food images. I first extracted the spatial features using state-of-the-art ResNet50 

architecture. Second, the temporal features were extracted using the LSTM network. 

Third, the deep features extracted from CNN and LSTM networks were mapped to a 

similar resolution before concatenating. Finally, I attached extra layers to prevent 

overfitting before sending the deep adaptive features to the softmax function. The 

proposed ASTFF-Net achieved the best performances and outperformed other 

methods on Food11, UEC Food-100, UEC Food-256, and ETH Food-101. 

In this dissertation, three robust approaches to improve the accuracy of food 

image recognition are proposed, including the modified MobileNet architecture, the 

Conv1D-LSTM network, and the ASTFF-Net. 

5.1 Answers to The Research Questions 

According to the research questions (RQ) in Chapter 1, I explain the 

improvement of the food image recognition systems based on real-world food images 

with three solutions. In this section, I briefly answer each research question. 

RQ1: Training the model with deep learning methods such as convolutional neural 

network (CNN) typically requires a large amount of training data to create an 

effective model (Russakovsky et al., 2015). The benchmark food image datasets, such 

as the ETH food-101, contain 101,000 real-world food images (Bossard & Gool, 

2014). Indeed, the CNN architectures spent expensive training time to create the 

effective CNN model. Is it possible to decrease the size of the training data although 

still provide the same performance of the recognition?  

 To find out the answer to RQ1, I will focus on modifying a state-of-the-art 

lightweight CNN model. The hyperparameters and computational layers of the CNN 

model are also considered. Moreover, I will consider the data augmentation 

techniques that benefit learning to build an effective CNN model from distinctive 

food images. Will these methods encourage improving the performance of food image 

recognition systems? 

To answer RQ1, I first focused on the publicly available dataset for food 

image recognition, namely ETH food-101. It has 101,000 real-world food images of 
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101 categories and contains 1,000 images in each category. Second, to reduce the 

computation time, I then selected the state-of-the-art lightweight MobileNetV1 

architecture. Further, I modified the MobileNetV1 by eliminated the average pooling 

layer and the fully connected layer (FC). Hence, the global average pooling layer 

(GAP), the batch normalization layer (BN), rectified linear unit (ReLU) activation 

function, and dropout layers were attached instead. Third, I decided to use the data 

augmentation techniques consisting of rescaling, rotation, width shift, height shift, 

horizontal flip, shear, zoom, and random cropping. The accuracy of results increased 

approximately 5% when training the modified MobileNet model with applied data 

augmentation techniques. Both modified MobileNet and the data augmentation 

techniques are proposed to prevent overfitting. Finally, I experimented with the size 

of the training data. Consequently, I can reduce the training size from 80,800 images 

to only 40,400 images but still obtain high performance compared to other research.  

Our modified MobileNet architecture makes a model relatively small, requires 

less computation time, and achieves high performance on the food image recognition 

systems. 

RQ2: In computer vision, hand-crafted feature techniques are presented to extract the 

specific information existing in the image. Indeed, it mainly focuses on extracting 

local features. The well-known hand-crafted feature techniques, include local binary 

pattern (LBP) (Ojala et al., 1994), histogram of oriented gradient (HOG) (Dalal & 

Triggs, 2005), scale-invariant feature transform (SIFT) (Lowe, 2004), and speeded up 

robust features (SURF) (Bay et al., 2008). Nowadays, the CNN technique is a 

competent procedure that includes feature extraction and recognition. For the feature 

extraction, the CNN can extract robust special features, including low-level and high-

level features, called the deep feature extraction method (Y. Chen et al., 2016; Paul et 

al., 2016). Is it a potential approach to manipulate real-world food images that also 

contain many categories of object other than the food subject? If possible, I will then 

be interested in using state-of-the-art CNN architecture to extract the deep features 

and enhance the food image recognition system. 
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RQ2 is mainly focused on deep feature extraction techniques instead of hand-

crafted feature extraction techniques. To answer this research question, I first 

proposed extracting the spatial features from the well-known CNN, including 

VGGNet, ResNet, DenseNet, and MobileNet. In the case of the food images, I found 

that the ResNet architecture provided robust features. Second, to extract the spatial 

features, I transferred them into the convolutional 1D (Conv1D) followed by long 

short-term memory (LSTM) network. This method is called Conv1D-LSTM. Finally, 

the temporal features that were extracted using the Conv1D-LSTM network were then 

sent to the global average pooling layer (GAP) to minimize the size of the feature 

before classifying using the softmax function. Furthermore, while training the model, 

I added six data augmentation techniques; rotation, width shift, height shift, horizontal 

flip, shear, and zoom. With the data augmentation techniques, the method still 

provides higher performance. However, in our case, it gained up only 1%. 

To confirm that our method performed well on the food image dataset, I 

evaluated my proposed Conv1D-LSTM network on the ETH food-101 dataset and 

compared the result with other research. I found that the ResNet50 architecture when 

combined with the Conv1D-LSTM network, called ResNet50+Conv1D-LSTM, 

outperformed all other methods on the ETH food-101 dataset. 

 I also experimented with a deep feature extraction technique base on Conv1D 

and LSTM Network. The state-of-the-art ResNet architecture was invented to extract 

the robust features from food images and was employed as the input data for the 

Conv1D combined with a long short-term memory (LSTM) network. Then, the output 

of the LSTM was assigned to the global average pooling layer before passing to the 

softmax function to create a probability distribution. The experimental results showed 

that using the CNN method to extract special features from food images and through 

them to the long short-term memory (LSTM) algorithm to extracted temporal 

features, increases the efficiency of food image recognition. 

RQ3: The deep feature extraction method always provides robust features and 

guarantees high accuracy performance on the real-world food image dataset 
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(Phiphitphatphaisit & Surinta, 2021). Is there any approach will succeed using the 

deep feature extraction method using Conv1D and LSTM networks? 

To answer the last question in RQ3, I proposed an adaptive feature fusion 

network (ASTFF-Net) to deal with the real-world food image datasets. In our 

network, the ASTFF-Net combined three main networks; CNN, Conv1D, and LSTM. 

First, the state-of-the-art CNN architecture was proposed to extract the spatial features 

from the food images. Second, I assigned the spatial features to the LSTM network to 

generate the temporal features. Third, I combined the deep features extracted from the 

CNN and LSTM networks using the concatenate operation, called the adaptive feature 

fusion method. I also created extra layers that were used to overcome overfitting. 

Eventually, the proposed ASTFF-Net obtained the best accuracy on four food image 

datasets; Food11, UEC Food-100, UEC Food-256, and ETH Food-101. 

5.2 Future Work 

In this dissertation, I presented novel deep feature extraction techniques to 

improve the performance of food image recognition based on real-world food images. 

However, there is still a need to create new deep feature extraction methods or for 

optimizing the current methods. 

In the case of several training data, more computation time is used to create 

robust CNN models. I then focused on reducing the training data size by applying the 

instance selection method (Branikas, Papastergiou, Zacharaki, & Megalooikonomou, 

2019). This method could be selected the most relevant instance to represent as the 

training data. 

In real-world food image datasets, food image datasets contain food images 

taken from various orientations. There are always other objects in the food images. 

performance of the food image recognition system will be improved when I can 

segment and learn only at the exact food location. In this case, if I visualize the class 

activation mapping of CNN models, I can understand where the CNN models localize 

relevant image regions. So, I can implement the technique to select only the particular 
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food location. I plan to work on the instance segmentation technique (Hafiz & Bhat, 

2020). 
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