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ABSTRACT

Food image recognition plays an important role in healthcare applications
that monitor eating habits, dietary, nutrition, etc. Therefore, different deep learning
approaches are proposed to address food image recognition. This dissertation presents
three methods to deal with several challenges in recognizing food images.

Chapter 1 briefly introduces food image recognition systems and the
research questions. Additionally, the objectives of the dissertation and contributions
are described.

Chapter 2 proposed a new CNN model that modified MobileNetV1
architecture by decreasing the parameters but still achieved high accuracy. | replaced
the average pooling layer and the fully connected layer (FC) with the global average
pooling layer (GAP), followed by the batch normalization layer (BN) and rectified
linear unit (ReLU) activation function. Moreover, | added the dropout layer to
consider avoiding overfitting. The experimental results show that modified
MobileNetV1 architecture significantly outperforms other architectures when the data
augmentation techniques are combined.

Chapter 3 concentrated extracted robust features using the deep feature
extraction technique. Firstly, I extracted the spatial features using CNN architectures.
The spatial features were transferred into the ConvlD-LSTM network to extract the
temporal feature. Finally, the deep features were classified using the softmax function.
| presented six state-of-the-art CNN architectures, VGG16, VGG19, ResNet50,
DenseNet201, MobileNetV1, and MobileNetV2, to extract the robust spatial features.
The experimental results found that the ResNet50+ConvlD-LSTM network
significantly outperformed other CNNs on the ETH food-101 dataset.

Chapter 4 presented an adaptive feature fusion network (ASTFF-Net)
combining state-of-the-art CNN models and the LSTM network. Firstly, | extracted
the spatial features using state-of-the-art ResNet50 architecture. Secondly, the
temporal features were extracted using the LSTM network. Thirdly, the spatial-
temporal features mapped to a similar resolution before concatenating. The
experimental results showed that the ASTFF-Net achieved the best performances and
outperformed other methods on Foodll, UEC Food-100, UEC Food-256, and ETH



Food-101.

Chapter 5 comprises two main sections: the answers to the research
questions and suggestions for future work. This chapter briefly explains the proposed
approaches and answers three main research questions in food image recognition.
Two main methods are planned and will be focused on in future work. The first is to
reduce the training data size by applying the instance selection techniques to decrease
computation time. The second is to focus on an instance segmentation technique that
can segment and learn only at the exact food location, which will improve the
performance of the food image recognition system.

Keyword : Food Image Recognition, Convolution Neural Network, Data
Augmentation, Deep Feature Extraction Method, Long short-term memory, Adaptive
Feature Fusion Technique, Spatial and Temporal Features
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Chapter 1

Introduction

According to the World Health Organization (WHO), worldwide obesity has
nearly tripled, with more than 1.9 billion adults overweight; of these, over 650 million
were obese (World Health Organization, 2018). Some 340 million children and
adolescents aged 5 - 19 and 39 million children under the age of 5 were overweight or
obese. Almost half of the children under five who were overweight lived in Asia, and
obesity is now on the rise in low- and middle-income countries (World Health
Organization, 2018). Obesity rates vary significantly by country as they are
influenced by different lifestyles and diets. Southeast Asia has seen alarming
increases in obesity rates within the past five years. Nauru has the highest obesity rate
at 61.0%, while Vietnam has the lowest rate at 2.1%. Thailand has the 139th highest
obesity rate globally of 36.2% out of a total population of 69 million (World
Population Review, 2021). WHO used body mass index (BMI) to screen for
overweight or obesity because it is a reliable indicator of body fatness. Still, it does
not diagnose the health of an individual. Adults with a BMI greater than 25 and 30
indicate that they are overweight and obese, respectively.

Nowadays, overweight and obesity have become global problems that | have
to be concern about. When I gain too much weight, I will have fat tissue that occurs as
a consequence of consuming the extra calories in the diet. It is a common problem of
dyslipidemia, cardiovascular diseases, and also increases the risk of diabetes.
Moreover, other diseases might eventuate, such as escalating hypertension, respiratory
problems and sleep disorder (Al-Abed, 2021). About 4.7 million people have died in
2017 because of obesity (Ritchie & Roser, 2017).

Many countries educate people to do daily physical activity and in awareness
of nutrition and lifestyle. The nutritionists also recommend that people who are
overweight should take care of themselves more than regular people. The best choice
is to observe themself by recording their daily food intake and nutritional information

each day in a process called called ‘food logging’. Also, people who observe themself



by recording their daily food intake lost more weight than people who do not do so.
People can monitor what they eat and track their nutritional eating patterns (Butryn,
Phelan, Hill, & Wing, 2007).

The rapid developments in smartphone technology provide an opportunity to
develop healthcare applications that monitor eating habits, dietary, nutrition, etc. For
example, Chaput, Klingenberg, Astrup, & Sjodin (2011) developed an application that
monitors the eating and exercise habits of people. The application collects data
relating to exercise using pulse monitors and performs analysis to provide advice on
the health of users. Burke, Wang, & Sevick (2011) developed a weight management
application that runs on a mobile platform. The personal information and daily food
intake were recorded which helped a person to control their weight.

Due to the rapid development of artificial intelligence (Al) technology, many
algorithms have been designed to recognize and calculate the daily food intake using
food images. The application developer also invented food recognition systems that
involved Al and other technologies. It allows people to manage their food
consumption behavior themselves. Moreover, the deep learning approach has become
more popular and has been proposed to address food image recognition. I will briefly

introduce the food image recognition systems as follows.

1.1  Food Image Recognition Systems

Food image recognition systems using the deep learning method are successful
methods to help people track their dietary habits based on real-world food images.
Indeed, deep learning to extract the information from the food images is a relatively
low-cost and robust method. However, it is extremely challenging to extract
information from real-world food images because people can take photos in different
styles and sometimes several objects appear in the photo, not just the food.

Krizhevsky et al. (2012) proposed the convolutional neural network (CNN)
architecture, a type of deep learning method, namely AlexNet, to address many
problems in image recognition systems. Consequently, various CNN architectures
were invented, such as VGGNet, GoogLeNet, ResNet, and DenseNet (K. He, Zhang,
Ren, & J., 2016; Huang, Liu, Van Der Maaten, & Weinberger, 2017; Simonyan &



Zisserman, 2014; Szegedy et al., 2015). Currently, the CNN method is widely
employed for image recognition problems.

Although, the CNN methods require a large amount of training data to create a
robust model. The food images are usually downloaded from social media or the
internet; such as the Food-101 dataset, the well-known food image dataset, which
collected all the images from the foodspoting.com website. It contains more than
100,000 images of 101 food categories (Bossard & Gool, 2014). Further, the image
processing methods such as adjustment and transformation are proposed to reduce the
noise from resolution inconsistency and nonuniform illumination (Jiang, Qiu, Liu,
Huang, & Lin, 2020; Ng, Xue, Wang, & Qi, 2019; B. T. Nguyen, Dang-Nguyen,
Tien, Phat, & Gurrin, 2018; Park et al., 2019).

When the food images are insufficient, | can also perform data augmentation
techniques, such as random cropping, rotation, and flipping, to enlarge the number of
images used while training to create the deep learning models (J. He et al., 2021;
Jiang et al., 2020; Ng et al., 2019; Sahoo et al., 2019). Hence, all images are divided
into training, validation, and test sets to create a robust model. In this process, the
robust model is derived by tuning the deep learning hyperparameters.

The following section describes the CNN architecture in detail with three main
parts, including CNNs, CNNs for food image recognition, and deep feature extraction
for food image recognition.

1.1.1 Convolutional Neural Networks

Deep learning is a type of machine learning based on artificial neural networks
(Hinton, 2009). The deep learning algorithm is designed to solve complex
classification problems, such as image recognition, language translation, and speech
recognition (Fayyaz & Ayaz, 2019; Haque, Verma, Alex, & Venkatesan, 2020; Kesav
& Jibukumar, 2021). However, it requires high-performance hardware because it
involves several complex mathematical calculations that compute from a large
amount of data (McAllister, Zheng, Bond, & Moorhead, 2018). The popular deep
learning algorithms are convolutional neural networks (CNNs), long short-term
memory networks (LSTMs), recurrent neural networks (RNNSs), and deep belief
networks (DBNSs) (Shrestha & Mahmood, 2019).



In this section, I mainly focus on CNN architectures. LeCun et al. (1989)
proposed the first CNN architecture to recognize handwritten digit recognition, called
LeNet-5. The architecture of LeNet-5 is shown in Figure 1. The figure shows that
LeNet-5 consists of five layers, including 1) a convolution layer with six feature
maps, 2) a pooling layer with six feature maps, 3) a convolution layer with 16 layers,
4) a pooling layer with 16 layers, and 5) a fully connected layer with the size of 120,
80, and 10, respectively. Hence, the basic convolution operations are described in the

following section.

C3: f. maps 16@10x10
CA: feature maps S4: 1. maps 16@5x5
B{28x28

52 f. maps
E@ 1414

INPUT

| Full conflection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Figure 1 Illustration of LeNet-5 architecture (Y. A. LeCun, Kavukcuoglu, &
Farabet, 2010)

1.1.1.1 Convolution Layer

A convolution layer is the main building block of a CNN
architecture and is proposed to extract robust features from images (Y. LeCun,
Bottou, Bengio, & Haffner, 1998). The operation of the convolution layer was
designed to be similar to the convolution method in computer vision. The tiny kernel
sizes, such as 3x3, 5x5, and 7x7, are aimed to calculate with the original image to
create the new feature map. It computes the kernel over the original image from the
top left until the right button regions. The convolution operation is calculated by
multiplying the corresponding values from the original image and kernel and adding
them together. An illustration of the convolution layer is shown in Figure 2.
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Figure 2 Examples of the convolution operation. The hyperparameters used in the
example are a filter size of 3 x 3, no padding, and a stride of 1.

However, the size of the original image and the feature map do
not show equal size after applying the convolution operation (see Figure 2). In this
case, | proposed to use the padding operation when producing and image of equal size

as the original image is required. The padding operation is shown in Figure 3.
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Figure 3 Illustration of the convolution operation by adding the padding operation.

1.1.1.2 Pooling Layer

Pooling layers are designed to downsample the dimensionality
of the feature maps and decrease the number of learnable parameters (Boureau,
Ponce, & LeCun, 2010). The pooling layer is usually attached to the network after the
convolution layer. It usually speeds up computation and makes features more robust.
The pooling operation requires a 2D filter slide above feature maps and calculating
the features, such as maximum and average pixel values within the region are covered
by the 2D filter. The traditional and popular pooling layers are max and average
pooling layers. In the max pooling layer, the maximum value in each pool is chosen
as the representative. While with average pooling, the average value in each pool is

chosen. Examples of the pooling layers are shown in Figure 4.
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Figure 4 Examples of (a) max pooling layer and (b) average pooling layers with a
filter size of 2x2, no padding, and a stride of 2.

The global average pooling (GAP) layer was invented to minimize the
parameters of a 3D feature map in the CNN model (Lin, Chen, & Yan, 2014). The
pixel values of each region in each feature map are averages and represented as the
vector. The GAP layer is proposed to replace the flattened layers (see Figure 5b).
Then the vector generated by the GAP layer is transferred immediately toward the

softmax layer. The operation of the GAP layer is shown in Figure 5a.

d=3 d=3 |
w=4 - — w=4
vector =3
h=4 h=4
vector = 48
(a) Global Average Pooling (GAP) (b) Flatten

Figure 5 Illustration of the (a) GAP layer and (b) flatten layer with
hyperparameters of width (w) = 4, height (h) = 4, dimension (d) = 3. The
output vector of the GAP layer is the only vector of 3 values and the flatten
layer is the vector of 16 values.

1.1.1.3 Fully Connected Layer
The fully connected (FC) layer (Y. LeCun et al., 1998) was

designed to connect all the neurons between two different layers; the previous and



current layers. The FC layer is permanently attached at the end of the CNN
architecture and combined with an activation function, such as softmax and sigmoid
functions, to perform the output of CNN networks (Nwankpa, ljomah, Gachagan, &
Marshall, 2018) The outputs of the CNN model are probabilities that are employed to
predict the objects.

1.1.2 CNNs for Food Image Recognition

For food image recognition, many CNN architectures have been
proposed to recognize food images. Hassannejad et al. (2016) presented a 54-layer
network to classify food images. It achieved an accuracy of 88.28%, 81.45%, and
76.17% in Food-101, UEC-FOOD100, and UEC-FOOD256, respectively. Liu et al.
(2016) invented the DeepFood network, which modified the Inception module using a
1x1 convolutional kernel to reduce the input size and feed it to the next layer. The
DeepFood network obtained an accuracy of 76.30% on UEC-FOOD100 and 54.70%
on UEC-FOOD256.

Subsequently, Aguilar et al. (2017b) presented a Fusion CNN method
that combined state-of-the-art CNN architectures; ResNet and Inception. The Fusion
CNN model achieved an accuracy of 86.71% on the Food-101 dataset and 72.12% on
the Food-11. Pandey et al. (2017) proposed the ensemble CNN network, including
ResNet, AlexNet, and GoogLeNet. The accuracy of 72.12% was achieved from the
ensemble CNN network.

1.1.3 Deep Feature Extraction for Food Image Recognition

CNN architecture contains two main components; feature extraction
and classification. Many state-of-the-art CNN architectures, such as AlexNet, VGG-
16, GoogLeNet, have been proposed to extract the robust feature, called the deep
feature method (Sengur, Akbulut, & Budak, 2019; Zheng, Zou, & Wang, 2018).
Therefore, the deep features can be sent to the machine learning techniques, such as
support vector machine (SVM) and random forest, to create a model and recognize
the food images. Ragusa et al. (2016) proposed to use the VGG-S, Network-in-
Network, and AlexNet, to extract deep features and then train with the SVM method.
The experimental results showed that the VGG-S combined with the SVM method
achieved an accuracy of 92.47%, the VGG-S and the Network-in-Network achieved



an accuracy of 90.82% and 84.95%, respectively. In addition, Farooq and Sazonov
(2017) extracted the deep features using AlexNet architecture. The deep features were
extracted from layers 6, 7, and 8. The deep features of each layer were fed to the
linear SVM method for recognition. The result showed that the extracted deep

features from layer 6 obtained the highest accuracy of 94.01% on the PFID dataset.

1.2 Research Aim

This research aimed to design novel deep learning methods to improve the

performance of food image recognition systems.

1.3 Research Questions and Research Studies

The main research question that motivates this dissertation is: How can |
enhance the performance of the food image recognition system using the deep
learning method? This dissertation proposes to contribute novel solutions to deal with

the problems of food image recognition. | address the following research questions:

RQL1: Training the model with deep learning methods such as convolutional
neural network (CNN) typically requires a large amount of training data to create an
effective model (Russakovsky et al., 2015). The benchmark food image datasets, such
as the ETH food-101, contain 101,000 real-world food images (Bossard & Gool,
2014). Indeed, the CNN architectures spent expensive training time to create the
effective CNN models. Is it possible to decrease the size of the training data but still

provide the same performance of recognition?

To find out the answer, | will focus on modifying a state-of-the-art lightweight
CNN model. The hyperparameters and computational layers of the CNN model are
also considered. Moreover, | will consider the data augmentation techniques that
benefit learning to build an effective CNN model from distinctive food images. Will

these methods encourage improved performance of food image recognition systems?

RQ2: In computer vision, hand-crafted feature techniques are presented to
extract the specific information existing in the image. Indeed, it mainly focuses on
extracting local features. The well-known hand-crafted feature techniques, include

local binary pattern (LBP) (Ojala, Pietikainen, & Harwood, 1994), histogram of
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oriented gradient (HOG) (Dalal & Triggs, 2005), scale-invariant feature transform
(SIFT) (Lowe, 2004), and speeded up robust features (SURF) (Bay, Ess, Tuytelaars,
& Van Gool, 2008). Nowadays, the CNN technique is a capable technique that
includes feature extraction and recognition. As for the feature extraction, the CNN can
extract robust special features, including low-level and high-level features, called the
deep feature method (Y. Chen, Jiang, Li, Jia, & Ghamisi, 2016; Paul et al., 2016). Is
this a potential approach to manipulate real-world food images that also have many
categories? If possible, I will then be interested in using state-of-the-art CNN
architecture to extract the deep features and enhance the food image recognition

system.

RQ3: The deep feature extraction method always provides robust features and
guarantees high accuracy performance on the real-world food image dataset
(Phiphitphatphaisit & Surinta, 2021). Is there any approach that will prevent the deep

feature extraction method using Conv1D and LSTM networks?

In order to answer all these research questions, Chapter 2 to Chapter 4
describe the research that succeeded. I will present concrete solutions to these

research questions in Chapter 5.

1.4 Contributions

The contribution of the dissertation is a novel deep learning technique to
extract the robust features and provide the best performance for food image
recognition systems. The work reported in this dissertation involved experiments on
four real-world food image datasets containing Food-11, UEC Food-100, UEC Food-
256, and ETH Food-101. The contributions of the dissertation are as follows.

In chapter 2, | modified the state-of-the-art lightweight MobileNetV1, called
modified MobileNetV1. In this approach, | eliminated the two last layers; the average
pooling layer and fully connected layer (FC), and then attached three new layers into
the MobileNetV1 architecture, which were; the global average pooling layer (GAP),
the batch normalization layer (BN), and rectified linear unit (ReLU) activation

function. Additionally, data augmentation techniques were proposed to address the
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problem when amount of training data was decreased, consisting of rescaling,
rotation, width shift, height shift, horizontal flip, shear, zoom, and random cropping.
This chapter is based on the following publication.-

Phiphiphatphaisit, S., & Surinta, O. (2020). Food Image Classification with
Improved MobileNet Architecture and Data Augmentation. In The 3rd International

Conference on Information Science and Systems (ICISS), pages 51-56. ACM.

In chapter 3, the main focus is extracting the powerful features using the deep
feature extraction technique. | extracted the spatial features with state-of-the-art
convolutional neural network (CNN) architectures. Subsequently, the spatial features
were given to the convolutional 1D (Convl1D), followed by the LSTM network to
compute and extract the temporal feature, called ConvlD-LSTM. Therefore, |
decrease the dimensionality of the feature maps before classifying the food images
using the global average pooling (GAP) layer. The content of this chapter is based on
the following publication.-

Phiphitphatphaisit, S., & Surinta, O. (2021). Deep feature extraction
technique based on ConvlD and LSTM network for food image

recognition. Engineering and Applied Science Research, 48(5), pages 581-592.

Finally, Chapter 4 proposes the adaptive feature fusion network, called
ASTFF-Net, to improve the accuracy of the food image recognition systems. The
proposed ASTFF-Net was the combination between state-of-the-art CNN models and
the LSTM network. The ASTFF-Net is closely related to the ConvlD-LSTM.
However, the ConvlD-LSTM network was created as a sequential model, while the
ASTFF-Net was designed to connect the deep features extracted from CNN and
LSTM networks by applying a concatenation operation. | achieved high accuracies on
real-world food image datasets; Food1ll, UEC Food-100, UEC Food-256, and ETH
Food-101.



Chapter 2

Deep Learning Techniques

The real-world food image is a challenging problem for food image
classification, because food images can be captured from different perspective and
patterns. Also, many objects can appear in the image, not just foods. To recognize
food images, in this chapter, | propose a modified MobileNetV1 architecture that is
applies the global average pooling layers to avoid overfitting the food images, batch
normalization, rectified linear unit, dropout layers, and the last layer is softmax. The
state-of-the-art and the proposed MobileNetV1 architectures are trained according to
the fine-tuned model. The experimental results show that the proposed version of the
MobileNetV1 architecture achieves significantly higher accuracies than the original
MobileNetV1 architecture. The proposed MobileNetVV1 architecture significantly
outperforms other architectures when the data augmentation techniques are combined.

2.1 Introduction

Nowadays, people are becoming obese and overweight due to the imbalance
between calorific intake and use. This increases the risk of other diseases such as
diabetes, sleep apnea, acid reflux, and heart disease (Must et al., 1999). Nutritionists
advise obese and overweight people to exercise and to monitor their daily
consumption of calories (Fatehah, Poh, Shanita, & Wong, 2018). Due to the
assessment of calorie intakes into the body, Ege and Yani (2017) proposed a multi-
task convolutional neural network (CNN) method that allows the CNN architecture to
learn from food calories, categories, ingredients, and cooking directions data.
Furthermore, Myers et al. (2015) presented a system that recognizes the contents of
food from a single image, and then predict calories using the CNN based classifier.
Then, people can estimate calories from food images.

In recent years, most research in food image classification has focused on
hand-crafted features that consist of a color histogram (Martinel, Piciarelli, &
Micheloni, 2016; Yanai & Kawano, 2015), local binary pattern (LBP) (Martinel et al.,
2016; D. T. Nguyen, Zong, Ogunbona, Probst, & Li, 2014), scale invariant feature
transform (SIFT) (Martinel et al., 2016), histogram of oriented gradients (HOG)
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(Martinel et al., 2016; Yanai & Kawano, 2015), and speeded up robust feature
(SURF) (Bossard & Gool, 2014). These hand-crafted methods are combined with
machine learning algorithms to classify food images. Due to the large-scale of food
image datasets, researchers proposed to use deep learning algorithms to learn from the
large-scale food image dataset such as the ETH Food-101 dataset which contains
101,000 images from 101 food categories; Food-256 dataset, a data set of 256 food
categories with approximately 32,000 food images (Bossard & Gool, 2014;
Hassannejad et al., 2016; Kawano & Yanai, 2014b). Yanai and Kawano (2015) used a
pre-trained model of AlexNet architecture for the feature extraction method. This
method extracts 6,144 features from the image. In Hassannejad et al. (2016), the data
augmentation techniques consist of brightness, contrast, saturation, and hue and are
applied to food images before feeding to the Inception V3 network. Ming et al. (2018)
proposed the DietLens, which is a prototype of tracking dietary intake system for
Singapore hawker food. The core architecture of the DietLens is the ResNet-50,
which contains 50 convolutional layers and one fully connected layer and experiments
on 87,470 images. The FoodNet (Pandey et al., 2017), which is an ensemble deep
neural network, is proposed to classify the ETH Food-101 dataset. This network
combined three well-known networks (AlexNet, GooglLeNet, and ResNet) as the
ensemble network. The output of three networks and concatenate are passed to a fully

connected layer to classify food images.

\ ﬁ ! : ‘ i B »- N
O ;:_"— - 'ﬁ 3 : Apple pie

[ _

SHED HER

w ) ” m & Baklava

(A) (B)

Figure 6 Example of ETH Food-101 dataset. a) The apple pie category and b) the
similarity shape between two categories of apple pie (first row) and
Baklava (second row).

The challenge of food image classification is that food images from the same
category are captured with different patterns, shapes, and perspective, accordingly to

the people who take the image. For example, there are many objects such as forks and
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spoons, glasses, and bottles that appear in the image. For example of ETH Food-101
dataset, has many different apple pie images (that include other objects, patterns,
shapes, and scenes) that appear in the apple pie category, as shown in Figure 6a).
Even the similarity shape and pattern between the two categories of apple pie and
Baklava, as shown in Figure 6b). These kinds of images can decrease the performance
of the food image classification.

Contributions: In this research, the main contribution is the use of the state-
of-the-art deep convolutional neural network, called MobileNetV1 architecture and
our modified MobileNetV1 architecture is applied to recognize a challenging ETH
Food image dataset that contains 101 food categories. In our modified version, |
reduce the number of parameters in the model by replacing the average pooling with
the global average pooling (GAP) layers; then the overfitting is decreased.
Subsequently, the batch normalization (BN), rectified linear unit (ReLU), and dropout
layers, are utilized instead of the fully connected layers. Finally, the softmax layer is
calculated. The results show that the modified MobileNetV1 architecture outperforms
when compared to the original MobileNetV1 architecture. Moreover, | evaluate most
effective data augmentation techniques to random creating images in the ETH Food-
101 dataset. I compared data augmentations and combined with the cropping image
before passing to train the model. Also, the accuracy increased by approximately 5%.
Finally, the modified MobileNetVV1 architecture when combined with the data
augmentation techniques outperforms the other methods.

Outline of the chapter. The chapter is organized as follows. Section 2.2
briefly explains machine learning methods in food image classification. In section 2.3,
the MobileNetVV1l and the modified MobileNetV1 architecture are explained. In
section 2.4, the data augmentation techniques are presented. Experimental results are

reported in section 2.5. The last section is the conclusion and future work.

2.2 Related Work

Hand-crafted feature extraction methods (Nanni, Ghidoni, & Brahnam, 2017)
are used in many image classification applications. In D. T. Nguyen et al. (2014), two
feature extraction methods consisting of a non-redundant local binary pattern
(NRLBP) and the shape context descriptor of the interest points, called structure
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information are used to describe the local appearance information of food images. The
achieved accuracy shows that the combination of the two features can improve
classification performance. In Yanai and Kawano (2015), the first step uses, the color
patches and RootHOG patches, (which is a square root of the L1 normalized HOG) to
extract the data from the images. In the second step, the information from the first
step is sent to a Fisher vector to encoding and used as the feature vector. This method
achieved an accuracy of 65.3% on the UEC Food-100 dataset. In addition, Martinel et
al. (2016) presented the supervised extreme learning committee approach (ELM) to
learning attributes of color, shape, texture, and local features. Then, the output of the
ELMs is fed into the structured support vector machine (SVM) to classify food
images. The performance achieved by this method is 55.89% and 84.34% on ETH
Food-101 and UEC Food-100, respectively.

Nowadays, convolutional neural networks (CNNs), which are the most
successful, and widely used for image classification problems (Russakovsky et al.,
2015). Although, many CNN architectures can compute due to the large-scale images
(Russakovsky et al., 2015) and obtain very high accuracy (C. Liu et al., 2018; Ming et
al., 2018). In the area of food image classification, state-of-the-art CNN architectures
such as AlexNet, GoogLeNet, and ResNet are proposed (Pandey et al., 2017),
although, the experimental results obtained with them did not obtain high accuracy.
Pandey et al. (2017) invented a CNN-based ensemble network, called FoodNet
architecture. This architecture consists of a fine-tuned model of AlexNet, GooglLeNet,
and ResNet. The networks compute feature vectors and then concatenate all of the
feature vectors, and a rectified linear unit (ReLU) used as a non-linear activation.
Then, data is passed to a fully connected layer and the softmax function used to
predict the output of the food image. The experiments showed that the FoodNet
architecture obtained the Top-1 accuracy of 72.12% on ETH Food-101 and 73.50%
on Indian food database. Also, the result was not good when the feature vector from
the FoodNet architecture was fed into the SVM classifier.

As for the pre-trained model, In Yanai and Kawano (2015), the fine-tuning of
the deep CNN pre-trained model based on AlexNet network, called DCNN was
proposed to examine three food image datasets. The results showed that the fine-tuned
DCNN achieved the Top-1 accuracy of 78.77%, 67.57%, and 70.40% on UEC Food-
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100, UEC Food-256, and ETH Food-101 datasets, respectively. The Inception
networks (Hassannejad et al., 2016; C. Liu et al., 2016) are proposed to address the
food image classification. Lin et al. (2016) presented the DeepFood network to
recognize the food image for computer-aided dietary assessment. The DeepFood
network, which is applied to an Inception module by adding 1x1 convolutional layers
and then connected with two inception modules via an additional max-pooling layer.
The best Top-1 accuracy results on UEC Food-256, UEC Food-100, and ETH Food-
101 were 54.7%, 76.3%, and 77.4%, respectively. Hassannejad et al. (2016) invented
a deep network with 54 layers based on Inception V3 to classify three well-known
food image datasets and achieved 88.28% on ETH Food-101, 81.45% on UEC Food-
100, and 76.17% on UEC Food-256 datasets as top-1 accuracy.

Additionally, data augmentation is proposed to address the problem of
insufficient data and to increase the performance of the image classification
(Attokaren, Fernandes, Sriram, Murthy, & Koolagudi, 2017; Yunus et al., 2019). The
data augmentation is also widely used in plant (Pawara, Okafor, & Schomaker, 2017)
and animal (Okafor, Schomaker, & Wiering, 2018), and food (Yunus et al., 2019)

image recognition.
2.3  MobileNetV1 Architecture

| used MobileNetV1 architecture presented by Howard et al. (2017) that is
designed and based on depthwise separable convolutions to build a lightweight deep
CNN that makes a model too small and reduces the computation time. The diagram in
Figure 7a) illustrates the MobileNetV/1 architecture. Consequently, MobileNetV1 can
be implemented for several recognition problems such as object detection, face
attributes, fine-grain classification, and landmark recognition.
1.3.1 Our Modified MobileNetV1 Architecture
Our modified MobileNetV1 architecture was as follows. First, | used
the pre-trained model of MobileNetV1 architecture. | decided to remove three layers,
including the average pooling, fully connected, and softmax layers from the original
network. Second, three extra layers; the global average pooling (GAP) layers, the
batch normalization (BN), and softmax layers are attached. The main objective of our
modified MobileNetV1 architecture is helping the network to train faster and
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achieving higher accuracy. Then, the dropout method is proposed to prevent
overfitting. Also, the batch normalization layer helps the network to train faster. The
activation function called the rectified linear unit (ReLU) is computed between the
batch normalization layer and the dropout layer. After | applied the GAP layers
instead of the average pooling, it shows that the parameters in the model are
decreased, and impact directly on the size of the model. Finally, for training the
proposed network, | used the fine-tuned MobileNetV1 to train the network on the
ETH Food-101 dataset. The modified MobileNetV1 architecture as shown in Figure
7b).

Input Input — GAP
1224)(22—1)(3 1324);224);3 l1x1x1024
MobileNetV1 MobileNetV1 BN
Convolution Layers Convolution Layers | 7x7x 1024 l 1x1x1024
l 7x7x 1024 ReLU
Average Pooling l 1x 1x1024
l — Dropout
Tx 7x1024
FC i 1x1x1024
i 1x1x1024 Softmax
Softmax
(a) (b)

Figure 7 The architectures of the MobileNetV1. (a) the original MobileNetV1 and,
(b) the modified MobileNetV1 architectures.

1.3.2 Depthwise Separable Convolutions

The MobileNetV1 architecture is computed based on depthwise
separable convolutions (DS). The concept of decomposition of convolution called
factorization is considered to factorize a standard convolution into a depthwise
convolution. After that, all depthwise convolution layers are computed with 1x1
convolution called a pointwise convolution, and then combined as the outputs to the
next layer. The diagram in Figure 7a) shows the detail of the MobileNetV1 that
includes convolutional, depthwise separable convolutions (DS), average pooling, fully
connected (FC), and softmax layers. Figure 7b) shows an in-depth explanation of the
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DS layer consisting of depthwise convolution, batch normalization (BN), and rectified

linear unit (ReLU), respectively.

2.4  Data Augmentation Techniques

Data augmentation is a technique to generate new training image data that
relate to the same image. Many data augmentation techniques such as rotation,
horizontal, vertical, flip, width shift, height shift techniques are applied to the image
recognition problems and the accuracy performance is improved (Yunus et al., 2019).
Samples of image augmentation are shown in Figure 8. In this thesis, the data
augmentation techniques applied to our experiments consists of rescaling, rotation,
width shift, height shift, horizontal flip, shear, and zoom.

(@) (b) (©) (d) (€)

Figure 8 Example of the data augmentation images: (a) original, (b) rotation, (c)
width shift, (d) height shift, and (e) horizontal flip images.

Additionally, the image randomly changes to generate a new image in each
training epoch, according to the range of the parameters. Furthermore, random
cropping is applied (Takahashi, Matsubara, & Uehara, 2020). In this method, the
position of points (x,y) are random, then it automatically crops and resizes to the
target size, as shown in Figure 9. In this experiment, the size of the image is 224x224

pixel dimension.
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Figure 9 Illustration of the random cropping method. (a) Original food image,
(b) random points (x, y) and crop sizes of the cropped image (w, h), and
(c) the random cropping image used in training process.

2.5  Experimental Setup and Results

2.5.1 ETH Food-101 dataset
In this study, I evaluate the deep CNN architectures on the benchmark
food image dataset. The real-world food images were collected by downloading from
foodspotting.com website. The food images are a mix of eastern and western meals
such as apple pie, hamburger, sashimi, ramen, peking duck. The challenging dataset
consists of 101,000 food images from 101 food categories, called the ETH Food-101

dataset (Bossard & Gool, 2014). Examples of the food images are shown in Figure 10.

Figure 10 Sample real-world food images from the ETH Food-101 dataset.

1.5.2 Experimental setup
Due to the large number of images in the dataset, | divided it into four
subsets (Set I, Set Il, Set Ill, and Set 1V) sizes of 10,100 (randomly selected 100
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images from each category), 20,200, 30,300, and 40,400 images to perform all of the
experiments. Images in each subset were divided into training, validation, and testing
sets of 70%, 10%, and 20%, respectively. For the training of the deep CNN
architectures, | used the transfer learning with the following parameter settings:
stochastic gradient descent (SGD) solver, batch size of 16, learning rate at 0.0001. |
note that entire experiments were carried out using the TensorFlow platform running
on Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 8GB RAM.

In the experiments, firstly, | used the original food images from the
ETH Food-101 dataset to experimented with the MobileNetV1 architectures in order
to find the appropriate training epoch. Secondly, the first data augmentation called
random cropping was employed. The program randomly cropped from a part of a
food image and resize to the target size, which was 224x224 pixel dimension. Thirdly,
the data augmentation techniques consisted of rescaling, rotation, width shift, height
shift, horizontal flip, shear, and zoom applied according to the random parameters.
Suddenly, the food images randomly change in each training epoch. Finally, the
random cropping image and the data augmentation techniques are combined.

1.5.3 Experimental results

| used the accuracy and standard deviation to evaluate the performance
of the deep CNN architectures on ETH Food-101 dataset. From the first experiment, it
is essential to indicate that a huge number of food images can increase recognition
performance. | set up the number of training to 50 epochs, which is similar to
previous reports (Attokaren et al., 2017; Pandey et al., 2017; Zheng et al., 2018). The
accuracy of Set | with 10,100 images and Set IV with 40,400 images were
significantly different. The accuracy results improved from around 42% to 57% when
testted on the original MobileNetV1 architecture. Moreover, the results improve from
46% to 67% when performed on the modified MobileNetVV1 architecture, when
accuracy increased by more than 10%, as shown in Figure 11. This clearly indicates
that recognition performance is increased when using more food images. However, |
found that modified MobileNetV1 will decrease number of parameter and testing time

around 24% and 7.5%, respectively, as show in Table 1.



21

——&— MobileNet _,f—"
65 1 @~ Improved MobileNet -
60
o
e
5 55
w
o
50
a5
Set | Set Ii Set Il Set IV

Subsets of the ETH food-101 dataset

Figure 11 The performance of the MobileNetV1 and modified MobileNetV1
architectures versus the different number of training samples (Set | —
Set 1V) on the ETH Food-101 dataset.

Table 1 The performance results of food image recognition on four subsets on ETH
Food-101 dataset using the approach MobileNetV1 architecture.

Methods No. of Parameters Testing Time
MobileNetV1 42 M 26m:40s
Modified MobileNetV1 3.2M 24m:40s

Table 2 The performance results of food image recognition on four subsets on ETH
Food-101 dataset using the approach MobileNetV1 architecture.

Methods Subsets of the ETH Food-101 dataset
I I " v
Without data augmentation 45.84 51.29 60.26 66.78
Random cropping 45.79 55.82 59.52 67.44
With data augmentation 48.71 56.71 62.49 69.86
With data augmentation + random 51.39 59.68 65.97 72.59
cropping

| show the obtained results of second to fourth experiments using the proposed
MobileNetV1 architecture on four subsets of the ETH Food-101 dataset in Table 2.
The table shows that the combination of the data augmentation and random cropping
was the best approach in our experiments. This approach outperformed other methods

with an increase of around 3-5% accuracy.
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Table 3 Performances of the five different techniques on ETH Food-101 dataset

Methods The number of | Accuracy
image per class

Random Forest Discriminative Components 1000 50.76

(Bossard & Gool, 2014)

Supervised Extreme Learning Committee 1000 55.89

(Martinel et al., 2016)

Data Augmentation + MobileNet 400 57.90

Data Augmentation + Inception V3 (Yanai & 1000 70.41

Kawano, 2015)

FoodNet: Ensemble Net (Pandey et al., 2017) 1000 72.10

DeepFood (C. Liu et al., 2018) 1000 77.00

Our proposed (Data Augmentation + 400 72.59

MobileNetV1) 1000 78.23

From the results in Table 3, the DeepFood architecture obtains the best
performances on the ETH Food-101 dataset with an accuracy rate of 77%. Due to the
computer used in the experiments, | decided to use the food image only 400 images
per class to examine our proposed architecture. However, our modified MobileNetV1
architecture reached an accuracy of 72.59%. It is only 4.41% less than DeepFood
architecture. As a result, our modified MobileNetV1 architecture outperforms the
random forest discriminative components (Bossard & Gool, 2014), supervised
extreme learning committee (Martinel et al., 2016) and three deep CNN architectures;
MobileNetV1, Inception V3 (Yanai & Kawano, 2015) and FoodNet (Pandey et al.,
2017). In addition, the modified MobileNetV1 created a model size of 22.4MB, which
less than the MobileNet architecture 10MB.

2.6 Conclusion

In this study, | used the state-of-the-art MobileNetV1 architecture on the food
image dataset. | also described a MobileNetV1 architecture, which was designed to
address the overfitting problem. In this modified MobileNetV1 architecture, the

number of parameters is decreased by applying the global average pooling (GAP)
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layers. Moreover, the batch normalization (BN), rectified linear unit (ReLU), and
dropout layers are combined. Also, the last layer is the softmax. In addition, the data
augmentation techniques are computed before transferring to the training process.

From the experimental results, to the best of our knowledge, I trained the
MobileNetV1 architecture according to the fine-tuned model. The modified
MobileNetVV1 architecture is competitive when compared to the original
MobileNetV1 architecture on the ETH Food-101 dataset. | also demonstrated the
impact of the data augmentation techniques; rotation, shift, flip, shear, zoom, and crop
when implemented before assigning to the modified MobileNetV1 architecture to
process. The best performance achieved when the combination of the various data
augmentation techniques and the modified MobileNetV1 architecture.

In future work, | plan to construct the deep ensemble convolutional neural
network (CNN) architectures, which are a combination of the state-of-the-art deep
CNN architectures. I am interested in extracting the feature vector from the

convolutional layers which may work better than individual deep CNN architecture.



Chapter 3

Deep Feature Extraction Techniques

There is a global increase in health awareness. The awareness of changing
eating habits and choosing foods wisely are key factors that make for a healthy life. In
order to design a food image recognition system, many food images were captured
from a mobile device but sometimes include non-food objects such as people, cutlery,
and even food decoration styles, called noise food images. These issues decreased the
performance of the system. Convolutional neural network (CNN) architectures are
proposed to address this issue and obtain good performance. In this chapter, I
proposed to use the ResNet50-LSTM network to improve the efficiency of the food
image recognition system. The state-of-the-art ResNet architecture was invented to
extract the robust features from food images and was employed as the input data for
the ConvlD combined with a long short-term memory (LSTM) network called
ConvlD-LSTM. Then, the output of the LSTM was assigned to the global average
pooling layer before passing to the softmax function to create a probability
distribution. While training the CNN model, mixed data augmentation techniques
were applied and increased by 0.6%. The results showed that the ResNet50+Conv1D-
LSTM network outperformed the previous works on the Food-101 dataset. The best
performance of the ResNet50+ConvlD-LSTM network achieved an accuracy of
90.87%.

3.1 Introduction

Overweight and obesity are the most significant factors for chronic diseases
such as diabetes and cardiovascular diseases. The easiest way to avoid chronic
diseases is to monitor and control people’s dietary behavior. The advancement of
artificial intelligence might help people to monitor and estimate daily calorie intake.
Hence, food recognition systems are the most straightforward solution. Many systems
can recognize several foods based on images. However, when people take a
photograph several food characteristics (e.g. the shape and decoration of food,

brightness adjustment, and non-food objects, called noise food images) are sent to the
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system to compute and predict the food type and calorific content. These issues can be
a cause of weaknesses of food imaging systems. Computer vision and machine
learning techniques are proposed to address the problems mentioned above. Many
researchers employ computer vision techniques to generate hand-crafted visual
features and send robust features to the novel machine learning techniques, such as
support vector machine (SVM), multilayer perceptron (MLP), random forest, and
Naive Bayes techniques (Farooq & Sazonov, 2017; McAllister, Zheng, Bond, &
Moorhead, 2018; Ragusa et al., 2016) to classify objects (Anthimopoulos, Gianola,
Scarnato, Diem, & Mougiakkou, 2014; Martinel et al., 2016).

Furthermore, many studies have extracted the robust features, called the
spatial features, using convolution neural network (CNN) architectures. The greatest
benefit of this technique is that | can extract robust features with various CNN
architectures. The robust features, however, are sent to be classified using traditional
machine learning techniques. Additionally, the CNN architecture combined with a
long short-term memory (LSTM) network has been applied for classification tasks.
Nevertheless, a few researchers have invented CNN architectures and LSTM
networks for food image recognition. In this research, | focus on improving the
accuracy performance of the food image recognition based on CNN architectures and
LSTM networks.

The significant contributions of this research are summarized in the following:

1. | propose the deep learning framework that combines state-of-the-art
ResNet50, which is the convolutional neural network (CNN) and long short-term
memory (LSTM) network, called ResNet50+ConvlD-LSTM network. This
framework can extract robust features that are spatial and temporal features, from the
food images. Mixed data augmentation techniques are also involved while training the
CNN model. The data augmentation technique insignificantly increases the
performance of food image recognition.

2. In these experiments, LSTM and ConvlD-LSTM networks were proposed
to create robust temporal features. For the ConvlD network, various layers were
combined, including zero padding, batch normalization, Convolution 1D, RelLU,
batch normalization, dropout, and average pooling layers. In the training scheme,
batch size, which was the number of training examples, were applied as 16, 32, and
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64. The LSTM network results showed that a batch size of 32 provided a better result
than batch sizes of 16 and 64.

Outline of the chapter. This chapter is organized as follows. Section 3.2
briefly explains deep learning researches in food image recognition systems and
describes the different deep learning techniques. Section 3.3 describes the proposed
approach for the food image recognition system. In section 3.4, the experimental
settings and the results of the deep learning methods are presented. The conclusion
and directions for future work are given in Section 3.5.

3.2 Related Work

In previous studies, many researchers have proposed using feature extraction
methods based on handcrafted methods to extract features from images. Novel feature
extraction methods such as local binary patterns (LBP) (Ojala et al., 1994), the scale-
invariant feature transform (SIFT) (Lowe, 2004) the histogram of oriented gradients
(HOG) (Dalal & Triggs, 2005), the speed-up robust features (SURF) (Bay et al.,
2008) and a bag of visual words (BoVW) (Coates et al., 2011; Csurka, 2004) methods
became popular and were proposed in many applications. Also, they achieved high
accuracy performance. Secondly, the robust features extracted from the novel
methods, are then given to machine learning algorithms such as support vector
machine (SVM) (Cortes & Vapnik, 1995), K-nearest neighbor (KNN) (Altman,
1992), and multi-layer perceptron (MLP) for a task of classification.

The food image recognition, Anthimopoulos et al. (2014) proposed an
automatic food recognition system to recognize 11 different central European foods.
In the food recognition system, the features, namely visual words, are computed from
the bag-of-features method and the k-means clustering algorithm. Then the linear
SVM is used as a classifier. This method obtained a recognition performance of 78%.
Furthermore, Martinel et al. (2016) introduced an extreme learning committee
approach. This approach was divided into three parts; feature extraction methods,
extreme learning committee, and supervised classification. First, various feature
extraction methods were proposed to extract color, shape, texture, local, and data-
driven features. Second, each feature vector was given to the extreme learning

machine (ELM). Finally, the output from each ELM was sent to the SVM algorithm
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for classification. The extreme learning committee outperformed the state-of-the-art
methods on four benchmark food image datasets.

Deep learning techniques are becoming increasingly popular in food image
recognition. In this section, | describe the research that has applied deep learning to
solve the image recognition problem, including 1) deep learning for food image

recognition and 2) deep feature extraction methods.

3.2.1 Deep learning for food images recognition

Convolution Neural Networks (CNNs) have been extensively used in
food image recognition research. In 2016, Hassannejad et al. (2016) and Liu et al.
(2016) used Google’s image recognition architecture Inception. Hassannejad et al.
(2016) proposed a network composed of 54 layers with fine-tuned architecture for
classifying food images from three benchmark food image datasets: ETH Food-101,
UECFOOD100, and UEC-FOOD256. On these datasets, the achieved accuracy was
88.28%, 81.45%, and 76.17%, respectively. Liu et al. (2016) invented the DeepFood
network that modified the Inception module by introducing a 1x1 convolutional layer
to reduce the input dimension to the next layers. It allows a less complicated network.
The accuracy achieved was 77.40% with the ETH Food-101 dataset, 76.30%, and
54.70% with UEC-FOOD100, and UEC-FOODZ256, respectively. In addition, the
Inception architecture, the ResNet architecture is widely popular for food image
recognition. Pandey et al. (2017) used ResNet, AlexNet, and GoogLeNet to propose
an ensemble network architecture. The network consisted of three fine-tuned CNN in
the first layer. All of the output was concatenated before being fed into ReLU
nonlinear activation and passed to a fully connected layer followed by a softmax layer
for image classification. Aguilar, Bolafios, and Radeva (2017) proposed the CNN
Fusion methodology, which is composed of two main steps. First, training with state-
of-the-art CNN models consisting of ResNet and Inception. Second, fusing the CNN
outputs using the decision template scheme for classifiers fusion. The two proposed
methods achieved accuracies of 72.12% and 86.71% with the ETH Food-101 dataset,
respectively. Table 4 summarizes different food classification approaches. The
accuracies reported along with the food databases used in the evaluation and the

underlying CNN architecture



28

Table 4 Performance evaluation of classification results on the food datasets using
deep learning techniques.

Datasets Architectures | Accuracy | References
UEC-FOOD100 DeepFood 76.30 Liu et al. (2016)
(Matsuda & Yanai, InceptionV3 81.45 Hassannejad et al. (2016)
2012) WISeR 89.58 Martinel et al. (2018)
UEC-FOOD256 DeepFood 54.70 Liu et al. (2016)
(Kawano & Yanai, GoogLeNet 63.16 Bolanos and Radeva (2016)
2015) InceptionV3 76.17 Hassannejad et al. (2016)
WISeR 83.15 Martinel et al. (2018)
ETH Food-101 Inception 77.40 Lie et al. (2016)
(Bossard & Gool, GoogLeNet 79.20 Bolanos and Radeva (2016)
2014) InceptionV3 88.28 Hassannejad et al. (2016)
Ensemble Net 72.12 Pandey et al. (2017)
CNNs Fusion 86.71 Aguilar et al. (2017)
ResNet152 64.98 McAllister et al. (2018)
WISeR 90.27 Martinel et al. (2018)

3.2.2 Deep feature extraction methods

Many researchers have focused on extracting features using several
CNN architectures, called deep feature extraction (Y. Chen et al., 2016; Paul et al.,
2016) that have been applied in many image recognition systems. With the deep
feature extraction method, the pre-trained models of the state-ofthe-art CNN
architectures are employed to train a set of images. Then, the deep features are
extracted from the layer before the fully connected layer. After that, | can use the deep
features as the input vector to a traditional machine learning algorithm, such as SVM,
KNN, and MLP. Indeed, the state-of-the-art CNN architectures, such as VGG,
ResNet, and Inception, have been proposed and widely used in the food image
recognition system (Hassannejad et al., 2016; McAllister et al., 2018).
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Table 5 Performance evaluation of classification results on the food datasets using
deep feature and machine learning techniques

Datasets Classes Deep Classifiers Accuracy References
Feature
Methods
PFID 7 AlexNet SVM-linear 94.01 Farooq et al.
(2017)
PFID 61 AlexNet SVM-linear 70.13 Farooq et al.
(2017)
UNICT-FD889 2 AlexNet SVM-sigmoid 94.86 Ragusa et al.
(2016)
Food-5K 2 ResNet152 SVM-RBF 99.4 McAllister et al.
(2018)
Food11 11 ResNet152 ANN 91.34 McAllister et al.
(2018)
RawFooT-DB 46 ResNet152 ANN 99.28 McAllister et al.
(2018)
ETH Food-101 101 ResNet152 SVM-RBF 64.68 McAllister et al.
(2018)

To classify the food and non-food images, Ragusa et al. (2016)
proposed to use three deep feature methods called the Network in Network, the
AlexNet, and the VGG-s models to extract features and then use a support vector
machine (SVM) as a classifier. The best performance result was the AlexNet model
combined with a binary SVM classifier on the Food-5k dataset. For multi-class food
images, Faroog and Sazonov (2017) proposed the deep feature method called AlexNet
to extract features from the PFID food image dataset. This method extracts the feature
of 4,096, 4,096, and 1,000 channels from three fully connected (FC) layers; FC6,
FC7, and FC8. Also, the linear SVM technique is applied as a classifier. The results
showed that the features extracted from FC6 outperformed features from other FC
layers. Moreover, McAllister et al. (2018) applied ResNetl52 and GooglLeNet for
deep feature methods performed on five datasets consisting of Food-5k, Foodl1,
RawFooT-DB, and ETH Food-101 dataset. The deep features were then classified
using traditional machine learning comprising SVM, artificial neural networks,

Random Forest, and Naive Bayes. The experimental result with these methods had
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accuracies above 90% on food image datasets, except for the ETH Food-101 dataset
that obtained only 64.68% accuracy. A summary of food classification using the deep

feature methods is shown in Table 5.

3.3  Proposed Approach for The Food Image Recognition System

This section explains the framework of food image recognition. Two main
architectures, convolutional neural network (CNN) and long short-term memory
(LSTM) network, are proposed to extract the robust features from the food images.
Hence, the robust spatial and temporal features are extracted from state-ofthe-art
ResNet architecture and the LSTM network. The temporal features extracted from the
LSTM network are transformed into a probability distribution using the softmax

function.
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Figure 12 Architecture of our proposed framework for food image classification.

According to our framework, as shown in Figure 12, | examine the transfer
learning strategy to train the ResNet architecture. Hence, this architecture considers
only the color image and the resolution of the images is decided to be 224x224x3
pixels. | also normalize all food images to the values between 0 and 1 by dividing the
pixel values with 255, which is the maximum value of the RGB color. Other schemes
are described in the section of the spatial feature extraction method using CNN
architecture and temporal feature extraction method using LSTM network, as follows.

In this section, | propose an effective CNN architecture to extract a robust
spatial feature. According to the computation power and time, the transfer learning
approach is applied in the training scheme, then the pre-trained models of CNN
architectures are trained on the food image and then examined to discover the best

robust spatial feature. As a result, the last pooling layer of the CNN model is
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employed as the spatial feature, as shown in Figure 13. | can also call this method a

deep feature extraction technique.
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Figure 13 Diagram of the deep feature extraction technique. (1) food images are fed
to the pre-processing step to resize and normalize. In the spatial feature
extraction process, (2) food images are trained using state-of-the-art CNN
architectures to find weights with low validation loss. Then, (3) the spatial
features of the food images are extracted according to the best CNN
model.

To extract the robust spatial features, in this study, | propose state-of-the-art
CNNs, VGG16, VGG19, ResNet50, DenseNet201, MobileNetV1, and MobileNetV2.

An overview of each CNN will now be described.

3.3.1 Spatial Feature Extraction using Convolutional Neural Network
Architecture
3.3.1.1 VGGNet Architecture
Simonyan and Zisserman (2014) proposed a network to
increase the stack of convolutional networks into 16 and 19 weight layers by using an
architecture with a size of 3x3 pixels convolution filters, called VGGNet. With this
network, the input images are the color image and are resized to 224x224 pixels
resolution. The convolutional layers are downsized from 224x224 pixels to 7x7
pixels. Nevertheless, the number of feature maps is increased from 64 to 512 layers.
The rectified linear unit (ReLU) is used as the activation function. Also, spatial
pooling is computed by the max-pooling method with the size of a 2x2 pixel window.
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Three fully connected (FC) layers follow VGGNet. The first two FC layers have
4,096 channels and the last FC layer contains 1,000 channels. The VGGNet is
designed as a plain network, but still obtained the best performance on many image
classification applications, such as remote sensing classification (X. Liu, Chi, Zhang,
& Qin, 2018), and plant recognition (Abas, Ismail, Yassin, & Taib, 2018; Habiba,
Islam, & Ahsan, 2019; Pearline, Vajravelu, & Harini, 2019).
3.3.1.2 ResNet Architecture

According to the plain network, the deeper convolutional layers
were performed from 34-Layer until 152-layer plain networks (K. He, Zhang, Ren, &
J., 2016). Firstly, the color image is resized to 224x224 pixels resolution and
employed as the input of the deeper network. Secondly, the convolutional layers are
divided into five convolutional blocks, namely building blocks. Remarkably, the
output of each building block is always decreased by half of the input. For example,
the output of the first, second, and fifth building blocks are 112x112, 56x56, and 7x7
pixels resolution, respectively. Finally, the average-pooling method is applied to the
last building block and followed by the FC layer with 1,000 channels and the softmax
function. As a result, the deeper plain network gave a higher error rate on the CIFAR-
10 dataset.

256-d In

_—

Weight laver | X identaty

(@) (b)

Figure 14 lllustration (a) a building block and the residual function and (b) a sample
of bottleneck network for ResNet 50, 101, and 152.

According to the higher error rate, He et al. (2016) proposed to
add the residual network, which is the shortcut connection, to train the deeper
network, called ResNet. Hence, the shortcut connections are computed using the

residual function that allows the network to skip two convolutional layers, as shown
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in Figure 14a). The residual function is calculated by F(x) = H(x) — x when the
feature maps of the input and output have identical dimensions. The original function
changes to F(x) + x . Furthermore, bottleneck architectures are presented when the
deeper convolutional layers are implemented as 50, 101, and 152 layers. The
bottleneck architectures allow the network to skip three convolutional layers, as
shown in Figure 14b). Consequently, ResNet obtained a top-5 error rate of 3.57% on
the ImageNet validation set and showed fast computation compared to the plain
network. The ResNet also won the ILSVRC-2015 classification task.
3.3.1.3 DenseNet Architecture

Huang et al. (2017) proposed a dense network called DenseNet
architecture. The different depth convolutional layers were experimented with
consisted of 121, 169, 201, and 264. The result showed that the DenseNet with 264-
layer provided the lowest top 1 error rate on the ImageNet validation set and yielded a
better error rate than the ResNet architecture. Also, the parameter of the DenseNet is
approximately 3-time less than the ResNet. According to the connection of the
DenseNet, the network can connect to other layers in a feed-forward method. The
number of direct connections can be computed using L(L+1)/2, where L is the number
of layers. To further improve the DenseNet architecture, the convolutional layers are
divided into four blocks, namely dense blocks. In each dense block, the bottleneck
layers with a size of 1x1 and 3x3 convolution are used to reduce the number of input
feature maps. The transition layers are combined with the dense blocks 1-3 to reduce
the size of the feature maps to the half size of the convolutional layer in the dense
block. The output size of each block is decreased from 112x112 to 7x7 pixels. As for
the classification layer, the global average-pooling, FC layer, and softmax are applied.

The differences between ResNet and DenseNet architectures are shown in Figure 15.
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Figure 15 Illustration of the difference of the connections between (a) the ResNet and
(b) the DenseNet architectures.

3.3.1.4 MobileNet Architecture

The lightweight CNN architecture called MobileNet is
proposed for mobile and embedded devices (Howard et al., 2017). In order to reduce
the size of the model, the depthwise separable convolution layer, a core layer of the
MobileNet, is designed to factorize the standard convolution into 3x3 depthwise
convolutions and then factorize the depthwise convolution layer into 1x1, called
pointwise convolution. Due to MobileNet architecture, the depthwise and pointwise
convolution layers are always followed by batch normalization (batchnorm) and

ReLU, as shown in Figure 16a).
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Figure 16 Network architectures of MobileNet. Examples of (a) the depthwise
separable convolution and (b) inverted residual and linear bottleneck.
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Furthermore, Sandler et al. (2018) proposed MobileNetV?2
architecture. The new mobile architecture, called inverted residuals and linear
bottlenecks, is combined with the linear bottleneck layer and inverted residual
network. The inverted residuals and linear bottlenecks block consist of three layers.
First, 1x1 convolution combined with batchnorm and RelLU. Second, depthwise
convolution combined with batchnorm and ReLU. Third, 1x1 convolution combined
with batchnorm and without non-linearity, as shown in Figure 16b). In MobileNetV2
architecture, the number of operations is decreased, so that is was of small size and
low memory usage. A summary of the state-of-the-art CNN architectures is presented
in Table 6.

Table 6 Summary of the state-of-the-art CNN architectures.

CNN Parameters

Architectures No. of Filter | Stride Pooling No. of No. of
Conv Size FC Parameters
Layer Layers

VGG16 13 3 1 Max 3 138M

VGG19 16 3 1 Max, 3 143M

ResNet50 49 1,37 1,2 Max, Average 1 25.6M

DenseNet201 200 1,37 1,2 | Max, Average 1 20.2M

MobileNetV1 13 1,3 1,2 Average 2 4.2M

MobileNetV2 13 3 1,2 Average 1 3.2M

3.3.2 Temporal Feature Extraction
In this section, | propose two deep learning networks to extract
temporal features, called long short-term memory and ConvlD-LSTM networks. The
detail of deep learning networks is will now be described
3.3.2.1 Long Short-Term Memory
Hochreiter and Schmidhuber (1997) invented a novel gradient-
based method and developed the network based on a recurrent neural network (RNN)
called a long short-term memory (LSTM) network, as shown in Figure 18. It proposed
to address the computational complexity, error flow, constraints of the feedforward
neural network, and sequence problems of time series data (Jain, Gupta, & Moghe,
2018; Yan, Qi, & Rao, 2018). The LSTM network comprised special units that
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connect to other units and are designed to cope with the sequence of data; video and
speech data, called memory blocks. Each memory block contained the various

functions consisting of the forget gate, input gate, update cell state, and the output

gate.
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Figure 17 The architecture of the long short-term memory network (Hochreiter &
Schmidhuber, 1997).

The memory block presented in Figure 17 is calculated as follows;
fe = U(Wf [he—q, xe] + bf) 1)

ip = o(w; - [he—g, xc] + by)

C, = tanh(w, * [he—1, x| + be)

Co=fi Cooq +ip C

0r = (W, * [he—1, x¢] + by)

he = of - tanh(C;)

where f; is forget gate’s activation vector, i; is input/update gate’s activation vector,
C, is cell input activation vector, C, is current cell memory, O, is output gate’s
activation vector, h; is current cell output, , b and W denote the bias vector and
weight matrices for the input gate (i), output gate (0), forget gate (f), and memory cell
(c), hy— is previous cell output, C;_; is previous cell memory, ¢ is sigmoid function,
and ' - ' is the Hadamard product (Hochreiter & Schmidhuber, 1997)
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3.3.2.2 ConvlD-LSTM

In this study, | propose the ConvlD-LSTM framework to
extract temporal feature from the spatial features, as shown in Figure 18. In the
ConvlD block, the batch normalization layer was added so as to normalize the input
data and speed up the process of learning. The dropout layer was implemented to
prevent over-fitting, then some units were ignored during learning. After that, the
average pooling layer which selected the average component from the sub-region of
the feature map, was considered as the feature vector. The feature vector was sent to
the LSTM Cells to learn and generate the temporal feature. Consequently, | again
decreased the size of the feature using global average pooling layer (GAP) before

giving the feature to the softmax function.
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Figure 18 Illustration of extract temporal features using the ConvlD-LSTM network.
3.4  Experimental Setup and Results

3.4.1 Food Image Dataset

In this research, | focused on experimenting with the benchmark food
image dataset, namely the ETH Food-101 dataset (Bossard & Gool, 2014). The
training set contained the wrong labels and some noise images, such as food images
taken from different camera angles that made other objects such as people, tables, and
bottles, appear in the image. It consists of 75,750 training images and 25,250 test
images. The sample images of the ETH Food-101 dataset are shown in Figure 19. The
challenge of this dataset is that the training set contained some noise images, such as

food images taken from different camera angles that made other objects such as
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people, tables, and bottles, appear in the image, as shown in Figure 20(a) and
similarities of shape, color, and decoration between two categories (chocolate cake
and chocolate mousse), as shown in Figure 20(b). The researchers assume that

computer vision can handle noise images and wrong labels.

Apple pie Beef tartare Beet salad Bread pudding  Breakfast burrito Bruschetta Ceviche Cheesecake  Chicken quesadilla Chocolate cake

% ﬁg.

Choco]ate mousse Crab cakes Falafel Filet mignon Huevos rancheros French toast

Gnocchl Grilled salmon Foie gras Hummus

Scallops Shnmp and gnts

5

Omelette Panna cotta Pork chop

Tuna tartare

Chocolate cake

Chocolate mousse

Figure 20 Some examples of the ETH Food-101 dataset that containing (a) other
objects (e.g., people, cake shelves, tables, and glasses of beer) and (b)
similarities of chocolate cake and mousse.

3.4.2 Experimental Setup
As explained in Section 3, | first used pre-trained models of six CNN
architectures; VGG16, VGG19, ResNet50, DenseNet201, MobileNetV1, and
MobileNetV2, to train and extract the spatial feature from food images. All CNNs
were trained using the stochastic gradient descent (SGD) optimizer, rectified linear
unit (ReLU) for activation function, and learning rate between 0.01 to 0.0001.
Second, the spatial features were then sent to ConvlD-LSTM and LSTM networks to
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extract temporal features. In the LSTM network, the fraction of the units was
employed to drop the linear transformation of the inputs. The initial weights were
randomly selected by using a Gaussian distribution where the mean is zero.

| decided to train only 100 epochs to avoid overfitting when training
the model. Figure 21 shows loss values while training the ConvlD-LSTM and LSTM
model. According to loss values, better loss values were obtained after epoch 50 when

they became stable values until epoch 100.
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Figure 21 Illustration of loss values of (a) ConvlD-LSTM and (b) LSTM networks
when using ResNet50, VGG16, and MobileNetV1 as a deep feature
method.

3.4.3 Evaluation Metrics
The evaluation metrics used for food image recognition were accuracy
and F1-score. | used the accuracy score to evaluate the performance of the deep
learning models on the test set and used the F1-score to examine the individual
accuracy of each class. The accuracy and the F1-score were computed by Equations 2
and 3.

TPr+TNg

accuracy = (2)
TPr+TNk+FPyr+FNy
( TPp TPp )
- TPr+FNp TPpR+FPp
F1 —score = 2 X —r5——1#, 3)
TPy +FNj, TPp+FPy

where TP, called true positives, is the number of correctly classified images from
class k, FP, called false positives, is the number of misclassified images from class k.

TN, called true negatives, is the number of correctly classified image that does not
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belong to class k, and FN, called false negatives is the number of misclassified

images belong to class k.

3.4.4 Experiments with Deep Learning Methods

In the experiments with deep learning methods, 1 first trained the ETH
Food-101 dataset using a pre-trained model of six state-of-the-art CNNs; VGG16,
VGG19, MobileNetV1, MobileNetV2, ResNet50, and DenseNet201. Second, |
proposed the deep feature method to extract the spatial feature from the last pooling
layer of each CNN. The deep feature method extracted a high dimension of the spatial
feature. The number of spatial features is reported in Table 7. It can be seen that
ResNet50 provided 99,176 features. On the other hand, VGG16 produced only 25,088
features. Finally, | trained the high dimension of the spatial features using Conv1D-
LSTM and LSTM networks.

Table 7 Illustration of the number of spatial features extract from different CNN
architectures and size of each model

Deep Feature Methods No. of Parameters No. of Features
VGG16 14.7M 25,088
VGG19 20M 25,088
ResNet50 23.5M 99,176
DenseNet201 18.3M 94,080
MobileNetV1 3.2M 50,176
MobileNetV2 2.2M 62,720

Table 8 and Figure 22 present the accuracy results on the test set of the
ETH Food-101 dataset for CNN, ConvlD-LSTM, and LSTM networks. The results
show that the Conv1lD-LSTM achieved the best performance with 89.82% accuracy
when using a batch size of 32 and extracting features with ResNet50. As a result, the
Conv1D-LSTM network with the batch size of 32 always showed better accuracy than
other batch sizes. According to our experiments, however, the CNN architectures
presented worse performance compared to the ConvlD-LSTM and LSTM networks.
In terms of the deep feature methods, the ResNet50 outperforms all CNN
architectures when training with the CNN, ConvlD-LSTM, and LSTM networks. The
result of the CNN architectures shows that the ResNet50 provided 42.66% accuracy
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higher than the MobileNetV2. | concluded that the ResNet50 extracted the spatial
feature with a high dimension and still provided higher accuracy when training with
ConvlD-LSTM and LSTM networks. Hence, the ResNet50 combined with the
ConvlD-LSTM, namely ResNet50+Conv1D-LSTM, performed best on the ETH
Food-101 dataset.

Table 8 Evaluation of the classification results for the ETH Food-101 dataset using
different deep learning consisting of CNN, LSTM, and ConvlD-LSTM. The
first column shows the deep feature methods that used to extract spatial

features.
Model CNN LSTM ConvlD-LSTM
No Global No Average Max
Pooling Average Pooling Pooling Pooling
Layer Pooling Layer

VGG16 67.40 78.55 80.44 75.94 85.91 84.61
VGG19 65.54 77.15 79.94 75.02 85.66 84.52
MobileNetV1 50.60 58.59 60.32 64.80 65.88 65.75
MobileNetV2 37.20 50.33 51.94 55.14 56.73 56.71
DenseNet201 39.29 38.08 38.98 42.25 42.87 38.11
ResNet50 79.86 88.90 88.92 86.83 89.82 89.01

The experimental results show that the ConvlD-LSTM outperformed
LSTM because | combined necessary layers toward the ConvlD network, such as
batch normalization, ReL U activation function, and dropout. These layers produced
the Conv1D network to normalize the inputs to each feature map and cope with the
linear activation function. For ConvlD, | experimented with pooling layers; global
average pooling and global max pooling to decrease the size of the feature vector
before giving it to classified with the softmax function. The success of the pooling

layer is no parameter to optimize and robust to perform the spatial feature.
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Figure 22 Performance evaluation of three classifiers consisted of CNN, Conv1D-
LSTM, and LSTM architectures that extract features based on six different
deep CNN architectures on the ETH Food-101 dataset.

To study the effect of the data augmentation techniques, 1 applied six
data augmentation techniques; rotation, width shift, height shift, horizontal flip, shear,
and zoom while training the CNN architecture because Phiphiphatphaisit and Surinta
(2020) reported that data augmentation techniques could increase the accuracy of
CNN, especially for food image recognition. In this experiment, ResNet50+Conv1D-
LSTM using the batch size of 32 was considered.

Table 9 The classification results for the ETH Food-101 dataset using features that
extracting from the ResNet50 architecture and data augmentation

techniques.

Data Augmentation LSTM ConvlD-LSTM
No 88.92 89.82
Yes 89.49 90.87

Table 9 showed that LSTM and ConvlD-LSTM perform better when
data augmentation techniques were applied. The accuracy of the ConvlD-LSTM with
the data augmentation technique was slightly increasing compared with the LSTM
with the data augmentation technique. As a result, the ResNet50+ConvlD-LSTM
network with the data augmentation technique provided an accuracy of 90.87% on the
ETH Food-101 dataset. The data augmentation can generate more food images while
training, and then it increases the robustness of the model without decreasing the



43

effectiveness. Table 10 showed number of parameters and testing time of ResNet50
and ResNet50+Conv1D-LSTM.

Table 10 The performance results of food image recognition on four subsets on ETH
Food-101 dataset using the approach MobileNetV1 architecture.

Methods No. of Parameters Testing Time
ResNet50 246 M 30m:50s
ResNet50+ConvlD-LSTM 38.3 M 32m:30s
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Figure 23 The result of the F1-score on the ETH Food-101 dataset using the
ResNet50 and LSTM architectures.
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Figure 24 Examples of misclassified results according to the noise images.
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The Fl-score value of the ResNet50+ConvlD-LSTM network was
computed according to Equation (3) and is illustrated in Figure 23. | found that only
two categories, chocolate mousse and Filet mignon (see red bar) provided an F1-score
of less than 80%. The Fl-score also reported that 42 categories (see green bar)
obtained a score above 90%. However, when | examined the ResNet50+Conv1D-
LSTM network with non-food elements, called noise images, our proposed network
could not classify these noise images correctly. Some noise images are shown in
Figure 20a) and the misclassified results of the noise images are shown in Figure 24.
Also, misclassification of similar categories such as chocolate cake and chocolate

mousse were found, as shown in Figure 25.

Chocolate cake Chocolate mousse

S
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;l
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Chocolate mousse I 76.20% = Chocolate cake NG =9.50%
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&
)’

Cheesecake W 9.31%
Carrot cake W 7.54% Carrot cake | 0.83%

Cheesecake [ 4.54% Red velvet cake 0.02%

e
f
i

Oysters | 4.32% Cheese plate | 0.01%

Chocolate mousse | IEEEEEG_—__— 0.17%

Chocolate cake [l 6.67%

Chocolate cake N 45.07%
Misosoup N 35.13%
Edamame | 1.42% Cheesecske W 6.72%

Escargots | 0.66% Ice cream | 1.83%

L2

Donuts | 0.64% Red velvet cake | 0.82%

Figure 25 An example of the similarity categories between chocolate cake and
chocolate mousse contains in the ETH Food-101 dataset.

445 Comparison between ResNet50+ConvliD-LSTM Network and
Previous Methods

| made extensive comparisons between our ResNet50+Conv1D-LSTM

network and existing state-of-the-art CNN architectures. The experimental results

showed that our network performed better than all CNN architectures. The accuracy

of 90.87% was obtained from the ResNet50+Conv1D-LSTM, while, the performance

of the state-of-the-art WISeR architecture was 90.27% accuracy. The comparative
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results between the existing CNN architectures and our proposed architecture on the
ETH Food-101 dataset are shown in Table 11.

Table 11 Recognition performance on the ETH Food-101 dataset when compared
with different deep learning techniques.

Architectures No. of training | Accuracy References
images per
class
ResNet152 750 64.98 McAllister et al. (2018)
EnsembleNet 750 72.12 Pandey et al. (2017)
Modified MobileNetV1 400 72.59 Phiphiphatphaisit & Surinta (2020)
DeepFood 750 77.40 Liu et al. (2016)
GoogLeNet 750 79.20 Bolanos & Radeva (2016)
CNNs Fusion 750 86.71 Aguilar et al. (2017)
InceptionV3 750 88.28 Hassannejad et al. (2016)
WISeR 750 90.27 Martinel et al. (2018)
ResNet50+ConvlD-LSTM 750 90.87 Our proposed

From the experimental results shown in Table 11, it can be seen that
the ConvlD-LSTM vyielded better performance than other techniques. Our ConvlD
network included many layers consists of batch normalization layer, ReLU activation
function, and dropout layer. In our Conv1D, | used the batch normalization layer to
normalize the input data to each feature map and this layer works better with the
ReL U activation function. The dropout layer was attached to the Conv1D network to
prevent the over-fitting, then it allows the network to ignored some units during

training.
3.5 Conclusions

This study proposed the ResNet50+Conv1D-LSTM network for accurate food
image recognition. First, our network took advantage of extracting the robust spatial
feature using a state-of-the-art convolutional neural network (CNN), called ResNet50

architecture. Second, | used the robust feature as input data for the Conv1D combined
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with the long short-term memory (LSTM) network, namely ConvlD-LSTM. The
primary function of the ConvlD-LSTM network was to extract a temporal feature.
Finally, the softmax function was employed to transforms the output of the Conv1D-
LSTM into a probability distribution.

In the experiments, | evaluated six CNNs; VGG16, VGG19, ResNet50,
DenseNet201, MobileNetV1, and MobileNetV2 to extract the feature, then classify
with ConvlD-LSTM and LSTM networks on the Food101 dataset. The results
showed that the ResNet50 combined with the ConvlD-LSTM network, called
ResNet+ConvlD-LSTM network, provided the best performance (see Table 7).
Additionally, | experimented with mixed data augmentation techniques; rotation,
width shift, height shift, horizontal flip, shear, and zoom. The result of the data
augmentation also insignificantly increased accuracy by 0.27%. Our experiments
presented better results than previous work (see Table 9). The best result of the
ResNet+ConvlD-LSTM obtained 90.87% on the ETH Food-101 dataset.

In future work, I will experiment on increasing the performance of the food
image recognition. | will consider other novel data augmentation techniques, which
could be more efficient in the noise food images. Also, the ensemble and parallel

networks will be involved in future work.



Chapter 4

Adaptive Deep Feature Learning Techniques

Various deep learning methods have been proposed to address the challenge of
food image classification, such as convolutional neural networks (CNN), deep feature
extraction, and ensemble CNNs. However, the existing methods do not perform with
high accuracy on the benchmark food image datasets. In this research, | proposed a
robust adaptive spatial-temporal feature fusion network, called ASTFF-Net, to
enhance the performance of the food image recognition system. The architecture of
ASTFF-Net is divided into three parts; spatial feature extraction network, temporal
feature extraction network, and adaptive feature fusion network. In the first part, |
extracted the spatial features using the ResNet50 and then minimized the size of the
parameters using the reduction operation. Further, the convolutional 1D (ConvlD)
block was applied to fit the features into the recurrent neural networks. In the second
part, the spatial features from the first part were given to the long short-term memory
(LSTM) that allows learning various patterns from sequence features. In the final part,
the spatial features from the first part and temporal features from the second part were
concatenated and assigned to the ConvlD, followed by the softmax layer. The
advantage of ASTFF-Net is that the proposed network can prevent overfitting
problems due to the attachment of the global average pooling and dropout layers.
These layers decreased the number of network parameters and dropped the number of
connections between layers, respectively. In the experiments, | evaluated four
different adaptive feature fusion networks (ASTFF-NetB1 to B4) on four benchmark
food image datasets; Foodll, UEC Food-100, UEC Food-256, and ETH Food-101.
As a result, the proposed ASTFF-NetB3 achieved the best performance on four
benchmark food image datasets. It also significantly outperformed the existing

methods.

4.1 Introduction

Nowadays, people care about their health and make sure they live a fit and
good life. Many food image recognition applications, such as dietary, personal food

logging, nutrition assessment, and social media applications (Jiang et al., 2020; C. Liu
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et al., 2016; Sahoo et al., 2019; Dong, Sun, & Zhang, 2019; Nordin, Xin, & Aziz,
2019), were invented to yield the users' requirements. In order to use the program to
its full potential, many applications were then built as mobile applications on
smartphones. They allow people who use the smartphone to take food photos and
measure nutrition themselves.

To make the food image recognition applications achieve more accurate
results in classification, the artificial intelligence algorithms should deal with
uncontrolled photos taken by the users with variations such as brightness, orientation,
noise, and other objects in the food images. Figure 26a shows some different
orientations of spaghetti. The Peking duck, as shown in Figure 26b, is decorated in
different styles. Furthermore, Figure 26¢ shows other objects in the food images, such
as glasses, plates, forks, spoons, and knives. Many techniques have been proposed to

address these challenges.

Figure 26 Illustrated food images (a) similarities in different food types (b) different
decoration and (c) non-food items.

Many convolutional neural network (CNN) architectures are currently
proposed for food image recognition systems that make it more effective to analyze
and classify real-world food images. CNNs have also shown state-of-the-art
performance on food image recognition. The fine-tuned models of AlexNet and
InceptionV3 architectures were used to recognize the real-world food images on the
benchmark food image datasets; ETH Food-101, UEC Food-100, and UEC Food-256
(Yanai and Kawano, 2015; Hassannejad et al., 2016). In their experiments, Yanai and
Kawano (2015) obtained the recognition accuracy of 78.77% and 65.57% on UEC
Food-100 and Food-256, respectively. In comparison, Hassannejad et al. (2016)
achieved an accuracy of 88.28% on ETH Food-101, 81.45% on UEC Food-100, and
76.17% on UEC Food-256.
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The concept of the ensemble CNNs network, called Ensemble Net, was
proposed by Pandey et al. (2017). In their ensemble Net, the input images were first
changed to HSV color space and then histogram equalization was applied to only the
brightness channel. Second, the food images were sent to fine-tuned CNNs consisting
of AlexNet, GoogLeNet, and ResNet. Third, the feature maps that had been extracted
from three CNNs were concatenated and sent to the fully connected layers. Finally,
their proposed network was classified using the softmax function. Ensemble Net
performed with a recognition accuracy of 72.12% on the ETH food-101 and 73.5% on
the Indian food database.

The deep feature extraction technique became the popular method that
extracted the robust deep features based on the convolutional neural networks
(CNNSs). The CNN architecture emphasizes that it computes the weighted parameters
from the input images and then creates unique spatial features. Sengiir et al. (2019)
extracted deep features using two CNN architectures; VGG16 and AlexNet. The deep
features were then concatenated and sent to classify using the support vector machine
(SVM) technique. Phiphitphatphaisit and Surinta (2021) extracted both spatial and
temporal features. First, the spatial features were extracted using ResNet50 and spatial
features were subsequently transferred to the ConvlD-LSTM network to extract the
temporal features. Finally, the deep features were classified using the softmax
function.

To better extract the unique deep features from real-world food images, the
significant contributions of this thesis are summarized in the following. | introduce a
novel CNN-based network for encoding food images to extract robust deep features,
namely adaptive spatial-temporal feature fusion network (ASTFF-Net). ASTFF-Net
has three main networks; spatial feature extraction, temporal feature extraction, and
adaptive feature fusion. The advantage of our proposed network is that it captures the
spatial and temporal to represent real-world food image characteristics. | then show
that ASTFF-Net significantly outperforms existing state-of-the-art deep learning
techniques on four real-world food image datasets; Foodl1l, UEC Food-100, UEC
Food-256, and ETH Food-101.

The remainder of this chapter is organized as follows. Section 4.2 summarizes

the overview of related work. Section 4.3 describes the proposed ASTFF-Net. The
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real-world food image datasets are explained in Section 4.4. The experimental results
and discussion are presented in Section 4.5. The conclusion and future work are given

in Section 4.6.

4.2 Related Work

Recently, many approaches have been proposed to address the challenge of
real-world food image recognition. The related works are described in this section,
including convolutional neural networks, deep feature extraction methods, and deep

feature fusion methods.

4.2.1 Convolutional Neural Networks (CNNs)

CNN architectures are popular and have been proposed to address the
recognition problems in many domains. Many CNN architectures were proposed to
recognize food images, such as VGG16, GooglLeNet, InceptionV3 (Hassannejad et
al., 2016; Liu et al., 2016; Ege and Yanai, 2017; Vijayakumar and Sneha, 2021). Ng
et al. (2019) proposed to use several state-of-the-art CNN architectures comprising
MobileNetV2, ResNet50, InceptionV3, InceptionResNetVV2, Xception, and NASNet-
Large for food image recognition. In their experiments, they evaluated the
performance of the CNN architectures on several parameters, including the impact of
the training images, data augmentation techniques, class imbalance, and image
resolutions. The results showed that the Xception perform better than other CNNs on
UEC Food-100, ETH Food-101, and Vireo-Food 172 datasets.

Martinel et al. (2018) invented wide-slice residual networks (WISeR)
based on a residual network. The WISeR architecture contained two parts; residual
network and slice network. In the first part, the residual network was employed. In
the second part, the slice convolution kernel was proposed. The slice convolution
kernel was designed using the rectangle kernel. The width of the rectangle kernel was
the same size as the width of the input image. It was different from the standard
convolution kernel in that the kernel of the standard convolution was designed as the
square kernel. Further, two parts were concatenated and given to fully connected
layers. The WISeR architecture obtained an accuracy of 89.58% on the UEC Food-
100, 83.15% on the UEC Food-256, and 90.27% on the ETH Food-101 datasets.
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Moreover, Tasci (2020) proposed ensemble CNNs using voting
combination rules, called voting-based CNNs. For the CNN architectures, five
CNNs, including VGG16, VGG19, GoogLeNet, ResNet101, and InceptionVV3, were
experimented with. In the ensemble method, six voting methods (minimum, average,
median, max, product, and weighted probabilities) were evaluated. The voting-based
CNNs yielded 84.28%, 84.52%, and 77.20% accuracy rates on ETH Food-101, UEC
Food-100, and UEC Food-256 respectively.

4.2.2 Deep Feature Extraction methods

Deep feature extraction methods aim to extract the spatial features
from the input images. They are designed to extract features from different layers of
deep CNN architectures to enhance accuracy performance. Hence, the deep features
are transferred to the recurrent networks and other machine learning techniques to
train and create a robust model. Further, the deep features can also be assigned to the
LSTM network to extract the temporal features.

Ragusa et al. (2016) used AlexNet, VGG, and Network-in-Network
models to extract the deep features from food images. The deep features were then
given to classify using the support vector machine (SVM) techniques. The results
showed that extracted deep features using AlexNet architecture and classified using
the binary SVM outperformed extracted deep features using other CNNs. As a result,
training the binary SVM technique on the deep features performed approximately 8%
better than classification using only the CNN technique.

Aguilar et al. (2017a) proposed to use GoogLeNet architecture as the
feature extraction method. In their method, first, the deep features were transformed
and the best discriminant components selected using principal component analysis
(PCA). Second, the best components were trained using the SVM technique.
Moreover, in SVM, the grid-search method was used to find the best
hyperparameters; cost and gamma. Finally, the optimal SVM model was trained on
the best components with the best hyperparameters, then the input images were
classified as the food or non-food images. It obtained an accuracy of 94.86% on the
RagusaDS and 99.01% on the FCD datasets.
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The idea of extracting the deep features from various convolution
layers was proposed by Farooq and Sazonov (2017). In their method, the deep high-
level features were extracted from convolution layers 6, 7, and 8 of the AlexNet
architecture. It extracted 4,096, 4,096, and 1,000 features from the images,
respectively. Consequently, the SVM classifier trained deep features from layers 6, 7,
and 8 separately. As a result, the extracted deep feature from layer 6 achieved the
highest accuracy with 70.13% on the Pittsburgh fast-food image dataset. Furthermore,
McAllister et al. (2017) extracted the deep features using ResNet-152 and GooglLeNet
architectures from food image datasets. The deep features were then classified using
four classifiers consisting of SVM, random forest, neural network, and Naive Bayes.
The experimental results showed that it obtained a very high accuracy of 99.4% on
the Food-5k dataset. Subsequently, it obtained an accuracy above 90% on Food11 and
RawFooT-DB datasets. However, it achieved only 64.98% on the ETH Food-101

dataset.

4.2.3 Deep Feature Fusion Methods

The previous research mentioned above has shown that deep CNN
features achieve high performance in classifying food images. In this section, | will
discuss deep feature fusion for food image recognition. Pandey et al. (2017) presented
a fusion of three deep CNN features consisting of AlexNet, GoogLeNet, and ResNet
to classify benchmark food datasets. In the first layer, three fine-tuned CNNs were
used for feature extraction, and the output was concatenated before being passed to
ReLU activation followed by a fully connected layer and fed into the softmax
function for classification. The experimental result on the ETH Food-101 dataset
achieved 72.12% accuracy. Aguilar et al. (2017b) proposed the CNN fusion method
based on Inception Modules and Residual Networks. The first step involved
separately training two CNN models. Second, the best results in the validation dataset
were used in the fusion step using the decision template scheme. The method
achieved an accuracy of 86.71% with the ETH Food-101 dataset.

In addition to the featured fusion methods, adaptive feature fusion has
also been introduced for image classification. For example, Li et al. (2020) proposed

multi-exemplar images and adaptive fusion of features to enhance blind face
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restoration. Kumar, Namboodiri, and Jawahar (2020) used the adaptive feature
aggregation to recognize a person. The method was to combine the pooled features
from multiple locations of the shared feature maps with adaptive weights produced by
the attention module. Zhao et al. (2021) introduced a tracking algorithm with a multi-
level adaptive feature fusion method. From all the research mentioned above, it was
found that the adaptive feature fusion approach increases the efficiency of image
recognition. In our study, | used the deep feature technique to extract the feature of
the food image and fused the feature with the adaptive spatial-temporal feature fusion

method, descript as follows in section 4.3.

4.3  Adaptive Spatial-Temporal Feature Fusion Network (ASTFF-Net)

Overview of the network. The architecture of the adaptive spatial-temporal
feature fusion network, called ASTFF-Net, is shown in Figure 27. ASTFF-Net is
proposed to improve the robustness of the deep features extracted using the deep
learning methods. It is divided into three schemes; spatial feature extraction network,
temporal feature extraction network, and adaptive feature fusion network.

For the first scheme, the deep features are extracted using the deep
convolutional neural network (CNN) from food images, with ResNet50 architecture.
The reduction operation is then applied to minimize the size of the network
parameters. Further, | provide the data to fit the recurrent neural networks, such as
long short-term memory networks (LSTMs) and gated recurrent units (GRUS), by
applying the convolutional 1D block. | describe the details of the spatial feature
extraction network in Section 4.3.1.

For the second scheme, the spatial features from the previous scheme are
assigned to the LSTM network to extract the temporal features. The LSTM network
was proposed by combining feedback connections to learn many sequence tasks. The
details of the LSTM network are explained in Section 4.3.2.

In the last scheme, | concatenate the spatial and temporal features to obtain the
advantages from these features, called the adaptive feature fusion network. In
addition, the convolutional 1D (Conv1D) block is attached to the temporal and spatial
feature extraction networks and then combined using concatenate operation. The

explanation of the adaptive feature fusion network is shown in Section 4.3.3.
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Figure 27 Overall of our ASTFF-Net

4.3.1 Convolutional Operations
This section briefly describes the convolutional operations involved in
the experiments, including convolutional 1D, batch normalization, rectified linear
unit, dropout, and pooling layers, as follows.
4.3.1.1 Convolutional 1D
The convolutional layer is the principal layer of CNN
architecture (LeCun et al., 1998) proposed to extract the spatial feature from the 2D
image. The convolution operation was used to calculate between the input image and
the small square filter. The output of the operation is recognized as a feature map. The
convolutional operation is calculated as follows.

L_yn -1 -1 4 pl
Xj = Xj=1X; - Xwii + b (1)

where xj‘ is the jt*feature map in layer I, x/™* is the i**feature map in layer [ — 1,
w}j‘l is weights of the j¢" filter that can be updated while training the network, and b}

is the trainable bias parameter of the j*feature map in layer L.

Furthermore, the convolutional layer was applied to deal with
the 1D vector, called convolutional 1D (Conv1D). Therefore, ConvlD was applied to
the natural language processing (NLP) and forecasting tasks. In our experiments, the
filter size of 1x3 with a stride of 1 was applied to the Conv1D.

4.3.1.2 Batch Normalization
The batch normalization (BN) is proposed due to the

parameters of the previous CNN layers changing during the training process of the
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CNN model (loffe and Szegedy, 2015). It provides a uniform distribution before
sending the weighted parameter to the further CNN layer. The BN benefits by being
to defeat the vanishing gradient problem, because the slight variations in parameters
from the current layer to the following layers do not get propagated. Consequently, it
is possible to use higher learning rates to optimize the model and result in faster
training.

The BN operation is computed as follows: 1) Calculate mean
(ug) and variance (o2) of mini-batch (B) (see Equations 2 and 3), 2) Normalize input

(x) by subtracting x with pg and dividing mini-batch standard deviation (see

Equation 4), and 3) Scale and position the dataset by applying norm(x,) to calculate
with scaling parameter (y) and shifting parameter () (see Equation 5), which will be
added to backward propagation to allow the algorithm to adjust both values during
training the model.

1
Hp < ;Z?& & )
2 1 $m 2
og < E2i=1(xi - #ﬂ) 3
% e (4)
ok+e
yi < vX, + B = BN, z(x;) (%)

where S is values of x over a mini-batch, eis the smoothing term that guarantees
stability numeric within the operation by stopping a division by a zero value, and m is
the input numbers in the mini-batch.
4.3.1.3 Rectified Linear Unit

Rectified Linear Unit (ReLU) is an activation function often
applied in neural networks (Nair and Hinton, 2010) which has simple and not heavy
computation. Hence, the CNN model could require less training time. The ReLU
function is designed as a linear function that returns zero if it gets any negative input.
Otherwise, the function returns the same value for any positive input value. The

ReLU function is computed by f(x) = max(0, x), where x is the input value.
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4.3.1.4 Dropout
The robust network has many weighted layers. It usually

contains a large number of parameters that have to be adjusted. The overfitting
problem may occur while training the network. To address the overfitting problem, in
this study, | proposed to apply the dropout layer (Srivastava et al., 2014) in our
proposed network. With the dropout layer, the neural nodes and their connections
were randomly dropped during training the model.

4.3.1.5 Pooling Layers

1. Average pooling layer

The pooling layer was proposed by Boureau et al. (2010) to
create the feature maps in which the size of the feature maps was reduced after
applying the pooling operation. In this study, | applied the average pooling layer so
that a small translation of the input image does not affect the output values. The
pooling operation is regularly applied after a convolutional layer. In order to create
feature maps, it calculates the average value of pixels in each area of a feature map.
Further, I aim to decrease both the number of CNN parameters and the computational

time. The average pooling layer is calculated as follows.
1
Jave (x) = Ezlivzlxi (6)

where x is the vector containing the pixel values from the local pooling region, N is
the number of pixels. Typically, the size of the pooling operation is 2x2 or 3x3 blocks.

In our network, an average pooling layer of size 3x3 was applied.
2. Global average pooling layer

Global average pooling (GAP) (Lin et al., 2014) was introduced to replace the
traditional fully connected layers in the CNN architecture. Hence, the output of the
GAP layer is given directly to the softmax layer. The purpose of the GAP layer is to
calculate each corresponding feature map by averaging the values of the
corresponding feature map and transforming it into only one feature. For example, the
feature map size of 3x3x2048 would be output as 1x1x2048. In the GAP layer, it does
not have a parameter to optimize. The spatial information of feature maps is averaged,
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more robust to spatial translations from the input feature maps. Consequently, the

overfitting problem is avoided at this layer.

4.3.2 Spatial Feature Extraction Network

In this section, | propose a spatial feature extraction network, as shown
in Figure 28, to extract the spatial features from the food images. According to
experimental results given in Phiphiphatphaisit and Surinta (2020), | chose the
ResNet50 architecture that reached the best performance on the benchmark ETH
Food-101 dataset. First, the input images were resized to the fixed size of 224x224
pixels with three channels that fit the input layer of the ResNet50. Second, the last
pooling layer of ResNet50 was decreased by applying the reduction operation.
Finally, the convolutional 1D (ConvlD) block was attached to the reduction

operation. The output of the Conv1D block was the robust spatial features.

Input Spatial Feature Extraction Network Output
ResNet50
Conv Comy Comv
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Figure 28 Illustrated Spatial Feature Extraction Network

4.3.2.1 ResNet
Residual Network (ResNet) (He et al., 2016) is the deep
convolutional network using shortcut connection, namely residual block, that allows

each layer to skip over one or more layers. Residual block typically contains a batch
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normalization layer (BN) and ReLU activation function. Further, BN is attached after
each convolutional layer and followed by the ReLU function. The residual block
follows two simple rules: 1) when the input from the previous residual block and
output of the current residual block is presented as the same dimension, called identity
mapping, it takes outputs from the previous block and adds with the output from the
skipped layers, as shown in Figure 29a. 2) When the input of the previous residual
block and output of the current residual block are not the same size, the projection
shortcut is implemented to ensure that the output of the residual block is the same size

after applying the addition operation, as shown in Figure 29b.

Input Input
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1x1 conv, 4f 1x 1 conv, 4f
BN BN
e + 4+ I T P E—
RELUL ReLUl
(a) (b)

Figure 29 Bottleneck block for ResNet50: (a) identity shortcut, (b) projection
shortcut. (f denotes the number of filters)

In this experiment, | trained the model using a pre-trained
model of ResNet50 to speed up the training process. However, | removed the fully
connected and extracted the spatial from the last layers of the ResNet50.

4.3.2.2 Reduction Operation

I implemented the reduction operation that aimed to adjust the

size of the feature maps. The size of the feature maps that were extracted using the

ResNet50 was defined by the three dimensions (width x height x number of feature



59

maps). Hence, the input layer of the convolutional 1D block should be in the form of
two dimensions. In our study, the reduction operation was installed between the
ResNet50 and ConvlD block. The reduction operation is calculated as follows
Equation.

Fv; = cat (max(xj)),je{l,z, o k3 4)

where Fv s the feature vector when Fv;e{Fv,, Fv,,...,Fv;}, i is the number of
feature maps, x; is the vector of a region with the size of 1 x H when H denotes the

height of the feature vector in each feature map, cat is concatenate the maximum
value of x;, when j € {1,2, ..., k} and k denotes the width of the feature vector in each
feature map.
4.3.2.3 Convolutional 1D Block

In our proposed ConvlD, the spatial features extracted using
the ResNet50 architecture were first given to the reduction operation to transform the
feature maps into one dimension. Second, | computed the zero-padding operation to
the spatial features, followed by the BN operation. Then, the 1D convolution
operation with a filter size of 1x3 and a stride of 1 was calculated through the spatial
features after applying zero padding. Third, three operations; BN, dropout, and
average pooling, were attached to the network. Finally, the robust spatial features

were obtained from the spatial feature extraction network, as shown in Figure 28.

4.3.3 Temporal Feature Extraction Network

This section investigated the long short-term memory (LSTM) network
(Hochreiter and Schmidhuber, 1997) to extract the robust temporal features. The
LSTM network was proposed to learn patterns in long sequence data by combining
cell state and three gates; input, output, and forget. In the LSTM network, the cell
state function is to provide relevant sequence information into gates. The gates in the
LSTM network are chosen which information is allowed and which information is
related to keep or forget while training.

This study applied the LSTM network to learn the sequence data
extracted using the spatial feature extraction network described in Section 4.3.2. The

temporal feature is the output of the LSTM network, as shown in Figure 30.
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Figure 30 Illustration of the LSTM network proposed to extract the temporal
features.

4.3.3 Adaptive Feature Fusion Network
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| proposed an adaptive feature fusion network that combines robust

spatial-temporal feature networks extracted from the spatial feature extraction

network (see Section 4.3.2) and the temporal feature extraction network (see Section

4.3.3), as shown in Figure 31. Furthermore, after concatenating two robust features,

the robust features were given to the GAP layer, followed by the BN layer. The ReLU

activation function was calculated while training. Finally, the robust feature vector

was classified using the softmax function. The details of the adaptive feature fusion

network are shown as follows.
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Figure 31 Illustrated Adaptive Feature Fusion Network

4.3.3.1 Convolutional 1D Block
In this section, the ConvlD block was different from the
ConvlD in Section 4.3.2.3. First, the input of the ConvlD block was the temporal
feature extracted using the LSTM network. Second, the 1D convolution operation
with a filter size of 1x3 and a stride of 1 was computed. Finally, the ReLU activation
function and Dropout layer were combined to the last layer of the Conv1D block.
4.3.3.2 Concatenate between Conv1D Block and Spatial Features
The last step of the adaptive feature fusion network was that the
output of the ConvlD block and spatial features from the spatial feature extraction
network (Section 4.3.2) were concatenated. In addition, the GAP and the BN layers
were invented to decrease the network parameters and standardize the feature vector

before assigning the features to classify with the softmax function.

4.4 Real-World Food Image Datasets

| evaluated our proposed adaptive feature fusion network (ASTFF-Net) on
four benchmark food image datasets, including Food1l, UEC Food-100, UEC Food-
256, and ETH Food-100. The details of each food image dataset were as follows:
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4.4.1 Foodll Dataset
Singla et al. (2016) proposed the Foodll dataset that consisted of
16,643 food images of 11 categories that were bread, dairy products, egg, dessert,
meat, fried food, pasta, seafood, rice, vegetables/fruit, and soup, as shown in Figure
32.

- W el ! @ - >
Fried food Pasta

=%
“.x » ?
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o 5

Dairy products

Vegetables/frmt Soup

Figure 32 Sample images of the Food11 datasets

4.4.2 UEC Food-100 Dataset
Matsuda et al. (2012) collected the UEC Food-100 dataset. It contains
14,361 images from 100 categories of famous Japanese foods, such as sushi, eels on
rice, pilaf, beef curry, fried noodle, and tempura. The UEC Food-100 dataset consists
of multiple food items in one image (see Figure 33a) and a single food item in one

image (see Figure 33Db).

Figure 33 Examples of the UEC Food-100 dataset, (a) Multiple food items and
(b)single food items.
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4.4.3 UEC Food-256 Dataset

Kawano & Yanai (2014) proposed the UEC Food-256 image dataset,
which is the extended version of the UEC Food-101 dataset. First, all the images were
collected from Flickr, Bing, and Twitter, using a specific query. Second, the
downloaded images were classified using the Foodness method and categorized as
food or non-food images. Finally, the UEC Food-256 dataset contained approximately
32,000 food images and comprised 256 categories with more than 600 food images in
each category after removing noise images. Examples of the UEC Food-256 dataset
are shown in Figure 34b.

Apple pie Beef tartare Beet salad sushi udon noodle

chicken rice

Cheesecake fried noodle Japanes

Foie gras

v

(@) (b)

Figure 34 Illustration of (a) the ETH Food-101 dataset (b) the UED-Food256
dataset.

4.4.4 ETH Food-101 Dataset
The ETH Food-101 dataset was proposed by Bossard & Gool (2014),
which is the real-world food images downloaded from the website foodspotting.com.
It contains 101,000 food images and has 101 food image categories. The examples of
the ETH Food-101 dataset are shown in Figure 34a.

The summary details of four benchmark food image datasets are shown in
Table 12.



Table 12 Illustrated the details of the benchmark food image datasets.
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Datasets Categories No. of No. of No. of Image per

Images Training Testing Category

Food1l 11 16,643 12,483 4,160 Unbalanced

UEC Food-100 100 14,361 10,771 3,590 Unbalanced

UEC Food-256 256 31,395 23,547 7,848 Unbalanced
ETH Food-101 101 101,000 75,750 25,250 1,000

45  Experimental Results and Discussion

In this section, | implemented the adaptive feature fusion network with the
TensorFlow platform running on Google Colab with GPU support for all the
experiments. The proposed adaptive spatial-temporal feature fusion network (ASTFF-
Net) was evaluated on various benchmark food image datasets, including Food11,
UEC Food-100, UEC Food-256, and ETH Food-101. I divided the food image
datasets into training and test sets. The accuracy of the ASTFF-Net was evaluated on
the test set. Moreover, | employed 5-fold cross-validation (cv) over the training set to
find the significance of the proposed network and prevent overfitting problems. The
average accuracy, standard deviation, recall, and F1-score were reported.

In the ASTFF-Net, | used only the pre-trained model of the ResNet50
architecture with pre-trained weights from the ImageNet dataset. However, other parts
of the framework do not transfer from the pre-trained model. | trained the ASTFF-Net
with the SGD optimizer to optimize the loss function. The adaptive learning rate was
proposed with the initial value of 0.01 and then reduced to 0.0001 when the loss value
did not decrease after five epochs. The momentum value was set to 0.9 and the weight
decay was updated based on the learning rate value and the number of epochs. The
ASTFF-Net was trained for only 50 epochs.

To study the efficiency of the ASTFF-Net, | invented four different
experiments. First, | combined spatial and temporal features, called the ASTFF-NetB1
model, as shown in Figure 35a. Second, the spatial features were sent to the Convld
block before combining with the temporal features, called the ASTFF-NetB2, as
shown in Figure 35b. Third, the temporal features were sent to the Conv1D block
before combining with the spatial features, called the ASTFF-NetB3, as shown in
Figure 35b. Finally, both spatial and temporal features were given to the ConvlD
block before combining, called the ASTFF-NetB4, as shown in Figure 35d.
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Figure 35 Illustration of ASTFF-Nets used in the experiments. (a) the ASTFF-Net
baseline network, called ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-

NetB3, and (d) ASTFF-NetB4.
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4.5.2.1 Experiments on the Food11 Dataset

| trained four ASTFF-Nets on the Foodll dataset on the
training data based on five-fold cross-validation (5-cv) and evaluated ASTFF-Net
models on a separate test set. The results obtained are presented in Table 13.
Table 13 Evaluation performances (average accuracy, + standard deviation, test

accuracy, recall, and F1-score) of the ASTFF-Nets on the Food11 dataset.
The bold numbers represent the best ASTFF-Net model.

Model 5-CV Accuracy (%) Recall F1-Score | Testing Time
ASTFF-NetB1 94.26 +0.177 93.47 0.935 0.935 5m:22s
ASTFF-NetB2 94.17 +0.291 93.16 0.932 0.932 5m:24s
ASTFF-NetB3 96.08 + 0.330 95.04 0.950 0.950 5m:24s
ASTFF-NetB4 95.54 + 0.369 94.63 0.946 0.946 5m:25s

From Table 13, | observed that ASTFF-NetB3, in which the
temporal features were sent to the Conv1D block before combining with the spatial
features, outperformed other ASTFF-Nets on the Food-11 image dataset. The ASTFF-
NetB3 achieved 96.08% accuracy on the training set using 5-cv and 95.04% accuracy
on the test set, which was the best network. On the other hand, ASTFF-NetB2 had the
worst performance on both training and test sets. However, it was only approximately
1.8% below that of ASTFF-NetB3. Further, as for the testing time, all ASTFF-Nets
performed almost a similar computation. It spent approximately 5 minutes on the
whole test set (approximately 75.28 milliseconds per image).

Figure 36 illustrates the confusion matrix of four ASTFF-Nets.
It was found that the ASTFF-NetB3 (see Figure 36¢) reduced the misclassified
number of images from category egg to bread. It reduced the misclassified images
from 17 images to only two images. Also, the rice category that was misclassified to
the fruit/veg category was reduced from 4 images to zero.

Figure 37 shows the probability of the egg (see Figure 37a) and
rice (see Figure 37b) categories that were classified using ASTFF-NetB3, but other
ASTFF-Nets misclassified it.
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Figure 36 Illustration of confusion matrix of ASTFF-Net on Food11 datasets, (a)
ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-NetB3, (d) ASTFF-NetB4.
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Figure 37 Example of Food11 classes which are misclassified based on confusion
matrix generated from ASTFF-NetB3.



68

Table 14 Recognition performance of the Food11 dataset when compared with
different deep learning techniques.

References Methods Test Accuracy (%)

McAllister et al. (2018) ResNet152+ANN 91.34

Akbulut, & Budak (2019) AlexNet+VGGI6+SVM 88.08

Our Proposed ASTFF-NetB1 93.47
ASTFF-NetB2 93.16
ASTFF-NetB3 95.04
ASTFF-NetB4 94.63

| present extensive comparisons of our ASTFF-Nets on the
Foodl1l dataset with existing state-of-the-art methods, as shown in Table 10. The
experimental results confirm that our ASTFF-Nets increase the accuracy performance.
Additionally, our ASTFF-Nets show much better results than extracting the deep
features using CNN architectures and combining them with machine learning
techniques, such as artificial neural networks and support vector machines
(McAllister et al., 2018 Akbulut & Budak, 2019). In conclusion, the ASTFF-NetB3
results in the highest accuracy performance of 95.04%.

4.5.2.2 Experiments on the UEC Food-100 Dataset

This section showed that our ASTFF-Nets also present the best
accuracy performance on the UEC Food-100 dataset, which has 100 food categories.
The results achieved throughout the testing process are shown in Table 15.

Table 15 Evaluation of the classification results for the UEC Food-100 dataset using
different ASTFF-Net method.

Model 5-CV Accuracy (%) Recall F1-Score | Testing Time
ASTFF-NetB1 | 86.77 + 0.231 85.70 0.857 0.857 4m:38s
ASTFF-NetB2 | 86.99 + 0.267 86.05 0.861 0.861 4m:39s
ASTFF-NetB3 | 92554 0.168 91.35 0.914 0.914 4m:39s
ASTFF-NetB4 | 89.85 4 0.344 88.85 0.889 0.889 4m:41s

From Table 15, the results showed that ASTFF-NetB3
significantly outperforms other ASTFF-Nets on the UEC Food-100 dataset (t-test, p <
0.05). I observed that the ASTFF-NetB3 performed with higher than 4% accuracy on
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the 5-cv and higher than 5% accuracy on the test set when compared with other
ASTFF-Nets. Another observation is that the ASTFF-NetB3 achieved an F1-score of
more than 0.90, which means that the ASTFF-NetB3 successfully classified food
images over a specific strength with a low false-positive rate. Moreover, all the
ASTFF-Net architectures still spent fast on the test set with approximately 73.20

milliseconds per food image.
Sauteed vegetable
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Ganmodoki
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Figure 38 Some examples of sauteed vegetables, rice, and ganmodoki images of the
UEC Food-100 dataset were classified using the ASTFF-NetB3 model. The
food images were (a) correctly classified and (b) misclassified.

| illustrated the food images that were correctly classified when
using the ASTFF-NetB3 model, as shown in Figure 38a. All the food images
contained only one dish, which means only one food category appeared in the image.
On the other hand, the mostly misclassified food images, as shown in Figure 38b,
always included many objects in one image. For example, the rice dish appears in

sauteed vegetables and ganmodoki categories.
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Table 16 Recognition performance of the UEC Food-100 dataset when compared
with different deep learning techniques.

References Methods Test Accuracy (%)

Liu et al. (2016) DeepFood 76.30

Hassannejad et al. (2016) InceptionV3 81.45

Martinel et al. (2018) WISeR 89.58

Tasci (2020) Ensemble CNNs 84.52

Our Proposed ASTFF-NetB1 85.70
ASTFF-NetB2 86.05
ASTFF-NetB3 91.35
ASTFF-NetB4 88.85

Table 16 compares the performance of our approach
architectures on the UEC Food-100 dataset with existing deep learning techniques.
The accuracy performance of the previous deep learning techniques did not achieve
very high scores, even using the ensemble CNNs method (Tasci, 2020). The highest
accuracy was not above 90% with the WISeR method (Martinel et al., 2018).
However, the ASTFF-NetB1, B2, and B4 did not achieve higher performance than the
WISeR method. Consequently, the proposed ASTFF-NetB3 network, that directly
gives the temporal feature to the Conv1D block and then combines it with the spatial
features, demonstrated the highest performance with 91.35% accuracy.

4.5.2.3 Experiments on the UEC Food-256 Dataset
In this section, | evaluated the proposed adaptive network on
the UEC Food-256 dataset in terms of 5-cv, test accuracy, recall, and F1-score. It has
a huge category with 256 menus from Japan and other countries. The proposed
ASTFF-Nets were evaluated on 23,547 training images and 7,848 test images.

Table 17 Evaluation of the classification results for the UEC Food-256 dataset using
different ASTFF-Net method.

Model 5-CV Accuracy (%) Recall F1-Score | Testing Time
ASTFF-NetB1 | 92.16 + 0.192 91.07 0.911 0.911 10m:08s
ASTFF-NetB2 | 92.05 4+ 0.155 90.90 0.909 0.909 10m:11s
ASTFF-NetB3 | 93.21 4+ 0.324 92.15 0.921 0.921 10m:11s
ASTFF-NetB4 | 92.40 4+ 0.301 91.37 0.914 0.914 10m:14s
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Table 17 shows the evaluation performance of the ASTFF-
Nets. | observed that the ASTFF-NetB3 consistently achieved the highest accuracy
and significantly outperformed other ASTFF-Nets (t-test, p < 0.05) on both 5-cv and
test sets. The ASTFF-NetB2 slightly decreased the performance on the UEC Food-
256 dataset. Consequently, our proposed ASTFF-Nets achieved above 90% accuracy.
It spent approximately 10 minutes on the whole test set (approximately 77.29

milliseconds per image).

As illustrated in Figure 39, | discovered that some food images
have similar texture, color, and pattern characteristics that could harm the proposed
ASTFF-Nets to misclassification.

S s
ramen noodle tensin noodle raisin bread cream puff egg sunny side up green curry

sl

(@) (b) (©)

Figure 39 Illustration of the similar food images between (a) ramen noodle and
tensin noodle, (b) raisin bread and cream puff, and (c) egg sunny side
up and green curry.

Table 18 Recognition performance of the UEC Food-256 dataset when compared
with different deep learning techniques.

References Methods Test Accuracy (%)

Liu et al. (2016) DeepFood 54.70

Hassannejad et al. (2016) InceptionV3 76.17

Martinel et al. (2018) WISeR 83.15

Tasci (2020) Ensemble CNNs 77.20

Our proposed ASTFF-NetB1 91.07
ASTFF-NetB2 90.90
ASTFF-NetB3 92.15
ASTFF-NetB4 91.37

Table 18, | observed that the existing deep learning methods
did not show high accuracy. The WISeR method (Martinel et al., 2018) achieved the
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best performance with an accuracy of only 83.15%. The proposed ASTFF-Nets
performed much better than the previous methods and achieved above 90% accuracy.
Consequently, the ASTFF-NetB3 always achieved the best performance with an
accuracy of 92.15%, which is approximately 9% over the WISeR method.
4.5.2.4 Experiments on the ETH Food-101 Dataset

In this experiment, | tested the proposed adaptive network on
the ETH-Food101 dataset, which has 75,750 training images and 25,250 test images.
It is the largest food image dataset that | evaluated in our experiments. The results of
the proposed ASTFF-Nets are shown in Table 19.

Table 19 Evaluation of the classification results for the ETH-Food101 dataset using
different AFF-Net method.

Model 5-CV Accuracy (%) Recall F1-Score | Testing Time
ASTFF-NetB1 | 91.88 4+ 0.229 91.13 0.911 0.911 32m:35s
ASTFF-NetB2 | 90.16 + 0.276 89.05 0.890 0.890 32m:45s
ASTFF-NetB3 | 93.98 4+ 0.247 93.06 0.931 0.931 32m:45s
ASTFF-NetB4 | 93,56 4+ 0.224 92.81 0.928 0.928 32m:55s

Table 19 reports that the ASTFF-NetB3 still achieved the best
performance when compared with other ASTFF-Nets (t-test, p < 0.05, significant). It
achieved a performance of 93.98% accuracy on 5-cv and 93.06% accuracy on the test
set. Furthermore, | found that the ASTFF-NetB3 achieved the highest accuracy on
four food image datasets; ETH Food-101, Food1l, UEC Food-100, and UEC Food-
256. Considering the computational time, all the ASTFF-Net architectures spent

approximately 77.11 milliseconds per food image on the test set.

| also observed that ASTFF-NetB3 achieved an F1-score of
0.931 with a high true-positive rate. The illustration of the F1-Score, when classified
using the ASTFF-Nets, is shown in Figure 40. Moreover, for further investigation, I
found noise and non-food objects in some food categories, such as apple pie and

Peking duck. The example of the noise and non-food objects is shown in Figure 41.
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Figure 40 Illustration of F1-Score using the ASTFF-Net models to classify ETH

Food-256 dataset. (a) ASTFF-NetB1, (b) ASTFF-NetB2, (c) ASTFF-

NetB3, (d) ASTFF-NetB4.
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Figure 41 example of the noise and non-food objects. (a) noise in food image, (b)
non-food objects.

Table 20 Recognition performance of the ETH-Food101 dataset when compared with
different deep learning techniques.

References Methods Test Accuracy (%)
Liu et al. (2016) DeepFood 77.40
Hassannejad et al. (2016) InceptionV3 88.25
Bolanos and Radev (2016) GoogLeNet 79.20
Pandey et al. (2017) EnsembleNet 72.12
Aguilar et al. (2017) CNNs Fusion 86.71
Martinel et al. (2018) WISeR 90.27
McAllister et al. (2018) ResNet152 64.98
Akbulut, & Budak (2019) AlexNet+VGGI6+SVM 79.86
Tasci (2020) Ensemble CNNs 84.28
Phiphiphatphaisit & Surinta (2020) Modified MobileNetV1 72.59
Phiphiphatphaisit & Surinta (2021) ResNet50+Conv1D- 90.87
LSTM
Our proposed ASTFF-NetB1 91.13
ASTFF-NetB2 89.05
ASTFF-NetB3 93.06
ASTFF-NetB4 92.81
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In table 20, I compared the proposed ASTFF-Nets with other
methods. | observed that extraction the deep features using CNN, ConvlD, and
LSTM (Phiphiphatphaisit & Surinta, 2021) performed better than training with only
CNN architectures and even better than extracting the deep features and combined
with machine learning techniques. The results in Table 20 show that our ASTFF-
NetBl, B3, and B4 were given an accuracy above 90%. These networks also
outperformed various existing methods. Consequently, the ASTFF-NetB3 achieved an
accuracy of 93.06%, which is the highest performance on the ETH Food-101 dataset.

4.5.3 Discussion
In this research, | discussed four important issues that affect the

performance of the CNN models.

Overfitting with Robust Network: Naturally, overfitting problems
occur when very deep CNN layers are proposed to create the robust CNN model and
also trained with too many example images. With very deep CNN architectures, the
CNN model actually needs to optimize many hyperparameters. To face this problem, |
proposed the adaptive spatial-temporal feature fusion network, called ASTFF-Net,
which was invented to combine both spatial and temporal feature extraction networks.
The adaptive architectures were designed to extract information on the spatial domain
and ignore some insignificant information using the temporal network. | evaluated the
proposed method using a five-fold cross-validation method (5-cv), as shown in Table
15, and | found that the ASTFF-Nets could learn well with many training examples
and generalize well with the test set. The 5-cv and the test set results were not given

an enormous difference.

Similarity patterns between two categories: The real-world food
images from the benchmark datasets were downloaded from the internet Some of the
images contain many noise objects (see Figure 4l1a), some images have similar
patterns (see Figure 39b) and some images contain similar food objects (see Figure
39c) that appear in many food categories. For example, the category of the bread dish
was classified as the egg category because the bread is actually served with egg. | then

presented the F1-Score to measure the precision of the ASTFF-Net architecture.
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Furthermore, the confusion matrix, as shown in Figure 36c, confirmed that the

ASTFF-NetB3 can address the similarity pattern between two classes; egg and bread.

Multi-object Problem: The UEC Food-100 dataset usually contains
the multi-object appearing in one image, as shown in Figure 33a. It is not easy to
recognize as the correct category because many dishes are included in the image. As a
result, it is misclassified. With the multi-object problem, I carefully checked the
recognition results of the proposed ASTFF-Nets and found that the proposed network
recognized one correct dish from many dishes that appear in one image. For example,
the image contains fish, soup, rice, and sauteed vegetables in the sauteed vegetable
category. So, the ASTFF-NetB3 was classified as rice, which was one category from
many categories from the image. To address the multi-object problem, thus, |

recommend applying object detection and classifying each object.

Computational cost and Model size: | designed the ASTFF-Nets
according to the advantage of extracting the spatial and temporal deep features.
Further, three networks were included in the ASTFF-Nets; spatial feature extraction,
temporal feature extraction, and adaptive feature fusion. Indeed, the ASTFF-Nets had
a larger model size than the CNN and CNN-LSTM networks, as shown in Table 21.
However, when | evaluated the proposed ASTFF-Nets on the test set, the computation
cost of the ASTFF-Nets did not significantly increase. It increased only around four
milliseconds and only 0.6 milliseconds compared with the ResNet50 and CNN-LSTM

respectively. The comparison of the model size and testing time is shown in Table 21.

Table 21 The comparison of the computational cost and model size between the
proposed ASTFF-Nets and other architectures.

Methods Testing Time (~ms/im.) Size (M)
ResNet50 73.2 24.6
ResNet50+Conv1D-LSTM 77.2 38.3
(Phiphiphatphaisit & Surinta, 2021)

ASTFF-NetB1 77.4 38.4
ASTFF-NetB2 77.8 415
ASTFF-NetB3 77.8 415

ASTFF-NetB4 78.2 44.7
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4.6 Conclusions

In this research, the adaptive spatial-temporal feature fusion network, namely
ASTFF-Net, was invented to improve the food image recognition performance. In
other food recognition systems, a convolutional neural network (CNN) is usually
proposed to extract the spatial features from the food images. However, real-world
food images sometimes contain many noise and non-food objects, resulting in the
CNN extracting deep features containing information of the object mentioned.
Consequently, | proposed to use ResNet50 to extract the spatial features and directly
send them to the convolutional 1D (ConvlD) block, followed by a long short-term
memory (LSTM) network. The LSTM network has gate operations designed to learn
sequence patterns from spatial information and allow which information to keep or
forget during the training scheme. The ASTFF-Net architecture is divided into three
parts as follows. First, the spatial feature extraction network, | proposed to use the
state-of-the-art CNN model, namely ResNet50, to extract temporal features. Then, the
reduction operation was attached to the ResNet50 to minimize the size of the feature
maps before sending them to the ConvlD block. Second, the temporal feature
extraction network, the sequence output of the ConvlD block was assigned to the
LSTM network to create temporal features. Third, the spatial and temporal features
from the first and second parts were combined using concatenation operation, then
assigned to the Conv1D, called adaptive feature fusion network. As with the ASTFF-
Net, the softmax function was connected to the ASTFF-Net as the recognition layer
proposed to recognize real-world food images. The ASTFF-Net architecture was
proposed to address the overfitting problems because I combined the global average
pooling (GAP) and dropout layers to the architecture. The most benefit of the GAP
layer is that the parameter of the ASTFF-Net was reduced. Additionally, the
unnecessary connections between layers were dropped using the dropout layer.

In the experiments, | evaluated four ASTFF-Nets on four different real-word
food image datasets: Food1l, UEC Food-100, UEC Food-256, and ETH Food-101.
The results show that the ASTFF-Nets achieved the highest accuracy on 5-cv and the
test set. Furthermore, | found that the proposed ASTFF-NetB3 outperformed the

existing methods on four food image datasets.
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In future research, I will apply the ASTFF-Nets to address the challenge of the
unbalanced datasets (Aggarwal, Popescu, & Hudelot, 2020). Another direction will be
applying the instance selection methods (Branikas, Papastergiou, Zacharaki, &
Megalooikonomou, 2019) to reduce the training set. It may reduce the training set by
more than 50%. Then, the computational time will decrease while training the
ASTFF-Nets. Finally, 1 will consider the segmentation techniques (Hafiz & Bhat,

2020) that can select the most relevant food region from the real-world food images.



Chapter 5

Discussion

The objective of this thesis is to propose novel deep learning approaches to
address the problems of food image recognition. Firstly, |1 proposed a new
convolutional neural network (CNN) based on MobileNet architecture that decreased
the parameters of the CNN model. | also concentrated on reducing the training data
size and proposed using data augmentation techniques to increase the variance of
training data and prevent overfitting on the test set. Secondly, the robust deep feature
extraction method based on convolutional 1D (Conv1D) and long short-term memory
(LSTM) was evaluated on a food image dataset with 101 food categories. Thirdly, to
overcome the advantage of the ConvlD-LSTM network, an adaptive feature fusion
network, called ASTFF-Net, was proposed. This network was designed to extract the
robust deep features that were extracted using ConvlD and LSTM networks.
Consequently, 1 have performed the proposed ASTFF-Net on four real-word food
image datasets; Food-11, UEC Food-100, UEC Food-256, and ETH Food-101.

I will now briefly describe and discuss the challenges of the food image

recognition systems using a deep learning approach.

Chapter 2 showed that, due to the difficulties of real-world food images, food
images can be taken from different perspectives and many objects can also appear in
the food image. To solve this challenge, | proposed a new CNN model that was
modified from the state-of-the-art MobileNet architecture. Our modified MobileNet
network decreased the parameters of the CNN model, but still achieved high
accuracy. In the modified MobileNet, | ignored the average pooling layer and the
fully connected layer (FC), and replaced them with the global average pooling layer
(GAP) followed by the batch normalization layer (BN) and rectified linear unit
(ReLU) activation function. | also considered avoiding overfitting by combining the
dropout layer after the ReLU function. | also performed the data augmentation
techniques to avoid overfitting, including rescaling, rotation, width shift, height shift,

horizontal flip, shear, zoom, and random cropping. | performed experiments on a
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publicly available dataset, called the ETH food-101 dataset. The experimental results
showed that the modified MobileNet architecture improved accuracy by

approximately 5% when training with the data augmentation.

In Chapter 3, | mainly concentrated on extracting the robust feature using the
deep feature extraction technique. Firstly, | proposed to use CNN architectures to
extract the deep features from the food images, called the spatial features. Secondly, |
then transferred the spatial features into the LSTM network to extract the temporal
feature. Thirdly, the deep features were extracted using a 1D convolutional and LSTM
network called ConvlD-LSTM. Finally, the deep features were classified using the
softmax function. To extract the robust spatial features, | proposed six state-of-the-art
CNN architectures, consisting of VGG16, VGG19, ResNet50, DenseNet201,
MobileNetV1, and MobileNetVV2.The transfer learning method was proposed due to a
decrease in the training time. | trained the CNN models with only 100 iterations.
Furthermore, the loss value of the training decreased quite rapidly becoming very
close to zero at just iteration 40 to iteration 50. In the experiment, | found that the best
and robust spatial features were extracted using ResNet50 architecture. | then
combined the ResNet50 with the ConvlD-LSTM, called ResNet50+Conv1D-LSTM.
The experimental result showed that the ResNet50+ConvlD-LSTM network
significantly outperformed other CNNs on the ETH food-101 dataset.

Moreover, | also experimented with data augmentation techniques, including
rotation, width shift, height shift, horizontal flip, shear, and zoom. The data

augmentation techniques consistently achieved better performance.

In Chapter 4, | improved the efficiency performance for food image
recognition by investigating an adaptive feature fusion network (ASTFF-Net). With
the ASTFF-Net, | obtained robust features generated from CNN models at different
layers. Here, | proposed several ASTFF-Net models that were a combination between
state-of-the-art CNN models and the LSTM network with improved the performance
of the food image recognition system. Motivated by the ConvlD-LSTM network
described in Chapter 3, our ASTFF-Net was invented to capture the robust deep

features on both spatial and temporal features from the variation of the real-world



81

food images. | first extracted the spatial features using state-of-the-art ResNet50
architecture. Second, the temporal features were extracted using the LSTM network.
Third, the deep features extracted from CNN and LSTM networks were mapped to a
similar resolution before concatenating. Finally, | attached extra layers to prevent
overfitting before sending the deep adaptive features to the softmax function. The
proposed ASTFF-Net achieved the best performances and outperformed other
methods on Food11, UEC Food-100, UEC Food-256, and ETH Food-101.

In this dissertation, three robust approaches to improve the accuracy of food
image recognition are proposed, including the modified MobileNet architecture, the
Conv1D-LSTM network, and the ASTFF-Net.

5.1  Answers to The Research Questions

According to the research questions (RQ) in Chapter 1, | explain the
improvement of the food image recognition systems based on real-world food images

with three solutions. In this section, | briefly answer each research question.

RQ1: Training the model with deep learning methods such as convolutional neural
network (CNN) typically requires a large amount of training data to create an
effective model (Russakovsky et al., 2015). The benchmark food image datasets, such
as the ETH food-101, contain 101,000 real-world food images (Bossard & Gool,
2014). Indeed, the CNN architectures spent expensive training time to create the
effective CNN model. Is it possible to decrease the size of the training data although

still provide the same performance of the recognition?

To find out the answer to RQ1, I will focus on modifying a state-of-the-art
lightweight CNN model. The hyperparameters and computational layers of the CNN
model are also considered. Moreover, | will consider the data augmentation
techniques that benefit learning to build an effective CNN model from distinctive
food images. Will these methods encourage improving the performance of food image

recognition systems?

To answer RQL1, | first focused on the publicly available dataset for food

image recognition, namely ETH food-101. It has 101,000 real-world food images of
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101 categories and contains 1,000 images in each category. Second, to reduce the
computation time, | then selected the state-of-the-art lightweight MobileNetV1
architecture. Further, | modified the MobileNetV1 by eliminated the average pooling
layer and the fully connected layer (FC). Hence, the global average pooling layer
(GAP), the batch normalization layer (BN), rectified linear unit (ReLU) activation
function, and dropout layers were attached instead. Third, | decided to use the data
augmentation techniques consisting of rescaling, rotation, width shift, height shift,
horizontal flip, shear, zoom, and random cropping. The accuracy of results increased
approximately 5% when training the modified MobileNet model with applied data
augmentation techniques. Both modified MobileNet and the data augmentation
techniques are proposed to prevent overfitting. Finally, | experimented with the size
of the training data. Consequently, I can reduce the training size from 80,800 images

to only 40,400 images but still obtain high performance compared to other research.

Our modified MobileNet architecture makes a model relatively small, requires
less computation time, and achieves high performance on the food image recognition

systems.

RQ2: In computer vision, hand-crafted feature techniques are presented to extract the
specific information existing in the image. Indeed, it mainly focuses on extracting
local features. The well-known hand-crafted feature techniques, include local binary
pattern (LBP) (Ojala et al., 1994), histogram of oriented gradient (HOG) (Dalal &
Triggs, 2005), scale-invariant feature transform (SIFT) (Lowe, 2004), and speeded up
robust features (SURF) (Bay et al., 2008). Nowadays, the CNN technique is a
competent procedure that includes feature extraction and recognition. For the feature
extraction, the CNN can extract robust special features, including low-level and high-
level features, called the deep feature extraction method (Y. Chen et al., 2016; Paul et
al., 2016). Is it a potential approach to manipulate real-world food images that also
contain many categories of object other than the food subject? If possible, I will then
be interested in using state-of-the-art CNN architecture to extract the deep features

and enhance the food image recognition system.
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RQ2 is mainly focused on deep feature extraction techniques instead of hand-
crafted feature extraction techniques. To answer this research question, | first
proposed extracting the spatial features from the well-known CNN, including
VGGNet, ResNet, DenseNet, and MobileNet. In the case of the food images, | found
that the ResNet architecture provided robust features. Second, to extract the spatial
features, | transferred them into the convolutional 1D (ConvlD) followed by long
short-term memory (LSTM) network. This method is called ConvlD-LSTM. Finally,
the temporal features that were extracted using the ConvlD-LSTM network were then
sent to the global average pooling layer (GAP) to minimize the size of the feature
before classifying using the softmax function. Furthermore, while training the model,
| added six data augmentation techniques; rotation, width shift, height shift, horizontal
flip, shear, and zoom. With the data augmentation techniques, the method still

provides higher performance. However, in our case, it gained up only 1%.

To confirm that our method performed well on the food image dataset, |
evaluated my proposed ConvlD-LSTM network on the ETH food-101 dataset and
compared the result with other research. | found that the ResNet50 architecture when
combined with the ConvlD-LSTM network, called ResNet50+Conv1D-LSTM,
outperformed all other methods on the ETH food-101 dataset.

| also experimented with a deep feature extraction technique base on ConvlD
and LSTM Network. The state-of-the-art ResNet architecture was invented to extract
the robust features from food images and was employed as the input data for the
Conv1D combined with a long short-term memory (LSTM) network. Then, the output
of the LSTM was assigned to the global average pooling layer before passing to the
softmax function to create a probability distribution. The experimental results showed
that using the CNN method to extract special features from food images and through
them to the long short-term memory (LSTM) algorithm to extracted temporal

features, increases the efficiency of food image recognition.

RQ3: The deep feature extraction method always provides robust features and

guarantees high accuracy performance on the real-world food image dataset
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(Phiphitphatphaisit & Surinta, 2021). Is there any approach will succeed using the

deep feature extraction method using ConvlD and LSTM networks?

To answer the last question in RQ3, | proposed an adaptive feature fusion
network (ASTFF-Net) to deal with the real-world food image datasets. In our
network, the ASTFF-Net combined three main networks; CNN, Conv1D, and LSTM.
First, the state-of-the-art CNN architecture was proposed to extract the spatial features
from the food images. Second, | assigned the spatial features to the LSTM network to
generate the temporal features. Third, | combined the deep features extracted from the
CNN and LSTM networks using the concatenate operation, called the adaptive feature
fusion method. | also created extra layers that were used to overcome overfitting.
Eventually, the proposed ASTFF-Net obtained the best accuracy on four food image
datasets; Food11, UEC Food-100, UEC Food-256, and ETH Food-101.

5.2 Future Work

In this dissertation, | presented novel deep feature extraction techniques to
improve the performance of food image recognition based on real-world food images.
However, there is still a need to create new deep feature extraction methods or for

optimizing the current methods.

In the case of several training data, more computation time is used to create
robust CNN models. | then focused on reducing the training data size by applying the
instance selection method (Branikas, Papastergiou, Zacharaki, & Megalooikonomou,
2019). This method could be selected the most relevant instance to represent as the

training data.

In real-world food image datasets, food image datasets contain food images
taken from various orientations. There are always other objects in the food images.
performance of the food image recognition system will be improved when | can
segment and learn only at the exact food location. In this case, if | visualize the class
activation mapping of CNN models, I can understand where the CNN models localize

relevant image regions. So, | can implement the technique to select only the particular
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food location. | plan to work on the instance segmentation technique (Hafiz & Bhat,
2020).
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