
 

 

 

 

  

The  Automated Plant Leaf Image Classification System using Deep Learning 
 

Thipwimon Chompookham 
 

A Thesis Submitted in Partial Fulfillment of Requirements for 

degree of Doctor of Philosophy in Information Technology 

October 2022 

Copyright of Mahasarakham University 
 

 

 



 

 

 

 

ระบบจ ำแนกรูปภำพใบพืชอตัโนมติัโดยใชก้ำรเรียนรู้เชิงลึก 
 

 วทิยำนิพนธ์   
ของ 

ทิพวมิล ชมภูค ำ  

เสนอต่อมหำวทิยำลยัมหำสำรคำม เพื่อเป็นส่วนหน่ึงของกำรศึกษำตำมหลกัสูตร 

ปริญญำปรัชญำดุษฎีบณัฑิต สำขำวชิำเทคโนโลยสีำรสนเทศ 
ตุลำคม 2565 

ลิขสิทธ์ิเป็นของมหำวทิยำลยัมหำสำรคำม  
 

 



 

 

 

 

The  Automated Plant Leaf Image Classification System using Deep Learning 
 

Thipwimon Chompookham 
 

A Thesis Submitted in Partial Fulfillment of Requirements 

for Doctor of Philosophy (Information Technology) 

October 2022 

Copyright of Mahasarakham University 
 

 

 



 

 

 

 

 
  

The examining committee has unanimously approved this Thesis, 

submitted by Mrs. Thipwimon Chompookham , as a partial fulfillment of the 

requirements for the Doctor of Philosophy Information Technology at Mahasarakham 

University 

  

Examining Committee 

  

   

(Prof. Rapeepan Pitakaso , Ph.D.) 
 

Chairman 

   

(Asst. Prof. Olarik Surinta , Ph.D.) 
 

Advisor 

   

(Asst. Prof. Rapeeporn Chamchong , 

Ph.D.) 
 

Committee 

   

(Asst. Prof. Chatklaw Jareanpon , 

Ph.D.) 
 

Committee 

   

(Asst. Prof. Phatthanaphong 

Chompoowises , Ph.D.) 
 

Committee 

  

Mahasarakham University has granted approval to accept this Thesis as a 

partial fulfillment of the requirements for the Doctor of Philosophy Information 

Technology 

  

  

(Asst. Prof. Sasitorn Kaewman , M.Sc.) 

Dean of  The Faculty of Informatics 
 

  

(Assoc. Prof. Krit Chaimoon , Ph.D.) 

Dean of Graduate School 
 

 

  



 

 

 

 D 

ABST RACT 

TITLE The  Automated Plant Leaf Image Classification System 

using Deep Learning 

AUTHOR Thipwimon Chompookham 

ADVISORS Assistant Professor Olarik Surinta , Ph.D. 

DEGREE Doctor of Philosophy MAJOR Information Technology 

UNIVERSITY Mahasarakham 

University 

YEAR 2022 

  

ABSTRACT 

  

Knowledge of botany is necessary in order to classify plants accurately. 

Sometimes, even experts can misclassify a plant. To reduce errors that are made by a 

human, in this thesis, we aimed to invent an automated plant leaf classification system 

that could classify plants from leaves using deep learning techniques. The proposed 

method could also classify diverse plants and identify plant diseases from leaves. In 

this thesis, we presented three approaches to addressing the challenges of plant leaf 

classification.  

In the first approach, we invented a method to classify various healthy plant 

leaf images taken in the laboratory, called the multiple-grid method. This method could 

extract robust features from the local area using different feature extraction methods: 

histogram of oriented gradients (HOG), local binary patterns (LBP), and color 

histogram. Hence, the principal component analysis (PCA) technique was proposed to 

reduce the size of the feature and finally fed to the machine learning techniques: support 

vector machine (SVM) and multi-layer perceptrons (MLP). The proposed method 

achieved high accuracy in plant leaf image recognition. 

In the second approach, the leaf images (healthy and diseased) taken in the 

natural environments were classified using the ensemble convolutional neural networks 

(CNNs) method. For the CNN models, we created various CNN models based on five 

architectures: MobileNetV1, MobileNetV2, Xception, DenseNet121, and 

NASNetMobile. The CNN models were fine-tuned with different parameters, including 

optimizers, batch sizes, and data augmentations. For the ensemble learning method, we 

classified the output probabilities of 3 CNN models (called 3-EnsCNNs) and 5 CNN 

models (called 5-EnsCNNs) with three different ensemble learning methods: 

unweighted majority vote, unweighted average, and weighted average. As a result, the 

ensemble CNN with the weighted average method outperformed other ensemble 

learning methods on three different plant leaf datasets. 

In the third approach, we automatically selected the best-CNN models 

using the ant colony optimization (ACO) algorithm used in the ensemble CNN method. 

According to the ACO algorithm, we first proposed the new fitness function computed 

by the loss and error while training the CNN models. Second, the learning rate 

schedule was included in the ACO algorithm to decrease the fitness value between each 
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CNN model while training the ACO algorithm. We compared the performance of two 

learning rate schedules: the time-based and cyclical learning rate, and found that 

two learning rate schedules contributed to improving the ACO algorithm. 

Consequently, the proposed ACO algorithm outperformed the existing methods on 

mulberry leaf and turkey plant datasets. 

We also found that many deep learning techniques could be proposed for 

automated plant leaf image classification. However, when we focus on the ensemble 

CNNs method, we should have an automated method to select the best-CNN models. 

Further, the proposed ACO algorithm is one of the best solutions for creating an 

automated plant leaf classification system. Adding the new robust CNN models to the 

system enables the proposed method to train the ACO algorithm and automatically 

choose the best-CNN models. 
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Dimensionality Reduction, Support Vector Machine, Multi-Layer Perceptron, 

Convolutional Neural Network, Ensemble Method, Ensemble Learning Method, 
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Chapter 1 

Introduction 

1.1 Introduction 

Plants are critical to human life and have many side-benefits, such as being used as 

food, medicine, and industry (Du, Wang, & Zhang, 2007). Medicinal plants have 

especially been used in folk medicine since ancient times. Herbs are often identified by 

experience through touch or olfaction (Hoffman, Cruickshanks, & Davis, 2009). 

However, some plants have similar botanical characteristics but have different benefits 

and toxins. 

Nowadays, researchers use artificial intelligence (AI) to classify plant species and 

enable people without botanical knowledge to use AI to classify plant species 

accurately (Vo, Dang, Nguyen, & Pham, 2019). Generally, many different plant organs 

are useful for classification, including leaves, bark, flowers, seeds and stems. However, 

leaf analysis is most important as leaves has some features and characteristics, including 

texture, shape, color, and other geometric features (Z. Q. Zhao et al., 2015). The 

performance of many plant recognition systems depends on the features extracted from 

leaves (Suwais, Alheeti, & Dosary, 2022). 

We found that most of the research in plant disease classification uses leaves to 

determine plant diseases (Aravind et al., 2018; A. Kumar & Vani, 2019; Puangsuwan 

& Surinta, 2021; Turkoglu, Yanikoğlu, & Hanbay, 2021; Enkvetchakul & Surinta, 

2022). Hence, early classification could decrease the severity and spread of the disease. 

It also could effectively help an agriculturalist prevent diseases. Most researchers 

classified plants based on leaves since only the leaves are sufficient for classification 

(Khmag, 2017; Wäldchen, Rzanny, Seeland, & Mäder, 2018). However, the most 

severe difficulty in recognizing leaf images is that the leaf images were taken in natural 

environments. So, images taken from different perspectives have a chance to increase 

noise, backlighting and shadow in the image, which are barriers to accurate 

classification. 

Obviously, a person with limited knowledge about plants and plant diseases will 

benefit from this research area. In this thesis, we proposed an automated classification 

system to address the challenge problems of plant leaf images taken in real-world 

environments. Accurate performance was achieved. 

 

1.2 Research Aim 

This thesis aims to develop an automatic plant leaf classification system using a 

deep learning technique. 

 

1.3 Research Questions  

Classifying a plant species is not easy for ordinary people who would like to be an 

expert in the task which requires time spent in study. We can now use artificial 

intelligence to classify some plant species instead of botanists. However, creating the 

automated plant classification system is not completed research. The is still a gap to 

improve the performance of the system. In this thesis, we have three research questions 
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that could enhance the performance of the automated plant classification system, as 

follows. 

RQ1. Plant species generally can be classified from plant organs, such as leaves, 

bark, flowers, seeds, and stems. However, the leaf is the most distinctive plant part that 

could be easier classified than other parts. Is it possible to classify plant leaf images 

using image processing and machine learning methods? Extracting the features from 

plant leaves is an important method. Furthermore, many local descriptor methods are 

proposed to extract the robust features (called handcraft features) from objects that 

appear in the image. Could machine learning techniques accurately classify the plant 

leaf images that extract the handcraft features using local descriptor methods and color 

features?  

RQ2. In the previous RQ, image processing and machine learning methods were 

proposed to classify plants from plant leaf images. However, most plant diseases 

manifest symptoms on the leaves, such as downy mildew, leaf spot, leaf blotch/leaf 

blight, and rust. Could we classify the disease if the disease appears on the plant leaf? 

Could we classify the plant leaf diseases using the deep learning method, such as 

convolutional neural network (CNN)? Additionally, is there any method to enhance the 

performance of the deep learning method? 

RQ3. If the ensemble learning with the weighted average method achieves 

better classification performance than using only one CNN model. How could we select 

the best-CNN models to create the ensemble CNNs method? Could we use ant colony 

optimization (ACO) to compute the optimal route that combines the best-CNN models 

and use the CNN models in the ensemble learning method? 

We will present a concrete answer to all research questions (RQ1 to RQ3) in 

Chapter 5.  

 

1.4 Contributions 

The significant contribution of the thesis is a novel image classification system for 

an automatic selection of best-CNN models using the proposed ACO algorithm for 

classified plant leaf images. In this thesis, we performed experiments on four plant leaf 

datasets: Folio (Munisami, Ramsurn, Kishnah, & Pudaruth, 2015), Mulberry leaf 

(Chompookham & Surinta, 2021), PlantVillage (especially, Tomato and corn leaf 

diseases) (Hughes & Salathé, 2015), and Turkey-plant disease (Turkoglu et al., 2021). 

 

The first part of the thesis concentrated on the traditional method of image 

processing and machine learning techniques. Three feature extraction methods were 

employed to extract the robust features from the subarea of the divided leaf images 

using a grid-based method. Hence, the dimension reduction method was proposed due 

to the enormous dimension of the feature vector before transferring features to the 

machine learning technique to create the model and classify, as presented in Chapter 2.  

 

In the second part, the CNN architectures, which are one of the most successful 

deep learning methods, were used to classify plant leaves and plant leaf diseases. 
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Moreover, the output probabilities of each state-of-the-art CNN model were then 

combined and operated by the ensemble learning method to classify the final output, 

called the ensemble CNNs method, as shown in Chapter 3.  

 

Finally, a novel automatic model selection method based on the ACO algorithm is 

presented in Chapter 4. The principle of the ACO algorithm is using an agent, called 

ant, to find the shortest route from one location to another. It will spread the pheromones 

along that particularly suitable path. Then, other ants could follow that specific route. 

However, other ants could find other routes if that path is the shortest. In this thesis, the 

ACO algorithm is proposed to choose the best-CNN models as the best route to obtain 

the highest classification accuracy.  We create the ensemble CNN model using the best-

CNN models that are strongly suggested by the proposed ACO algorithm. Furthermore, 

two main functions were added to the ACO algorithm; these were 1) the new fitness 

function that is computed from the loss and error values of the interested CNN models, 

and 2) the learning rate schedules, which is used in the training process, is proposed to 

learn on the new fitness function and attempt to lower the fitness value between each 

CNN model. The proposed method also directly affects the distribution of the 

pheromones, increasing the chance of discovering the new best route. 

 

This thesis is based on the following publications.  

 Chompookham, T., Gonwirat, S., Lata, S., Phiphiphatphaisit, S., & Surinta, O. 

(2020). Plant Leaf Image Recognition Using Multiple-Grid Based Local 

Descriptor and Dimensionality Reduction Approach. The 3rd International 

Conference on Information Science and System (ICISS), 72–77. 

https://doi.org/10.1145/3388176.3388180 

 Chompookham, T., & Surinta, O. (2021). Ensemble methods with deep 

convolutional neural networks for plant leaf recognition. Letters, ICIC Express, 

15(6), 553–565. https://doi.org/10.24507/icicel.15.06.553 

 

1.5 The Automated Plant Leaf Image Recognition System  

The main objective of the research presented in this thesis is to study the 

traditional methods (image processing and machine learning techniques), deep 

learning, and optimization model selection algorithm to automatically select the best 

models for the ensemble learning method. In this chapter, we presented the basic 

knowledge that assists the reader in understanding the broad idea of the automated plant 

leaf image recognition system, as described below. 

1.5.1 Plant 

Plant anatomy or plant structure describes the physical and external forms of 

the structure and role of plants. The body of plants generally consists of parts (Evert, 

2006), as shown in Figure 1, which are further divided into two parts.  

1) The root system is usually the underground system. It attaches the plant to 

the soil. The root system absorbs water and minerals into the stem as food storage.  

2) The shoot system appears on the ground, including leaf, node, stem, flower, 

and fruit. Actually, we classify plants from the shoots. 
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Figure 1 Illustrates the basic plant structure. 

(“Characteristics and Structures of Plants,” 2020) 

 

To classify the plant leaves, botanists mainly focus on the external features of 

the leaves. The leaves are thin, spread above the ground, and can photosynthesize. 

Botanists usually analyze the pattern of the leaves, such as size, shape, color, lobes, and 

veins (Mauseth, 2016). The different parts of the plant leaf are shown in Figure 2, while 

various plant leaves are shown in Figure 3. 
 

 
 

Figure 2 Illustrates the leaf features. 

(Cope, Corney, Clark, Remagnino, & Wilkin, 2012) 
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Figure 2 presents the features of the plant leaf (Cope et al., 2012; Valliammal, 

2013) as follows. 

 - Apex is the top of the leaf and has different characteristics. 

 - Lobes are leaf margins that have a groove concave towards the midline of the 

leaf. 

 - Teeth are the edge of the plant leaf. 

- Veins are the center of the leaves connected to the petiole and transfer water 

and nutrients to the rest of the plant. 

- Insertion point is the point between the petiole and the leaf. 

- Petiole is the substantial part that that connects the leaf to the stem. 

 

 
 

Figure 3 Examples of different shapes of plant leaf  

(Munisami et al., 2015) 

 

 
 

Figure 4 Examples of plant leaf diseases. 

 (Turkoglu et al., 2021) 
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1.5.2 Plant Diseases 

 Plant disease is a serious concern as it destroys plants and agricultural products, 

reduces product quality, and increases the cost of production. Plant disease can affect 

every part of the plant, especially the leaves. The causes of plant diseases are bacteria, 

insects, fungi, and nutrition deficiencies (Sinha & Shekhawat, 2020), as shown in 

Figure 4. The early detection of the disease is a good solution to prevent the spread of 

the disease.  

In artificial intelligence, image processing and machine learning techniques are 

proposed to classify plant leaf diseases ( Sladojevic, Arsenovic, Anderla, Culibrk, & 

Stefanovic, 2016; Kusumo, Heryana, Mahendra, & Pardede, 2018; Approach & 

Leonowicz, 2021), as shown in the following section.  

 

1.5.3 Image Processing and Machine Learning Techniques 

Traditionally, image processing and machine learning techniques are proposed 

to solve many problems in image classification, such as plant leaf disease classification, 

and aim to precisely classify images into the appropriate category (Ponnusamy, 

Sathiamoorthy, & Manikandan, 2017). The traditional framework of the image 

processing and machine learning techniques is shown in Figure 5. For plant leaf image 

classification, first, the leaf images could be taken from the laboratory with a white 

background. It is uncomplicated to apply image processing techniques to extract leaves 

and background. Second, all leaves are then sent to transform (such as rotation, resize, 

or translation) and improve the image quality (Sonka, Hlavac, & Boyle, 1993). These 

methods are called the image pre-processing process. Third, a feature extraction method 

is required to extract the robust features from the leaf images. Many well-known feature 

extraction methods, such as local binary patterns (LBP) (Ojala, Pietikainen, & 

Maenpaa, 2002), scale-invariant feature transform (SIFT) (Lowe, 2004), histogram of 

oriented gradients (HOG) (Dalal & Triggs, 2005), and speeded up robust feature 

(SURF) (Bay, Tuytelaars, & Van Gool, 2006), have been proposed to extract the 

features from the keypoint or patterns of the images. Several methods also extract 

features depending on geometric, statistical, and color features (Mutlag, Ali, Aydam, 

& Taher, 2020). Fourth, the machine learning model is created according to the robust 

features extracted from the previous process. This process is called classification. The 

well-known and successful machine learning techniques that could be proposed to 

address the image classification problems, such as support vector machines (SVM) 

(Vapnik, 1998), artificial neural networks (ANN) (Jain, Mao, & Mohiuddin, 1996), and 

k-nearest neighbor (K-NN) (Altman, 1992). Finally, the output of the classification 

process is the accurate class labels. 

 

 
 

Figure 5 Illustrated processes of the image classification using image processing and 

machine learning techniques. 

(Ponnusamy et al., 2017) 
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1.5.4 Deep Learning Technique 

The deep learning technique (G. E. Hinton, Osindero, & Teh, 2006) is very 

effective and widely applied to many problems, such as detection, classification, and 

clustering (Abas, Ismail, Yassin, & Taib, 2018; Durmuş, Güneş, & Kırcı, 2017; 

Harangi, 2018; S. Park, Suh, & Lee, 2020). However, CNN architecture is the most 

well-known deep learning technique (Ganaie, Hu, Malik, Tanveer, & Suganthan, 2021). 

Yan LeCun proposed the first CNN architecture that contained only five layers, called 

LeNet5 (LeCun, Bottou, Bengio, & Haffner, 1998). LeNet5 was proposed to classify 

the handwritten digits. Furthermore, the CNN architecture became popular when Alex 

Krizhevsky proposed the novel CNN architecture, called AlexNet, which contained 

eight layers and won the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) (Krizhevsky, Sutskever, & Hinton, 2012). The AlexNet architecture was run 

for around six days at that particular time on two GTX 580 3G GPU. After that, many 

CNN architectures were proposed and were successful in the ILSVRC competition, 

such as VGG (Simonyan & Zisserman, 2014), Inception (Szegedy et al., 2014), ResNet 

(He, Zhang, Ren, & Sun, 2015), MobileNet (Howard et al., 2017a; M Sandler, Howard, 

Zhu, Zhmoginov, & Chen, 2018), DenseNet (Huang, Liu, Van Der Maaten, & 

Weinberger, 2018)  and NASNet (Zoph, Vasudevan, Shlens, & Le, 2018). The CNN 

architectures have also been applied in the agriculture domain (Amara, Bouaziz, & 

Algergawy, 2017; DeChant et al., 2017; Mohanty, Hughes, & Salathé, 2016; Sladojevic 

et al., 2016).  

The basic concept of CNN architecture is shown in Figure 6. The CNN 

architecture mainly contains convolutional and pooling layers that are designed to 

extract robust features from the images using convolutional operation (LeCun et al., 

1998), which is the mathematical calculation. Hence, the features are fed to the neural 

networks with fully connected calculations. It is called a fully connected layer. Further, 

the output of the fully connected layer is the prediction class. The calculation of the 

convolutional and pooling layers is illustrated in Figures 7 and 8. 

 

 
 

Figure 6 Illustration of the convolutional neural network architecture 
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Figure 7 Illustration of the convolutional operation 

 
 

 
 
 

Figure 8 Illustration of the pooling operations: (a) max pooling and (b) average 

pooling. 

 

1.5.5 Ensemble Learning  

The ensemble learning method was proposed to improve the efficiency of a 

single classifier model. The main idea is to propose multiple classifiers to generate 

robust models. Then, the outputs of each robust model are combined to produce one 

final output (Hansen & Salamon, 1990), further reducing classification errors. 

In this thesis, we combined output from various CNN models and then 

aggregate the CNN output to the ensemble learning method to classify the final result. 

We briefly introduce three ensemble learning methods that were used in our 

experiments, as follows. 

 

1) Unweighted Majority Vote Method 

The unweighted majority vote is the simplest calculation method in 

which the outputs of each classifier are counted (Dogan & Birant, 2019). So, the class 

with the highest majority is selected as the final classification.   

 

 



 

 

 

 9 

2) Unweighted Average Method 

In this method, the output probabilities derived from CNN models are 

averaged. Also, the highest probability value is selected as the final classification (Ju, 

Bibaut, & van der Laan, 2018). 

3) Weighted Average Method 

The weighted average method is an extension of the unweighted average 

method by assigning different weighted parameters to the output probabilities. The best 

classifier result a high weighted value and assign the lowest weight to the worst 

classifier (Harangi, 2018). Therefore, the summation of all weighted values is equal 

one. 

 

1.5.6 Ant Colony Optimization 

Ant Colony Optimization (ACO) (M. Dorigo, 1992) is a metaheuristics method 

(Blum & Roli, 2003; Glover & Kochenberger, 2003) inspired by nature in solving 

complicated combinatorial optimization (CO) (Papadimitriou & Steiglitz, 1982). In this 

thesis, the ACO is proposed as the automated model selection method to discover the 

robust CNN models. Actually, the researcher should manually select numbers of robust 

CNN models. With the manual model selection, it takes too much time to discover the 

best combination of CNN models to achieve the highest classification result. When the 

proposed ACO method is examined, it could be automated to select the optimal number 

of CNN models within the shortest time. Furthermore, the output probabilities of the 

CNN models selected by the proposed ACO method are classified using the ensemble 

learning method. 



 

 

 

Chapter 2 

Plant Leaf Image Recognition using Feature Extraction and Machine 

Learning 

 

The process of plant species classification is a significant and challenging 

problem. Focus on plant leaf image classification is the main objective of many 

researchers because plant leaves are found almost all year round. The achieved method 

of plant leaf image recognition is based on extracting robust features from the plant leaf 

and uses the well-known machine learning technique as a classification method. As a 

result, recognition accuracy is often not very high. In order to improve recognition 

accuracy, first, we proposed a multiple-grid technique to divide the leaf image into 

small grids. Second, compute the feature from each grid using well-known local 

descriptors. Third, dimensionality reduction is proposed to transform and decrease the 

correlated variables of the feature vector. Finally, the feature vector with a relatively 

low-dimensional is transferred to the machine learning techniques, which are the 

support vector machine and multi-layer perceptron algorithms. We have evaluated and 

compared the proposed algorithm with the bag of visual words method and the deep 

convolutional neural network, including AlexNet and GoogLeNet architectures, on the 

Folio leaf image dataset. The experiments showed that the proposed algorithm has 

improved and obtained very high accuracy. 

 

2.1 Introduction 

Plants are living things that relate directly to humans and are used as food and 

medicine. Botanists have collected and studied various plant species, which can be of 

some benefit to humans. However, while the physical characteristics of some plants are 

similar, they have different benefits and toxins. As such, the ability to distinguish the 

types of plants requires advanced knowledge of botany. A typical plant classification 

problem is the diversity of plants and their botanical characteristics. Researchers find 

that classification of plant species is a challenging problem. Nowadays, computer vision 

and machine learning techniques are proposed as tools for recognizing plants.   

This research aims to use image processing and machine learning for plant 

classification by classifying plant leaf photos taken from the laboratory. Wäldchen and 

Mäde (2018) said that over the past 10 years, researchers have tried to recognize plants 

from various parts, including leaves, plant blossoms, and fruits (Caballero & Aranda, 

2010; Cerutti, Tougne, Mille, Vacavant, & Coquin, 2013; Cho, 2012). Most researchers 

are interested in the leaves because the plant leaves have a specific shape, surface shape, 

color, and leaf structure (Caglayan, Guclu, & Can, 2013; Hossain & Amin, 2010). The 

plant leaf images used in this research are divided into two conditions 1) Plant leaf 

taken in an outside environment (Wang, Huang, Du, Xu, & Heutte, 2008) and 2) Plant 

leaf taken in a laboratory on a white background (Munisami et al., 2015; Pawara, 

Okafor, Schomaker, & Wiering, 2017; Pawara, Okafor, Surinta, Schomaker, & 

Wiering, 2017). 
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Cerutti, Tougne, Coquin, & Vacavant (2013) used curvature-scale space for 

recognizing margin shape and Leaf classification from plant leaf characteristics by 

semi-supervised fuzzy C-means (FCM) training the margin shape with 12 terms. Then, 

it learns on the Pl@ntLeaves database, which is divided into three subsets, which are 

scan, pseudoscan, and photograph, using the Top-K method evaluated on the test set. 

The experimental results showed that the accuracy rates of the Top-K method using 

K=10 on the scan, pseudoscan, and photograph datasets were obtained as 95%, 92%, 

and 80%, respectively. 

Munisami et al. (2015) collected images of plant leaves taken in the laboratory, 

called the Folio dataset. The Folio dataset contains 637 images of 32 plant species. In 

their research, feature extraction methods, including plant shape and color histogram, 

were proposed to extract features from the plant images, which were the used to create 

the model using K-nearest neighbor. Their method achieved an accuracy rate of 87.3%. 

Pawara et al. (2017) used deep convolutional neural networks (CNNs), including 

AlexNet and GoogLeNet architectures, to classify plant leaf image datasets. Moreover, 

their experiments used local descriptors: histogram of oriented gradients (HOG) and 

bags of visual words (BOW) to extract the features. Then, the support vector machine 

(SVM), multi-layer perceptron (MLP), and K-nearest neighbor (KNN) were employed 

for the classification of plant leaf images. Their experiments divided datasets into two 

sets: 80% for the training set and 20% for the test set. The results showed that the 

AlexNet architecture trained with the fine-tuned model was the most accurate, with a 

97.67% accuracy. Moreover, Pawara, Okafor, Schomaker, et al. (2017) used 6 data 

augmentation methods that were rotation, blur, contrast, scaling, illumination, and 

projective transformation. The data augmentation methods can add images from the 

training set up to 25 times. The training set increased to 11,125 images and was trained 

using the AlexNet architecture. The experimental results showed that increasing the 

training set using the contrast data augmentation method increased the accuracy to 

99.04%. Moreover, when evaluated using the GoogLeNet architecture, it was found 

that the illumination method achieved the highest accuracy rate at 99.42%. 

Another set of plant leaf images taken in the laboratory was the Flavia dataset 

presented by Salman, Semwal, Bhatt, & Thakkar (2017). This includes 32 plant species 

and contains 1,907 leaf images. The shape feature of the plant leaves was extracted 

before being classified by the SVM method. The accuracy obtained from their method 

was 85%. At the same time, Arafat et al. (2016) developed an automatic leaf 

classification system using colored SIFT as a feature extraction method and SVM as a 

classification. Khmag (2017) extracted robust features by geometrical and shape 

features. Then, the features were sent to classify using the SVM classifier and obtained 

an accuracy above 97%. Chaki, Parekh, & Bhattacharya (2015) proposed texture-based 

constraints to extract and classify features using the MLP method. For the MLP, the 

MLP network contained an input layer with 44 nodes, a hidden layer with 30 nodes, 

and 31 nodes as an output layer. Their method achieved an accuracy rate of 87.1% on 

the test set. 

 

Contributions: The research focuses on the importance of plant leaf recognition 

by experimenting with the Folio dataset, which contains 32 different plant species. This 

research used feature extraction methods and a dimensionality reduction approach to 

extract the relative component from leaf images that are divided into multiple grids. 
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The proposed method is simple but effective. The multiple grids divide plant leaves 

into sub-regions, then the method brings the sub-region to calculate the special features 

using various feature extraction techniques that extract the distinctive characteristics of 

the plant leaves. The feature extraction methods are a histogram of oriented gradients 

(HOG), local binary pattern (LBP), and color histogram. Finally, the features are fed to 

the dimensionality reduction method using principal component analysis (PCA) to 

reduce the feature vector size. The size reductions have a direct effect on training time 

and increase the recognition efficiency. This paper used the feature vector in the 

training process and recognition by a support vector machine (SVM) and Multi-layer 

perceptron (MLP). This proposed method obtained a very high recognition rate 

compared to the deep learning method. 

 

Paper Outline: This paper has been organized as follows. In Section 2.2, the 

method for plant leaf recognition is explained. Section 2.3, the dataset and pre-

processing with plant leaf images, which are used in our experiments are described. In 

Section 2.4, experimental results are presented. The last section discusses the 

significant findings from this study and suggests future work. 

 

2.2 Proposed Plant Leaf Recognition Method 

This study uses multiple grids and dimensionality reduction based on three feature 

extraction techniques. The process of this research is shown in Figure 9. The input 

images were forwarded to the multigrid-based process to divide the images into sub-

region. A sub-region was calculated by three feature extraction techniques and followed 

by PCA to decrease the number of feature vectors. Finally, all features were 

concatenated and used as a feature vector (𝑓1, 𝑓2, … , 𝑓𝑛). Then, the feature vector was 

transferred to the classification process. 

 

 

Figure 9 Proposed plant leaf recognition method. 
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2.2.1 Multiple Grid-based Technique  

The working process of the multiple-grid technique is to divide the leaf images 

into sub-regions using a grid method to determine the sub-region. In these experiments, 

the grid method was determined at 6 different sizes, 1×1, 2×1, 4×2, 8×4, 2×2, and 4×4. 

After that, each sub-region was calculated to find the feature vector by HOG, LBP, and 

color histogram. 

2.2.2 Feature Extraction Techniques 

2.2.2.1 Histogram of Oriented Gradients (HOG) 

HOG was introduced by Dalal and Triggs (2005). It is the feature extraction 

method that extracts the characteristics of the image by calculating the oriented 

gradients from gradients image by finding gradients in horizontal (𝐺𝑥) and vertical 

directions (𝐺𝑦) which are calculated from pixel intensities (𝐼(𝑥, 𝑦)) at coordinate (𝑥, 𝑦) 
as the following equation: 

 

𝐺𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦)               (1) 

𝐺𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1)        (2) 

 

The magnitude (𝑀 ) and gradient orientation (𝜃 ) are calculated as the 

following equation: 

 

  𝑀(𝑥, 𝑦) = √𝐺𝑥2 + 𝐺𝑦2           (3) 

  𝜃𝑥,𝑦 = 𝑡𝑎𝑛−1
𝐺𝑦

𝐺𝑥
    (4) 

 

where  𝑀(𝑥, 𝑦) is magnitude of gradients, 𝜃𝑥,𝑦  is gradient orientation at coordinate 

𝑥, 𝑦. Then, gradient orientation values will be taken to the weighted vote process and 

will be kept in the orientation bins (𝛽) (Karaaba, Surinta, Schomaker, & Wiering, 

2015).  

Finally, gradient orientation values, which are kept in each orientation bin, 

will be taken to do the normalization by the L2-norm method. 

2.2.2.2 Local Binary Patterns (LBP) 

LBP was proposed by Ojala et al. (2002) for invariant texture classification. 

LBP is first designed for extracting characteristics of pixel points from neighborhood 

pixels which are calculated from gray values as the following equation: 
 

 

𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝𝑃−1

𝑝=0    (5) 

 

where  
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𝑔𝑐  is the gray value of the central pixel.  

𝑔𝑝  is the gray value of its neighbor pixels.  

𝑃  is the total number of involved neighbors.  

𝑅  is the radius of the neighborhood.  

The central pixel will be used as the threshold value (T) to compare with the values of 

neighborhood pixels, 𝑠(𝑥)  = {1,  𝑥  ≥T 0,  𝑥  <T. The following process brings the 

values 1 and 0 from neighborhood pixels together as concatenates. Then, they were 

converted from binary format to decimal format. Consequently, the decimal values 

were put into the specified bins and used as the feature vector. 

2.2.2.3 Color Histogram 

This research used two color models: 𝑅𝐺𝐵 and 𝐻𝑆𝑉 color models. We used 

only hue (𝐻) values because hue values show the true color. Therefore, the color values 

used for histogram creation consist of red (𝑅), green (𝐺), blue (𝐵), and hue. Thus, the 

histogram of the 𝑅𝐺𝐵 and 𝐻 values consists of 256 and 360 color values. 

2.2.3 Dimensionality Reduction 

From the Multiple-grid based method, a lot of sub-regions will be created, 

which are used for calculation of unique features. This causes high dimensionality of 

the feature vector and results in computational complexity. Therefore, dimensionality 

reduction is one of the best ways to minimize the feature vector. This research uses 

PCA (Cootes, Taylor, Cooper, & Graham, 1995) in feature vector reduction. The 

feature vector from each technique has been reduced to only 80 Features.  These 

techniques also improved the accuracy rate.  

2.2.4 Classification Algorithms 

This research used two algorithms, SVM (Vapnik, 1998) and MLP (Haykin, 

2008), as classification models. The SVM with the RBF kernel and MLP by 

determining the two hidden layers were employed. The dropout method was selected 

for the prevention of an overfitting problem. 

 

2.3 Plant Leaf Dataset 

The plant leaves images used in the experiment were taken in the laboratory. 

Thus, most images have a white background. The background makes the leaves 

prominent and clearly separates them from the background.  

2.3.1 Folio Dataset 

The leaf images used in the experiment were the Folio dataset, presented in 2015 

(Munisami et al., 2015). The images represent 32 plant species (see Figure 10) and 

contain 637 images in the dataset. All images were taken in the laboratory with a white 

background and were stored in JPEG format. The size of the images is 2322×4128 and 

2448×3264 pixel resolution. The plants were cultivated on the University of Mauritius 
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farm. In the Folio dataset, twenty images of each plant species were collected, except 

for mulberry with 19 images and eggplant with 18 images. 

Some Image differentiation of each species is shown in Figure 11. Some plant 

leaves still have similar shapes, e.g., star apple and pomme jacquot (See Figure 12). 

The factors mentioned above have directly affected the accuracy of recognition. 

 

 
 

Figure 10 Examples of 32 plant leaves of the Folio dataset. 
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a) 

 

b) 

 

c) 

 

Figure 11 Examples of plant leaf images of the Folio dataset: a) papaya, b) 

Chrysanthemum, and c) Ketembilla. 

 

  

a)                      b) 

 

Figure 12 Illustrated the similar shape between different plant leaves. The leaf 

images of a) star apple and b) pomme jacquot leaves. 

 

2.3.2 Dataset Pre-processing 

 The pre-processing of the plant leaf images from the Folio dataset is very 

simple. The process starts by converting all the images to black and white to find the 

plant leaf area, called the region of interest (ROI). Then, crop the plant image according 

to the ROI. The following process is to check the leaf images which are in the horizontal 
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or vertical positions. If a particular image is in the horizontal position, then the rotation 

method is used to rotate the image into the vertical position, as shown in Figure 10, 

followed by resizing all images to the vertical size of 400 pixels. So, the width of each 

image will have different sizes depending on the actual size to avoid image distortion. 

Consequently, the feature extraction methods are computed from this process. 

 

2.4 Experimental Results 

We compared the feature extraction techniques, color histogram, LBP, HOG, PCA, 

and HOG-BOW, to two deep learning techniques: AlexNet and GoogLeNet. 

In this experiment, 10-fold cross-validation was examined to evaluate the results of 

the plant leaf recognition methods. We used a training set of 80% of 637 images in 

total. For the evaluation metric, the recognition rate (accuracy) and standard deviation 

were used to measure the performance of each feature extraction technique. Moreover, 

we used SVM algorithm and then the grid-search technique was used to search for the 

best parameters. We found that the best C and gamma parameters of the SVM with the 

RBF kernel were 100 and 0.1, respectively. For MLP, two hidden layers were used 

where the size of each hidden layer is 512 and 512 hidden units, respectively. The 

dropout regularization was used to prevent neural networks from overfitting. The 

dropout rates of 0.5 for all hidden units were selected. Further, as for the output layer, 

the softmax function was used. Tables 1 and 2 show the experimental results (average 

test accuracy and standard deviation). 

 
Table 1 Plant leaf recognition results of the 15 different techniques on the Folio 

dataset 

Multiple Grid Methods 
Training Time (Sec) Test Accuracy (%) 

SVM MLP SVM MLP 

Color-Histogram 221.86 232.42 96.25±1.87 95.94±1.94 

LBP 278.80 284.80 94.45±1.06 91.87±2.22 

HOG 201.27 206.83 94.14±2.45 94.14±2.34 

Color-Histogram-PCA 182.88 189.49 97.73±1.30 97.11±1.28 

LBP-PCA 278.15 285.29 94.14±1.06 94.14±1.74 

HOG-PCA 202.12 209.53 93.83±2.62 93.91±1.83 

Color-Histogram-LBP 496.61 511.65 97.81±1.15 96.09±1.65 

Color-Histogram-HOG 419.10 435.47 98.13±1.39 96.64±1.38 

LBP-HOG 481.14 489.10 97.50±1.46 96.87±1.98 

Color-Histogram-LBP-HOG 697.46 716.77 98.67±0.91 97.42±1.48 

Color-Histogram-LBP-PCA 460.96 469.78 98.67±1.11 98.28±1.51 

Color-Histogram-HOG-PCA 384.91 393.20 98.59±1.46 98.28±1.32 

LBP-HOG-PCA 480.19 488.94 97.50±1.46 97.58±1.01 

Color-Histogram-LBP-HOG-

PCA 

663.01 672.19 99.06±0.89 98.75±0.92 

HOG-BOW (Pawara, Okafor, 

Surinta, et al., 2017) 

- - 92.78±2.17 92.37±1.78 
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Table 2 Comparing results between proposed methods and fine-tuned deep learning 

methods on the Folio dataset 

Method Test Accuracy (%) 

AlexNet (Pawara, Okafor, Surinta, et al., 2017) 97.67±1.60 

GoogleNet  (Pawara, Okafor, Surinta, et al., 2017) 97.63±1.84 

Proposed Method (Color-Histogram-LBP-HOG-PCA) 99.06±0.89 

 

The results in Table 1 showed the recognition performances obtained from the 

combination of multiple grid approaches with various feature extraction techniques, the 

result of the HOG-BOW method, and the training time on the Folio dataset. Then, 15 

different results are shown in Table 1. Here, the HOG-BOW method achieved an 

inferior performance compared to other feature extraction techniques. On the other 

hand, the Color-Histogram-LBP-HOG-PCA, when combined with the SVM algorithm 

with the RBF kernel, significantly outperformed other techniques and provided a high 

accuracy of 99.06%. Subsequently, the plant leaf recognition obtained a high accuracy 

of 98.75% when combined with the Color-Histogram-LBP-HOG-PCA and MLP 

algorithm. 

We also compared our proposed method with the find-tuned deep CNNs, which are 

AlexNet and GoogleNet architectures (Pawara, Okafor, Surinta, et al., 2017). The 

accuracy of results compared between our proposed method and the fine-tuned deep 

CNNs are shown in Table 2.  

 

2.5 Conclusion 

In this paper, we investigated many different plant leaf recognition techniques on 

the Folio dataset. From the experimental results, we concluded that the performance of 

multiple grids and dimensionality reduction-based descriptors, which is our proposed 

method, was much better than the histogram of oriented gradients combined with the 

bag-of-words technique and fine-tuned deep CNN architectures, which are AlexNet and 

GoogleNet architectures as well. We also showed that PCA, which is a dimensionality 

reduction technique, increased the accuracy performance and decreased the number of 

feature vectors of the plant leaf recognition system. Because of the high accuracy of the 

deep CNNs, in future work, we would like to study the effect of parallel CNN 

architecture and use this architecture to train the plant leaf images. This technique may 

be necessary to improve training times and accuracy performance. 

 



 

 

 

Chapter 3 

Ensemble Learning Methods with Deep Convolutional Neural 

Networks 

Recognition of plant leaves and diseases from images is a challenging task in 

computer vision and machine learning. This is because various problems directly affect 

the performance of the system, such as the leaf structure, differences of the intra-class, 

similarity of shape between inter-class, perspective of the image, and even recording 

time. In this paper, we propose the ensemble convolutional neural network (CNN) 

method to tackle these issues and improve plant leaf recognition performance. We 

trained five CNN models; MobileNetV1, MobileNetV2, NASNetMobile, 

DenseNet121, and Xception, accordingly to discover the best CNN based model. 

Ensemble methods; unweighted average, weighted average, and unweighted majority 

vote methods, were then applied to the CNN output probabilities of each model. We 

have evaluated these ensemble CNN methods on a mulberry leaf dataset and two leaf 

disease datasets; tomato and corn leaf disease. As a result, the individual CNN model 

shows that MobileNetV2 outperforms every CNN model with an accuracy of 91.19% 

on the mulberry leaf dataset. The Xception combined with data augmentation 

techniques (Height Shift+Vertical Flip+Fill Mode) achieved an accuracy of 91.77 %. 

We achieved very high accuracy above 99% from the DenseNet121 and Xception 

models on the leaf disease datasets. For the ensemble CNNs method, we selected the 

based models according to the best CNN models and predicted the output of each CNN 

with the weighted average ensemble method. The results showed that 3-Ensemble 

CNNs (3-EnsCNNs) performed better on plant leaf disease datasets, while 5-EnsCNNs 

outperformed on the mulberry leaf dataset. Surprisingly, the data augmentation 

technique did not affect the ensemble CNNs on the mulberry leaf and corn leaf disease 

datasets. On the other hand, application of data augmentation was slightly better than 

without only on the tomato leaf disease dataset. 

 

3.1 Introduction 

Plants are essential to human life and can be used as food and even medicine (Du 

et al., 2007). There is a wide diversity of plants in nature. Importantly, some plant leaves 

look very similar, such as the shape of the Japanese maple and coral plants or cannabis. 

It is quite difficult for people who are not familiar with the plants to identify them. 

Thus, the identification of plants requires expertise, such as that of taxonomic botanists, 

and plant scientists. Therefore, researchers have implemented plant identification 

systems so that people without botanic knowledge can use them as an identification tool 

to recognize the plant species (Vo et al., 2019). Usually, plants can be classified from 

various components, called plant organs, such as leaves, flowers, bark, seeds, and 

stems. However, if we want to consider plant diseases, most diseases are determined by 

the leaves. Therefore, researchers have used plant leaves to classify plant categories and 

diseases (Aravind et al., 2018; Mokeev, 2019; Munisami et al., 2015; Pawara, Okafor, 

Surinta, et al., 2017). Importantly, the spread of disease is a big problem for 

agriculturists because it affects agricultural products and profit on trading. It is 
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necessary for farmers to inspect agricultural products early to prevent and treat the 

disease in time. 

Due to the fast spread of disease, many researchers have proposed artificial 

intelligence systems to stop disease spread and recognize the disease types. Many 

benchmark plant leaf and plant leaf disease datasets were compiled, such as PlantCLEF, 

Leafsnap, PlantVillage,and PlantDoc (Goëau, Bonnet, & Joly, 2015; Hughes & Salathé, 

2015; N. Kumar et al., 2012; Singh et al., 2020), to create effective learning models. 

The plant leaf images in the benchmark datasets were typically collected from natural 

environments. Hence, these collections of leaf images are more complex than images 

collected under standardized conditions in a laboratory, such as camera angles when 

capturing the leaves, different objects appear in the image, brightness and contrast while 

taking the picture, zoom in and out into the leaf, and even loss of focus. These issues 

affect the accuracy of the plant leaf recognition systems. 

The objective of this research is to improve plant leaf recognition based on the 

ensemble CNN method. 

The following are contributions of this research; 

1. In this paper, we propose the ensemble convolutional neural network (CNN) 

method to overcome challenges in plant leaf and plant leaf disease recognition. To 

discover the best CNN model, we first trained five CNN models consisting of 

MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception. Second, 

we chose the best three and five CNN models, called 3-EnsCNNs and 5-EnsCNNs. 

Finally, the CNN output probabilities of each CNN model were then given to the 

ensemble method to do the actual classification. 

2. We compared three ensemble methods, namely the unweighted majority vote, 

unweighted average, and weighted average, for the plant leaf and plant leaf disease 

recognition. The experimental results showed that the weighted average method 

outperformed the other ensemble methods and was also significantly better than the 

individual CNN model. 

3. This paper also provides a new standard mulberry leaf dataset for comparison of 

image recognition methods. The mulberry leaf dataset contains 5,262 leaf images and 

includes 10 species that grow in Northern and Northeast Thailand. 

 

3.2 Related Work 

Image processing and machine learning techniques have been proposed to address 

plant leaf recognition problems. Wang et al. (2008) proposed a framework for 

recognizing the plant leaf with a complicated background. The feature vector was 

extracted from the shape of the leaf using Hu geometric and Zernike orthogonal 

moments. The moving center hypersphere method was used as a classifier. The feature 

vector was also extracted from the shape, color, edge, and direction of the plant leaf 

(Patil, Pattanshetty, & Nandyal, 2013; Wang et al., 2008). The feature vector was 

recognized using machine learning techniques, such as K-nearest neighbour (KNN) and 

support vector machine (SVM). Chompookham et al. (2020) presented a multiple grid 

method that divided the plant leaf images into sub-regions. The feature extraction 

techniques, including a histogram of oriented gradients (HOG), local binary pattern 

(LBP), and color histogram, were proposed to extract features from each sub-region. 
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Principal component analysis (PCA) was used to reduce the dimension of the feature 

vector. The most correlated variables were given to the SVM classifier.  

CNN methods are currently employed to recognize plant leaves and diseases. 

Atabay (2016) invented a new CNN architecture with five layers for plant leaf datasets. 

This CNN architecture comprises four sets of convolutional layers and one soft max 

layer. In this architecture, the exponential linear unit (ELU) is employed instead of the 

rectified linear unit (ReLU) after the max-pooling layer. The proposed CNN 

architecture provided 97.27% accuracy on the Flavia dataset and 99.11% on the 

Swedish dataset. Jeon and Rhee (2017) modified the GoogLeNet architecture for plant 

leaf recognition by changing the first Inception layer from 3 to 5 layers. The modified 

GoogLeNet architecture performed better with the leaf image dataset and the damaged 

leaf image. Furthermore, Pawara et al. (2017) proposed to use AlexNet and GoogLeNet 

for three plant leaf datasets: AgrilPlant, LeafSnap, and Folio. Two strategies of training, 

training from scratch and fine-tuned, were presented. The performance data showed 

that GoogLeNet with fine-tuning outperformed AlexNet with fine-tuning and training 

from scratch on AgrilPlant and LeafSnap datasets, whereas AlexNet with fine-tuning, 

showed the best performance on the Folio dataset. Additionally, the CNN architectures 

performed around 20% better than BOW and local descriptor combined with the 

machine learning techniques (KNN, SVM, and MLP). 

Pawara et al. (2017) used both scratch and pre-trained weights to train the AlexNet 

and GoogLeNet models. The data augmentation techniques, including rotation, blur, 

contrast, scaling, illumination, and projective transformation, were used to generate 

new images. With these data augmentation techniques, the size of the training set was 

increased by 25 times. As a result, the CNN model that trained from scratch obtains 

more benefits from data augmentation techniques. For the Swedish dataset, the fine-

tuned AlexNet and GoogLeNet achieved 99.76% and 99.92% accuracy. For the Folio 

dataset, approximately 99% accuracy was achieved from the fine-tuned AlexNet and 

GoogLeNet. Consequently, the results of the AgrilPlant were 97.27% with fine-tuned 

AlexNet and 98.60% with fine-tuned GoogLeNet. Moreover, Kumar and Vani (2019) 

compared four CNN architectures of LeNet, VGGNet, Xception, and ResNet50, and 

trained from scratch for tomato leaf disease recognition. The result illustrated that the 

VGGNet outperformed other CNN models. 

For the ensemble CNN method, a two-level architecture, called stacked CNN 

(Mokeev, 2019) was proposed. In the first level, two CNN models are created by 

learning the data from the plant dataset. In the second level, the predictive values of the 

CNN models are then learned again using machine learning techniques, such as random 

forest, gradient boosting, and extreme gradient boosting. As a result, the stacked CNN 

combined with the gradient boosting classifier was the best method and obtained an F1-

score of 0.953. Moreover, the ensemble CNN method can also compute the probability 

output obtained from CNN models to find the final result. Three ensemble methods 

comprised an unweighted majority vote (Surinta, Schomaker, & Wiering, 2013), 

unweighted average, and weighted average ensemble methods (Guo et al., 2019). 

The CNN architectures were proposed to address many recognition applications 

(Kreuter, Takahashi, Omae, Akiduki, & Zhang, 2020; S. Park et al., 2020). Also, the 

recognition performance was enhanced when the ensemble method was combined. In 

this study, we proposed the framework of the ensemble CNN. 
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3.3 Ensemble Convolutional Neural Networks Framework 

 

 
 

Figure 13 The framework of the proposed ensemble CNNs 
 

The effect of multiple CNN models on the ensemble learning framework is 

regularly better than a single CNN model because ensemble learning can well integrate 

the advantages of multiple CNN models (Zhang, Yan, Ma, & Xu, 2020). In this section, 

we introduce the ensemble CNNs framework to address the plant leaf recognition 

problems, as shown in Figure 13. The first part of the framework combines with state-

of-the-art CNN architectures, called multiple CNNs. In order to find the baseline CNN 

models, five pre-trained CNN models: MobileNetV1, MobileNetV2, NASNetMobile, 

DenseNet121, and Xception are proposed. Subsequently, the transfer learning and data 

augmentation techniques are applied in this step. The details of the ensemble CNNs are 

described in Section 3.3.1 in the second part, the output probabilities of the CNN 

models are given to be recognized by the ensemble methods. We propose to use three 

ensemble methods, namely the unweighted majority vote, unweighted average, and 

weighted average to do the actual classification. The ensemble methods are explained 

in Section 3.3.2 

3.3.1 Multiple Convolutional Neural Networks 

This section briefly describes the CNN that is combined in multiple CNNs: 

MobileNetV1, MobileNetV2, Xception, DenseNet121, and NASNetMobile. We also 

present the optimization algorithms (stochastic gradient descent and RMSProp) that are 

applied to optimizing the CNN model, as follows. 

3.3.1.1 Convolutional Neural Network Architectures 

MobileNetV1. MobileNetV1 was proposed by Howard et al. (2017). It was 

designed to address a huge number of parameters by using factorized convolutions, 

which included depthwise and pointwise convolutions, called depthwise separable 

convolution. Due to the depthwise convolutions, each input channel is computed with 
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the kernel size of 3×3. The output of the depthwise convolutions decreased from 3×3×3 

to 1×1×3 convolutions. After that, the depthwise convolutions reduced to 1×1 

convolutions, called pointwise convolutions. 

MobileNetV2. MobileNetV2 was proposed by Sandler et al. (2018), which 

improved on MobileNetV1 (Howard et al., 2017b). The MobileNetV2 architecture 

comprises 11 layers: one convolution layer, seven inverted residual blocks, one 

convolution layer, one average pooling layer, and one convolution layer. The inverted 

residual block contains three layers: 1×1 convolution with ReLU6 activation function, 

depthwise separable convolution with ReLU6, and 1×1 convolution with the linear 

transformation. 

Xception. Chollet (2016) designed the Xception architecture. This 

architecture is the extreme version of the inception module and was implemented to 

address the problems of deeper networks, computation time, and overfitting. The 

depthwise separable convolutions are applied in the extreme inception module. The 

Xception architecture is divided into three main flows: entry, middle, and exit. In the 

entry flow, the first layer is the input image with 229×229×3 pixels, followed by 32 

convolution layers with ReLU, 64 convolution layers with ReLU, and three residual 

connections. In the middle flow, eight stacked residual connections are attached. The 

exit flow is a stack of one residual connection, followed by two depthwise separable 

convolutions and global average pooling. 

DenseNet121. In 2018, Huang, Liu, Van Der Maaten, & Weinberger (2018) 

invented DenseNet architecture. In this architecture, the knowledge is collected 

according to the connections from the current layer and are combined in the following 

layers, called DenseNet. The DenseNet architecture contains a convolution layer, 

pooling layer, three dense blocks and transition layers, one dense block, and a 

classification layer. According to the size of the bottleneck, the layers of the DenseNet 

can increase from 121 to 264 depth. The concept of the growth rate of the convolution 

layers was implemented, and then, the next convolution layer was double increased. 

The bottleneck structure is implemented and directly impacts a decrease in the number 

of the parameters. Also, the number of the parameters of the DenseNet architecture is 

smaller than that of the ResNet architecture. 

NASNetMobile. Zoph et al. (2018) proposed a neural architecture search, 

called NASNet. The NASNet architecture can also be scalable by increasing normal 

and reduction cells using a recurrent neural network (RNN). Then, reinforcement 

learning was proposed to search for the best architecture. Also, the NASNet 

architectures consist of NASNetLarge and NASNetMobile. 

3.3.1.2 Optimization Algorithms for CNN Architectures 

The optimization algorithms were invented to deal with minimizing the 

objective function (P. Li, 2017). Consequently, the best optimizer can guarantee the 

optimal value with fast learning and obtain more reliable performance. We briefly 

explain two optimization algorithms used in our experiments as follows. 
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Stochastic Gradient Descent (SGD). One of the most popular optimization 

algorithms is the SGD algorithm. In the SGD optimizer, the algorithm allows updating 

the parameter until it converges to the minimum and enables moving to the better local 

minima (Ruder, 2017). The SGD optimizer can be computed as: 

 

  𝜃 = 𝜃 − 𝜂 ⋅ 𝛻𝜃𝐽(𝜃; 𝑥
𝑖; 𝑗𝑖)     (6) 

 

Where  𝜃 is objective function, 𝜂 is learning rate, 𝜃 = 𝜃 − 𝜂 ⋅ 𝛻𝜃𝐽(𝜃; 𝑥
𝑖; 𝑗𝑖) update the 

parameters of the objective function, and 𝑥𝑖 , 𝑗𝑖are training examples and labels. 

 

RMSProp. Hinton et al. (2012) invented a mini-batch version of the RProp 

algorithm, namely the RMSprop algorithm. The RMSprop algorithm is the adaptive 

learning rate method. It uses the sign gradient to calculate and update the value of the 

learning rate (Ruder, 2017).  

 

    𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡+∈
𝑔𝑡    

 (7) 

    𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2 

 

where 𝐸[𝑔2]𝑡 = 𝜂𝐸[𝑔2]𝑡−1 + (1 − 𝜂)𝑔𝑡2 is squared gradients for each weight, 𝑔𝑡is the 

gradient of the cost function, 𝛾 is a decay constant. Note that the best values of decay 

constant and learning rate are 0.9 and 0.001 (P. Li, 2017; Ruder, 2017). 

3.3.2 Ensemble Methods. 

In this section, the idea of the ensemble method combines with several weights 

(see Figure 13) that are learned from the CNN models to generate the optimal predictive 

model. In this section, we mainly emphasize three ensemble methods as follows.  

Unweighted Average. The most common of the ensemble methods is the 

unweighted average method. In this method, first, the probability values (𝑤1,𝑤2,… ,𝑤𝑛), 

which is the output of the last layer of the CNN models, are calculated using the softmax 

activation function (Ju et al., 2018). Second, we average all the probability values of 

the CNN models and selected the highest probability as a result. The unweighted 

average method is computed as 𝑝′ =
1

𝑛
∑ 𝑦⃗𝑛
𝑖=1 , where 𝑦⃗ is the weight vector and n is the 

number of ensemble CNN models. 

Unweighted Majority Vote. In this method, instead of averaging all the 

probability values of the CNN models, the highest probabilities are selected as the 

output. Then, it votes by counting the majority from all the predicted labels and makes 

a final decision (Harangi, 2018). The unweighted majority vote method is calculated as 

𝑝′ =
1

𝑛
∑ 𝑎𝑟𝑔𝑚𝑎𝑥𝑛
𝑖=1 (𝑦⃗), where arg max (𝑦⃗) is the highest probability value of weight 

vector 𝑦⃗ and n is the number of ensemble CNN models.  
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Weighted Average. The weighted average method is the extended version of 

the unweighted average by multiplying the different weight values to the CNN outputs 

(Harangi, 2018). Additionally, the sum of weight values is equal to one. The equation 

of the weighted average method is given by 𝑝′ =
1

𝑛
∑ 𝛼𝑖
𝑛
𝑖=1 𝑦⃗, where α is the weight 

values that multiply with the weight vector 𝑦⃗ and n is the number of ensemble CNN 

models. 

3.4 Plant Leaf Datasets 

In the section, we introduce the benchmark mulberry leaf dataset. We collected 

mulberry leaves that were growing in Thailand. In this dataset, the mulberry leaf images 

are diverse in brightness, shadow, and even camera angles because the images were 

captured from the natural environment. We provide the mulberry leaf dataset with the 

aim of plant leaf recognition. We have also evaluated the deep learning algorithms for 

the tomato and corn leaf disease datasets classification, which is the subset of the 

PlantVillage dataset. 

3.4.1 Mulberry Leaf Dataset 

The mulberry leaf dataset is a collection of images of 10 cultivars that were 

taken in natural environments using DSLR cameras and smartphones. We collected the 

data from three regions of Thailand: northern (Chiang Mai), central (Phitsanulok), and 

northeast (Nakhon Ratchasima, Buriram, and Maha Sarakham) The mulberry field 

areas are shown in Figure 14. In this research, the mulberry leaf images were captured 

from the natural environments, as shown in Figure 15. We recorded the images from 

different perspectives. There is a shadow that appears in the photograph when holding 

the camera at a low position. However, when shooting from an eye-level position, the 

resulting image is sharp and the image is not then backlit. All leaf images were recorded 

in the JPEG format.   

 

 
 

Figure 14  Illustration of the mulberry field area in Thailand has been collected as a 

dataset in this study consisting of Maha Sarakham, Buriram, Nakhon Ratchasima, 

and Phitsanulok, and Chiang Mai. 
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Figure 15 Illustration of the ten mulberry leaf cultivars including a) KingRed, b) King 

White, c) Taiwan Maechor, d) Taiwan Strawberry, e)Black Austurkey, f) Black 

Australia, g) Chiang Mai 60, h) Buriram 60,i) Kamphaeng Saen 42, and j) Mixed 

Chiang Mai 60+Buriram 60 

 

The mulberry leaf images were resized to 224×224 pixel resolution. The mulberry leaf 

dataset includes ten cultivars, which are four cultivars from Thailand: Chiang Mai 60 

(386 images), Buriram 60 (500 images), Kamphaeng Saen 42 (640 images), and 761 

images of mixed-breed mulberry (Chiang Mai 60 + Buriram 60). Three cultivars of 

Australia consist of King Red (500 images), King White (350 images), and 

BlackAustralia (637 images). Two cultivars of Taiwan consist of Taiwan Maechor (500 

images) and Taiwan Strawberry (500 images). Also, 488 images of the Black Austurkey 

are from Turkey. This dataset contains 5,262 images in total. Note that mulberry experts 

advised examination of each mulberry species to label the data and avoid the errors due 

to the similarity pattern and shape of the leaves. 

 

3.4.2 PlantVillage Dataset 

The PlantVillage dataset is a collection of plant images proposed by Penn State 

University (Hughes & Salathé, 2015) that collects various plant leaves and plant leaf 

diseases. The PlantVillage dataset has 54,309 images. In our study, we selected only 

tomato and corn leaf disease datasets. The details of these datasets are as follows. 

3.4.2.1 Tomato Leaf Disease Dataset. This dataset consists of 10 categories: 

nine diseased tomato leaves and one healthy leaf (Durmuş et al., 2017; A. Kumar & 

Vani, 2019). It contains 18,162 tomato leaf images, including 2,127 bacterial spots, 

1,000 early blights, 1,910 late blights, 952 leaf mold, 1,771 septoria leaf spot, 1,676 

spider mites, two-spotted spider mite, 1,404 target spots, 373 tomato mosaic virus, 

5,357 tomato yellow leaf curl virus, and 1,592 healthy tomato leaves. The tomato leaf 

diseases dataset is shown in Figure 16. 
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3.4.2.2 Corn Leaf Disease Dataset. This dataset contains four classes and has 

3,852 images (Aravind et al., 2018; Kusumo et al., 2018). One healthy category has 

1,162 images and three corn leaf diseases: 513 images of cercospora leaf spot, gray leaf 

spot, 1,192 images of common rust, and 985 images of northern leaf blight. The corn 

leaf disease dataset is illustrated in Figure 17. 

 

 

 

Figure 16 Examples of leaf disease datasets: tomato leaf disease images, including a) 

bacterial spot, b) early blight, c) late blight, d) leaf mold, e) septoria leaf spot, f) 

spider mites two-spotted spider mite, g) target spot, h) tomato mosaic virus, i) tomato 

yellow leaf curl virus, and j) healthy, respectively 
 

 

 

Figure 17 Examples of leaf disease datasets: corn leaf disease images, including a) 

cercospora leaf spot gray leaf spot, b) common rust, c) northern leaf blight, and d) 

healthy (from left to right) 
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Table 3 The best training hyperparameters and the accuracy (%) of each single model 

obtained with 5-fold cross-validation and test set on the mulberry leaf dataset. 

Models Optimizer 
Learnin

g Rate 

Batch 

Size 
Validation 

Test 

Accuracy 

MobileNetV1  

MobileNetV2  

NASNetMobile  

DenseNet121  

Xception  

RMSprop  

RMSprop  

RMSprop  

SGD  

RMSprop 

0.0001  

0.0001  

0.0001  

0.01  

0.0001 

8  

16  

8  

8  

8 

97.35 ± 0:005  

97.08 ± 0:006  

97.38 ± 0:004  

98.61 ± 0:002  

97.94 ± 0:006 

89.83 

91.19 

86.65 

90.80 

91.00 
 

3.5 Experimental Setup and Results 

3.5.1 Mulberry Leaf Dataset 

Mulberry Leaf Dataset. In this experiment, the pre-trained models of five CNNs 

consisting of MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and 

Xception, were used as the initial weight, and then trained on the Mulberry leaf dataset. 

The results in Table 1 are based on 5-fold cross-validation to avoid overfitting and on 

an independent test set. The training set contained 3,719 images and the independent 

test set included 1,543 images. The experimental settings used to train the CNN models 

were as follows; image resolution is 224×224 pixels, the three optimization algorithms 

were SGD, Adam, and RMSprop, the learning rate was 0.1, 0.01, 0.001, and 0.0001, 

the batch size was 8, 16, 32, and 64, and the number of iterations was 500 epochs. 

For the experimental results, we discovered that the RMSprop optimizer achieved 

higher accuracy when training with MobileNetV1, MobileNetV2, NASNetMobile, and 

Xception models. The SGD optimizer gave better results when training with the 

DenseNet121. In contrast, Adam Optimizer showed worse performance on all CNN 

models. The best parameters for each CNN model are shown in Table 3. 

From the results in Table 3, it can be seen that DenseNet121 outperforms other 

CNN methods with a cross-validation accuracy of 98.61%. Moreover, MobileNetV2 

was the best CNN model when applied to the test set. The recognition performance of 

MobileNetV2 was 91.19%, while the worst recognition performance was 

NASNetMobile. We evaluated the single CNN model using 5-fold cross-validation on 

the mulberry dataset to avoid overfitting. The result showed that all CNN models 

achieved high accuracy and low standard deviation values. The accuracy of the CNN 

models was slightly decreased by approximately 7% on the independent test set. 

Consequently, it is guaranteed that these CNN models are not overfitted on the tomato 

and corn leaf disease datasets when using the same CNN parameters.  

In Table 4, we show the experimental results with the data augmentation techniques 

and CNN models on the mulberry dataset. We compared six data augmentation 

techniques (DA) consisting of DA1-Height Shift, DA2-Vertical Flip, DA3-Fill Mode, 

DA4-Height Shift+Fill Mode, DA5-Height Shift+Vertical Flip+Fill Mode, and DA6-

Mixed DA. We defined the data augmentation as; Height shift = 0.25, Fill Mode = 

Reflect, and Flip Vertical = True. The experiments showed that the best performance 

was with the Xception model when training the model with three data augmentation  
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Table 4 Performances evaluation of the CNNs and data augmentation techniques on 

the mulberry leaf dataset. 

Data 

Augmentation 

Test Accuracy 

MobileNetV1 MobileNetV2 
NASNet 

Mobile 
DenseNet121 Xception 

DA1  

DA2  

DA3  

DA4  

DA5  

DA6 

86.58  

89.31  

87.49  

88.20  

88.85  

90.34 

91.12  

90.02  

90.02  

90.80  

91.32  

84.06 

88.42  

88.69  

88.69  

88.66  

90.15  

89.63 

90.03  

90.01  

90.01  

90.47  

90.67  

91.06 

90.45 

90.25 

90.25 

88.53 

91.77 

84.12 

 

Techniques (DA5) (height shift, vertical flip, and fill mode) with the accuracy of 

91.77%. Xception outperforms every CNN model. Subsequently, the CNN models that 

obtained high accuracy when combined with three data augmentation techniques were 

MobileNetV2, and NASNetMobile although mobileNetV1 and DenseNet121 models 

achieved results higher than 90% when mixed with 10 data augmentation techniques 

(DA6). 

3.5.2 Experiments on the Tomato and Corn Leaf Datasets 

In this section, we compared CNN architectures composed of VGG16, 

MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception to obtain 

the best performance on the tomato and corn leaf disease datasets. The best data 

augmentation techniques that we found from Table 4 were also applied to training the 

CNNs. For the leaf (tomato and corn) disease datasets, we divided 90% of data as a 

training set and 10% as a test set. The test accuracy is shown in Table 5 and Table 6. 

From the results in Table 5, it can be seen that Kumar and Vani (2019) proposed 

VGG16 for recognition in the tomato leaf disease dataset and achieved an accuracy of 

99.25% without applying the data augmentation technique. In these experiments, we 

considered training the CNN models applying the data augmentation and without  

Table 5 Performance evaluation of the CNNs on the tomato leaf disease dataset. 

Methods Model Size Data Augmentation 

No DA DA3 DA4 DA5 DA6 

 VGG16 (A. Kumar 

& Vani, 2019) N/A 99.25 - - - - 

 MobileNetV1 25.0 MB 99.26 99.60 99.26 99.46 99.33 

 MobileNetV2 17.9 MB 99.26 99.26 99.86 99.13 99.20 

 NASNetMobile 37.3 MB 99.33 99.46 99.73 99.26 99.53 

 DenseNet121 27.9 MB 99.46 99.53 99.87 99.53 99.66 

 Xception 159 MB 99.66 99.73 99.20 99.87 99.80 
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Table 6 Performance evaluation of the CNNs on the corn leaf disease dataset. 

Methods 
Model Size 

 

Data Augmentation (DA) 

No-Aug DA3 DA4 DA5 DA6 

RGB+LinearSVM 

(Kusumo et al., 2018) 
N/A 88.00 - - - - 

BoF+LinearSVM 

(Aravind et al., 2018) 
N/A 83.70 - - - - 

MobileNetV1 24.9 MB 97.92 98.44 99.20 98.44 99.20 

MobileNetV2 17.9MB 98.18 97.66 99.21 97.40 98.18 

NASNetMobile 37.3 MB 98.44 95.83 99.21 98.96 99.21 

DenseNet121 27.9 MB 98.44 98.70 98.70 98.70 98.96 

Xception 159 MB 98.70 98.70 98.44 98.70 99.22 

 

applying the data augmentation techniques. The results showed that the DenseNet121 

and Xception using data augmentation surpassed all CNN models with an accuracy of 

99.87%. 

As seen in Table 6, accurate results appeared when applying the data augmentation 

techniques. It shows that Xception combined with mixed data augmentation techniques 

(DA6) provided an accuracy of 99.22%. Moreover, the MobileNetV2 and 

NASNetMobile combined with two data augmentation techniques (DA4 – Height 

Shift+Fill Mode), and NASNetMobile combined with mixed data augmentation 

techniques (DA6), provided an equal accuracy of 99.21%. Furthermore, without 

applying the data augmentation technique, CNN architecture still showed a better result 

than the previous studies with an improvement of approximately 10% in accuracy. 

3.5.3 Experiments of the Ensemble CNN models on the Plant Leaf Datasets. 

As can be seen from Table 3, we decided to use the three best CNNs to construct 

the ensemble CNNs, including Xception, MobileNetV2, and DenseNet121, called 3 

Ensemble CNNs (3-EnsCNNs). We also selected five CNNS (MobileNetV1, 

MobileNetV2, NASNetMobile, DenseNet121, and Xception) combined with data 

augmentation techniques, called 5 Ensemble CNNs (5-EnsCNNs). In these 

experiments, the outputs after applying the softmax function of every single CNN 

model were then used in the decision layer of the ensemble method. We used three 

ensemble methods to recognize the plant leaf datasets, including the unweighted 

majority vote, unweighted average, and weighted average methods. 

Table 7 shows the results obtained with the ensemble CNNs. For the ensemble 

methods, the results emphasize that the weighted average outperforms the unweighted 

majority vote and average methods on three plant leaf datasets. Subsequently, the 3-

EnsCNNs performed better than 5-EnsCNNs on tomato and corn leaf disease datasets, 

except for the mulberry leaf dataset that obtained the best result when applying 5-

EnsCNNs. The data augmentation techniques, surprisingly, without the data  
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Table 7 Performance of the ensemble CNN methods applied on plant leaf datasets. 

Datasets/DA 

Test accuracy (%) 

Unweighted 

Majority Vote 
Unweighted Average Weighted Average 

3-Ens 

CNNs 

5-Ens 

CNNs 

3-Ens 

CNNs 

5-Ens 

CNNs 

3-Ens 

CNNs 

5-Ens 

CNNs 

Mulberry leaf dataset 

 No DA 92.81 93.65 94.55 94.68 94.49 94.75 

DA 92.61 92.81 94.03 94.23 94.41 94.55 

Tomato leaf disease dataset 

No DA 99.20 99.20 99.79 99.86 99.86 99.79 

DA 99.26 99.20 99.86 99.79 99.93 99.86 

Corn leaf disease dataset 

No DA 98.44 98.70 99.45 99.21 99.47 99.24 

DA 98.44 98.70 99.21 99.21 99.31 99.30 

 

augmentation technique show the best accuracy on mulberry leaf and corn leaf disease 

datasets. On the other hand, the recognition performance with application of the data 

augmentation technique was 99.93% on the tomato leaf disease dataset. 

As a result, the weighted average ensemble approach also achieved accuracies 

of 99.93% and 99.47% on the tomato and corn leaf disease dataset, respectively. The 

results lead us to conclude that the ensemble methods can increase the performance of 

the CNN architectures. 

3.6 Conclusion 

In this paper, we have proposed ensemble CNN architectures to improve 

recognition performance on the plant leaf datasets. In order to obtain the CNN based 

models, we first compared five state-of-the-art CNNs: MobileNetV1, MobileNetV2, 

NASNetMobile, DenseNet121, and Xception. The CNN models were trained with a 

transfer learning technique and the training sample enlarged using data augmentation 

techniques. We evaluated five CNN models on the mulberry leaf dataset and two plant 

leaf disease datasets: tomato and corn. Second, we selected the three best CNN models 

to establish the ensemble CNNs: Xception, MobileNetV2, and DenseNet121, called 3-

EnsCNNs. Additionally, five CNN models: MobileNetV1, MobileNetV2, 

NASNetMobile, DenseNet121, and Xception, were applied as 5-EnsCNNs. Finally, 

three ensemble methods: the unweighted majority vote, unweighted average, and 

weighted average methods, were proposed to classify the output of CNN models. The 

weighted average method was selected from the best experimental result.  

With the individual CNN model, the DenseNet121 achieved 98.61% accuracy with 

cross-validation and outperformed all models. Additionally, MobileNetV2 showed the 

highest performance on the test set of the mulberry leaf dataset with an accuracy of 



 

 

 

 32 

91.19%. In the best of our experiments, the data augmentation techniques: Height Shift, 

Vertical Flip, and Fill Mode, could slightly improve the performance of the CNN 

models, especially by significantly increasing the efficiency of the Xception model. The 

Xception combined with data augmentation techniques obtained an accuracy of 

91.77%. For tomato and corn leaf disease datasets, the DenseNet121 and Xception 

achieved very high accuracy above 99%. Our experimental results also achieved high 

accuracy when compared to previous work.  

To create a mobile application to address the issue of plant leaf recognition, we 

recommend using the CNN models of MobileNetV2, MobileNetV1, DenseNet121, and 

NASNetMobile, respectively. These CNN models provided accuracy above 99% on the 

tomato and corn leaf disease datasets. The size of these CNN models is approximately 

25-40 MB, which is relatively small. In comparison, we recommend using 

MobileNetV2 for plant leaf recognition.  

As for the ensemble CNN, the experimental results showed that the 3-EnsCNNs 

achieved the highest accuracy performance on the tomato and corn leaf disease datasets. 

Moreover, 5-EnsCNNs outperformed 3-EnsCNNs only on the mulberry leaf dataset. 

Surprisingly, ensemble CNN without data augmentation techniques achieved the 

highest accuracy on two plant leaf datasets, mulberry and corn. However, more than 

99% accuracy was obtained from the tomato and corn leaf disease datasets. The highest 

accuracy of 94.75% was obtained with the mulberry leaf dataset because the tomato 

and corn leaf disease images contained only one leaf in the image (see Figure 16 and 

Figure 17) while the mulberry leaf images were taken from the natural environment 

with different perspectives, sunlight conditions, and several leaves appear in the image 

(Figure 14  Illustration of the mulberry field area in Thailand has been collected as a 

dataset in this study consisting of Maha Sarakham, Buriram, Nakhon Ratchasima, and 

Phitsanulok, and Chiang Mai.).  

There is still a deficiency in improving the accuracy of the mulberry leaf dataset 

because the ensemble CNN method achieved only 94.75% accuracy. In future work, 

we plan to work on other data augmentation techniques such as generative adversarial 

networks (GAN) (Shorten & Khoshgoftaar, 2019), AutoAugment (Cubuk, Zoph, Mané, 

Vasudevan, & Le, 2019), and sample paring (Inoue, 2018) methods. Another direction 

for future work would be designing new ensemble CNNs. Bio-inspired algorithms, such 

as an artificial bee colony, bat algorithm, particle swarm optimization, and ant colony 

optimization will be employed to optimize the weight of the ensemble method 

(Darwish, 2018; Joel & Priya, 2018)



 

 

 

Chapter 4 

Automated Model Selection using Evolutionary Ant Colony 

Optimization with Learning Rate Schedule to Recognize Plant Leaf 

Images   

 
The model selection method is a necessary process proposed to discover robust 

models that enhance the performance of the recognition systems. In this research, a new 

ant colony optimization (ACO) is proposed to select the robust models of a 

convolutional neural network (CNN). Further, the robust models are performed in the 

ensemble learning method, called ensemble CNNs. The advantage of the evolutionary 

ACO algorithm is that it guarantees to select the set of robust CNN models every 

running time because the new fitness function and the learning rate schedule embedded 

in the ACO algorithm increases the distribution of the pheromones. When the new CNN 

models were added to the systems, the proposed ACO algorithm allowed an agent to 

find the new CNN model, while the original ACO algorithm always selected the same 

CNN model. For the evaluation, we assessed the proposed ACO algorithm on two plant 

leaf datasets: mulberry and Turkey-plant, and also compared the results with existing 

methods. In our experiments, we trained 15 CNN models with different tuning 

parameters. These CNN models were used in the automatic model selection based on 

the ACO algorithm. We first compared two ACO algorithms, including the ant colony 

system (ACS) and the max-min ant system (MMAS). The result showed that the 

MMAS algorithm outperformed the ACS algorithm. Hence, three ensemble learning 

methods (unweighted average, weighted average, and cost-sensitive learning) were 

evaluated and it was found that the weighted average method is the best ensemble 

method. Additionally, the weighted parameters were discovered by the grid-search 

method was executed when finding the weighted parameters. The proposed ACO 

algorithm achieved an accuracy above 99.33% and 95.34% on the Turkey-plant and 

mulberry leaf datasets, respectively. 

4.1 Introduction 

Recognition of plant species and diseases by humans requires experience, so 

only a small mistake could cause many problems. In this case, many expert people are 

required. On the other hand, due to computer technology advancements, many 

researchers have proposed plant recognition systems to detect and recognize plant 

diseases and classify plant species (DeChant et al., 2017; Hassan et al., 2021; X. Li & Chen, 

2010). A plant recognition system could be invented to prevent the risk of using the 

wrong plant species in medicine and to stop the spread of diseases on the farms in the 

early phase (Dhaware & Wanjale, 2017; Sinha & Shekhawat, 2020). Consequently, 

taking advantage of the precision and speed of computer technology is very useful in 

creating highly efficient plant recognition systems. So, it could be performed 

automatically with fewer errors and reduced working time (Fathi Kazerouni, 

Mohammed Saeed, & Kuhnert, 2019; Hughes & Salathé, 2015). 

Agriculturalists could recognize plant species and diseases by plant leaves. 

Hence, when creating the plant recognition systems, many researchers collected plant 

leaves and took images in laboratories with white backgrounds (Arafat, Saghir, Ishtiaq, 

& Bashir, 2016; Munisami et al., 2015; Pawara, Okafor, Surinta, et al., 2017). 
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Nevertheless, this may not be suitable for actual use. When leaf images are taken in the 

laboratory, image processing techniques could propose extracting shape, color, and 

texture from images, called a feature, and then recognize features using machine 

learning techniques (Patil et al., 2013; Wang et al., 2008). In comparison, many 

researchers took plant leaves in real-world environments with many conditions, such as 

complex backgrounds, light, shadow, and perspective, while taking the images 

(Chompookham & Surinta, 2021; Kusumo et al., 2018; Turkoglu et al., 2021; Vo et al., 

2019). Under these circumstances it might be more challenging to increase the 

performance of the plant leaf recognition systems.  

Deep learning techniques, especially convolutional neural networks (CNNs), 

are used when leaf images are taken in real-world environments (Atabay, 2016; A. 

Kumar & Vani, 2019; Turkoglu et al., 2021). The biggest advantage of the CNN method 

is that they combine the feature extraction method and recognition into one architecture. 

Then, extracting the shape and region of interest are not required. However, using only 

one CNN model does not guarantee the highest performance on plant leaf recognition. 

Importantly, to deal with the problems of accuracy performance, the ensemble CNNs 

method is proposed due to the power of multiple CNN models that could make a better 

recognition than using only one CNN model (Chompookham & Surinta, 2021; 

Enkvetchakul & Surinta, 2022; Mokeev, 2019; Puangsuwan & Surinta, 2021). The 

problem of the ensemble CNNs method is discovering the best combination between 

various CNN models and the best number of CNN models used in ensemble learning.  

Contribution. In this research, we proposed the ant colony optimization (ACO) 

algorithm as the model selection method to automatically discover the best combination 

of CNN models. We aim to present a new model selection based on the ACO algorithm 

by adding two functions to the ACO algorithm, including two new fitness functions and 

two learning rate schedules (time-based and cyclical learning). These two functions 

allow the ACO algorithm to find the robust CNN models. Consequently, the robust 

CNN models are used in the ensemble learning method.  

The original ACO algorithm computed the pheromones table based on the 

fitness function, which is highly possible to select the same CNN models, even if the 

system has new robust CNN models because the values of pheromones are not 

distributed. Therefore, the proposed ACO algorithm could distribute the values of the 

pheromones table and have a high chance of selecting new robust CNN models. To 

demonstrate the significant improvement of the new ACO algorithm, we evaluated the 

proposed algorithm on two plant leaf datasets: mulberry leaf and Turkey-plant and 

achieved high accuracy. 

This paper has been organized as follows. Section 4.2 summarizes the overview 

of related work. Section 4.3 describes the proposed ant colony optimization algorithm 

for plant leaf image recognition. Two plant leaf datasets are described in Section 4.4. 

Evaluation metrics and experimental results are presented in Sections 4.5, 4.6., and 4.7 

the discussion and conclusion are presented in Sections 4.8 and 4.9. 
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4.2 Related Work 

Much recent research has been conducted to address problems of plant leaf 

recognition. This section describes the related work on recognizing plants, including 

the ACO, CNN, and ensemble learning methods. 

4.2.1 Ant Colony Optimization (ACO) Algorithm 

The ACO algorithm was proposed in many applications (Fahmi, Zarlis, 

Nababan, & Sihombing, 2020; S. Li, Wei, Liu, Zhu, & Yu, 2022; Pitakaso, Almeder, 

Doerner, & Hartl, 2007). However, only a few studies proposed the ACO algorithm in 

the plant recognition domain. Li and Chen (2010) and Ghasab et al. (2015) used ACO 

as the feature selection method. In 2010, shape features of the weed leaf were extracted 

(X. Li & Chen, 2010). The ACO algorithm was used to search for the best feature 

subset. Hence, the SVM algorithm was employed to create the model from the best 

feature subset selected using the ACO algorithm. For the feature selection methods, 

they compared the ACO algorithm with the genetic algorithm (GA) in terms of accuracy 

and number of features. The result showed that the ACO algorithm outperformed the 

GA algorithm in accuracy and number of features.  

Further, Ghasab et al. (2015) presented an expert system for automatically 

recognizing different plant species from leaf images. In their study, firstly, the shape, 

morphology, color, and texture of the plant leaves were extracted as possible features. 

Secondly, the ACO algorithm was applied as the feature decision-making method to 

select the best features. Lastly, the selected features were then transferred to a support 

vector machine (SVM) to create a robust model and classify plant species. When 

evaluating their proposed method, around 2,050 images selected from FCA and Flavia 

datasets were tested and the results achieved an accuracy of 95.53%. 

4.2.2 Convolutional Neural Networks (CNNs) 

Due to the success of the deep learning technique, numerous researchers mainly 

use CNNs to address their problems. Many new architectures, including ResNet, 

NASNet, DenseNet, ResNext, EfficientNet, etc. (Huang et al., 2018; Tan & Le, 2019; 

Xie, Girshick, Dollár, Tu, & He, 2016; Zoph et al., 2018), have been proposed. Further, 

CNNs are proposed in agriculture (Adhitya, Prakosa, Köppen, & Leu, 2019; 

Neforawati, Herman, & Mohd, 2019). Pawara et al. (2017) compared the performance 

of the well-known CNN architectures (AlexNet and GoogLeNet) with two feature 

extraction methods; a histogram of oriented gradients (HOG) and a bag of visual words 

with HOG (BOW-HOG) on three plant datasets, including AgrilPlant, LeafSnap, and 

Folio. Further, two feature extraction methods were trained by machine learning 

techniques; K-nearest neighbor (KNN), support vector machine (SVM), and multilayer 

perceptron (MLP). The experimental results showed that both CNN architectures 

outperformed the hand-crafted features methods and achieved an accuracy above 97% 

on three datasets. Jeon and Rhee (2017) used GoogLeNet to improve the performance 

of plant leaf recognition. GoogLeNet was trained on the distortion and discoloration of 

leaf images, called damaged leaf images. The experimental results showed that above 

94% accuracy was obtained when trained on the damaged leaf images with damage of 

around 30%. Bisen (2021) proposed a new CNN architecture that contains 11 layers to 
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recognize 15 plant species via leaf images in the Swedish dataset. Subsequently, data 

augmentation techniques were used while training the proposed CNN, including 

rotation, width shift, height shirt, zoom, rescale, and resize. Their proposed CNN 

achieved an accuracy of 97% and outperformed the existing method (Turkoglu et al., 

2021). 

Hassan et al. (2021) used many deep CNN models (InceptionV3, 

InceptionResNetV2, MobileNetV2, and EfficientNetB0) to identify and diagnose plant 

leaf diseases on the PlantVillage dataset. This dataset has 14 plant species and contains 

54,305 images of 38 classes (healthy and diseased). While training the CNN models, 

the dataset was divided into training and test sets in their experiments with different 

ratios (80:20, 70:30, and 60:40). The results showed that the CNN models had an 

accuracy rate above 90% when trained with few epochs (30-50). Subsequently, The 

EfficientNetB0 slightly outperformed three other CNN models: InceptionV3, 

InceptionResNetV2, and MobileNetV2. 

Moreover, Quach et al. (2022) used the CNN model as the feature extraction 

method. Their method extracted the robust features from the leaf images by many 

feature extraction methods; shape, texture, color, Fourier descriptor, vertical and 

horizontal projection, and vein. Hence, the CNN model computed these robust features. 

The output was designated with 100 features and fed to the SVM classifier. Their 

method achieved an accuracy of 99.58% on the test set of the Flavia leaf dataset. 

4.2.3 Ensemble Learning Methods 

Recognizing plant leaf images using a single CNN model does not always 

guarantee good results. The ensemble learning method is proposed to improve the 

performance of the single CNN model by combining output of various CNN models 

and classifying using ensemble learning (Chompookham & Surinta, 2021; 

Enkvetchakul & Surinta, 2022; Mokeev, 2019) . 

Peker (2021) proposed a multi-channel capsule network ensemble (MCCNE). 

The multi-channel included five channels: R-channel, G-channel, B-channel, Gabor 

filter, and principal component analysis (PCA). As a result, the input images were 

computed by five different techniques. Hence, the features computed from each feature 

extraction technique were sent to the capsule network to create the model. Further, the 

output of each capsule network was classified using the majority voting method. Their 

proposed method was evaluated on a tomato dataset containing nine disease classes and 

one healthy class. Consequently, when evaluating the single model, which is the Gabor 

filter combined with a capsule network, it achieved an accuracy rate of 96.15%. 

However, the result showed that the MCCNE method, which is the ensemble learning 

method, achieved an accuracy of 98.15% on the tomato leaf disease dataset and 

outperformed the existing methods.  

Turkoglu et al. (2021) trained the deep learning models of six state-of-the-art 

CNN models (AlexNet, GoogLeNet, ResNet18, ResNet50, ResNet101, and 

DenseNet201) on the Turkey-plant dataset, which contain 15 diseases of 4,447 images. 

For the experiments, first, the experimental results of the CNN models showed that the 

AlexNet and GoogLeNet achieved accuracy less than 90%, while other CNN models 

achieved an accuracy above 90%. Therefore, DenseNet201 was the best single CNN 

model evaluated on the Turkey-plant dataset. Second, they experimented with using 

CNN models to extract spatial features and concatenate them, followed by the SVM 
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algorithm. This method was called PlantDiseaseNet-EF. Third, the method of 

extracting features using the CNN model and classifying using SVM was proposed. 

Hence, the prediction outputs were then classified using a majority vote. This method 

is called PlantDiseaseNet-MV. Consequently, the experimental results of 

PlantDiseaseNet-EF and PlantDiseaseNet-MV performed much better than the single 

CNN model. Moreover, the PlantDiseaseNet-MV method achieved an accuracy of 

97.56% and slightly outperformed the PlantDiseaseNet-EF method.  

To enhance the performance of plant leaf recognition, Chompookham and 

Surinta (2021) proposed ensemble CNNs to recognize plant leaf images on three 

benchmark datasets: mulberry leaf, tomato, and corn leaf diseases. First, five CNN 

models; MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception, 

and various data augmentation techniques were used as the single CNN model to 

recognize leaf image datasets. However, the single CNN model achieved only 

approximately 90% accuracy on the mulberry leaf dataset. On the other hand, the CNN 

model achieved above 99% accuracy on the tomato and corn leaf disease datasets. 

Furthermore, the ensemble CNNs with combined output probabilities of 3 (called 3-

EnsCNNs) and 5 (called 5-EnsCNNs) robust CNN models and classified using three 

ensemble learning methods: unweighted majority vote, unweighted average, and 

weighted average. As a result, the 5-EnsCNNs with the weighted average ensemble 

method achieved an accuracy of 94.75% on the mulberry leaf dataset, which is 

improved by around 4.75%. 

Additionally, Prem and Surinta (2022) trained four lightweight CNN 

architectures (EfficientNetB1, InceptionResNetV2, MobileNetV2, and 

NASNetMobile) with data augmentation techniques, then sent the output probability of 

each CNN model to classify using the ensemble learning methods: unweighted majority 

vote and unweighted average. The plant leaf images were randomly selected and trained 

by the CNN model. Their method was different from the other research in that it 

combined the output from the same CNN model, while other research combined the 

output from various CNN models. As a result, the ensemble CNNs outperformed the 

single CNN model on all plant leaf datasets. Consequently, the EfficientNetB1 is the 

best CNN architecture when combined with the ensemble CNNs. 
 

4.3 The Proposed Ant Colony Optimization for Automated Model Selection 

4.3.1 Overview of the Ensemble CNNs Framework  

In this section, we present the ensemble CNNs framework for plant leaf 

recognition, as shown in Figure 18. The details of the ensemble CNNs are described as 

follows. 

A. The Training Scheme. First, many pre-trained models of the state-of-the-art 

CNN architectures were trained and fine-tuned to create the robust CNN model on the 

plant leaf dataset. Second, the ACO algorithm, which is the metaheuristic optimization 

algorithm, was proposed as the model selection method to select the robust CNN 

models from all the CNN models. For example, as shown in Figure 18, CNN models 3, 

1, and 5 were automatically selected by the ACO algorithm. Third, we combined the 

particular CNN models. Also, the output probabilities of each model were used to find 

the weighted parameters by the grid-search method. Finally, the selected CNN models 

and the weighted parameters were transferred to the test scheme. 
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Figure 18 Illustration of the ensemble CNNs based on the automatic model selection 

by the proposed ACO algorithm. 

B. The Test Scheme. The test image was directly sent to CNN models, which 

were selected in the training scheme, to compute the output probabilities. Hence, the 

output probabilities of each CNN model were computed with the weighted parameters 

to obtain the final recognition, called the ensemble method.  
 

4.3.2 Ant Colony Optimization (ACO) 

The ACO algorithm is the metaheuristic method employed to solve complex 

optimization problems with the best solutions (S. Li et al., 2022; Pettersson & Lundell 

Johansson, 2018). The design of the ACO algorithm was inspired by ant behavior 

during a foraging cycle for food (M. Dorigo, 1992). In the foraging cycle, ants spread 

pheromones that trail to a food source. Hence, other ants could follow the pheromones 

until they found the food and carry it back to the nest. Thereby, the shortest route has 

more pheromones, so ants could easily track the shortest route without returning to their 

nest. The most successful application that applied the ACO algorithm was in the 

traveling salesman problem, which used the ACO algorithm to find the shortest route 

such that a salesman visits each city only once until returning to the origin city 
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(Dewantoro, Sihombing, & Sutarman, 2019). The ACO algorithm has been applied in 

many domains, such as path planning for mobile robots (Chen et al., 2021), 

optimization routes in wireless sensor networks (Sharmin, Anwar, & Motakabber, 

2018), and searching the penalty parameter in the kernel function of the support vector 

machine (SVM) algorithm (Yan, Enhua, & Shuangting, 2020). 

 

Algorithm 1: The proposed ACO Algorithm for model selection 

Input:  

number of iterations: N  

number of ants: 𝑀   

number of CNN model: 𝑅   

pheromone: 𝜏 
fitness function: 𝑓  

weight parameters: alpha (𝛼), beta (𝛽), evaporation rate (𝑝),  

               learning rate value (η) 

Initialization: 

𝑓𝑖,𝑗 define by fitness function 

         if  TL model          using Equation (8)    

          if  TLEW model    using Equation (9) 

Process: 

       For  𝑖 =1 to 𝑁 do 

For  𝑗 =1 to 𝑀 do 

Route construction by ant system 

      if  ACS algorithm         using Equation (11)    

      if  MMAS algorithm     using Equation (13) 

Create ensemble CNNs  

For  𝑘 =1 to 𝑅 do 

      if  unweighted average method      using Equation (17) 

      if  weighted average method          using Equation (18) 

      if  cost-sensitive learning method   using Equation (20) 

End for 

End for 

Calculate η by learning rate schedule 

       if   time-based scheduler                      using Equation (15) 

       if   cyclical learning rate scheduler      using Equation (16) 

Update the pheromone by ant system 

if   ACS algorithm       using Equations (12)  

if   MMAS algorithm   using Equations (12) and (14) 

Save best ACO solution (𝑇(𝑖,𝑗)
𝑏𝑒𝑠𝑡) 

           End for 

Output:  

The best ACO solution (𝑇(𝑖,𝑗)
𝑏𝑒𝑠𝑡) 
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In this research, the ACO algorithm is proposed as the model selection method 

to select robust CNN models by considering the loss and error values from various CNN 

models. First, instead of the fitness value between pairs of the cities, the validation loss 

and error rate of each CNN model was used to create the fitness function. Second, the 

learning rate schedule was embedded in the ACO algorithm. These two proposed 

methods enabled the ACO algorithm to compute and adjust the pheromones. The 

pheromones will distribute and increase the chance of selecting the robust CNN models. 

So, the set of the robust CNN models has been used in the ensemble CNNs method. 

The process of the proposed ACO algorithm is shown in Algorithm 1. 

4.3.2.1 Fitness Functions  

The fitness function represents the fitness value between the first station (i) and 

the second station (j). In this study, the training values of the CNN models between two 

robust CNN models are employed to compute the fitness model (𝑓(𝑖, 𝑗)), including 

training loss values, training error, and constant weight parameters. The minimum 

fitness value of all selected CNN models reflects the most attractive path. We proposed 

two fitness functions that use while constructing the robust route of CNN models. Two 

fitness functions are presented as follows. 

1) Training Loss Model (TL) 

The most uncomplicated fitness function is computed using the training 

loss value of each CNN model. The training loss model is computed by Equation 8. 

 

 𝑓(𝑖, 𝑗) =  |𝑙i − 𝑙j| ,    (8) 

 

where 𝑙i is training loss value of CNN model 𝑖 and 𝑙j is training loss value of CNN 

model 𝑗, 𝑖 = 1, 2, … ,𝑚, 𝑗 = 1, 2, … , 𝑛, and 𝑚, 𝑛 are the numbers of CNN models. 

2) Training Loss and Error with Weight Parameter Model (TLEW) 
We computed the fitness function with training loss and training error values of the 

CNN model. In addition, the optimal weight parameter is added to the fitness function 

to control the contributing CNN models. The TLEW model is computed by Equation 

9. 

 

𝑓(𝑖, 𝑗)  =   √((𝑙𝑖 − 𝑒𝑖) + 𝑤𝑖)2 + ((𝑙j − 𝑒𝑗) + 𝑤𝑗)2 ,   (9) 

 

where  𝑙𝑖 and 𝑒𝑖 is training loss and training error values of CNN model 𝑖 and 𝑤𝑖 is the 

optimal weight parameter, and 𝑤𝑖 is defined as follows. 
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𝑤𝑖 =

{
 
 

 
 
1   𝑖𝑓  𝑥 ≥ 93                           
2   𝑖𝑓 92 ≤ 𝑥 < 93                
3   𝑖𝑓 91 ≤ 𝑥 < 92                
4   𝑖𝑓 90 ≤ 𝑥 < 91                
𝑛   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 … < 𝑥 <  90,

 

 

where 𝑥 is the accuracy of each CNN model and n is the maximum weight parameter.  

Consequently, the fitness table of the whole station is constructed as shown 

in Equation 10. 

 

𝑖 

𝑗 [

0 𝑑(𝑖1, 𝑗2) 𝑑(𝑖1, 𝑗𝑛−1) 𝑑(𝑖1, 𝑗𝑛)
𝑑(𝑖2, 𝑗1) 0 𝑑(𝑖2, 𝑗𝑛−1) 𝑑(𝑖2, 𝑗𝑛)
𝑑(𝑖𝑚−1, 𝑗1) 𝑑(𝑖𝑚−1, 𝑗2) 0 𝑑(𝑖𝑚−1, 𝑗𝑛)
𝑑(𝑖𝑚, 𝑗1) 𝑑(𝑖𝑚, 𝑗2) 𝑑(𝑖𝑚, 𝑗𝑛−1) 0

]    (10) 

 

where 𝑓(𝑖1, 𝑗2) is the fitness value between CNN model 1 and CNN model 𝑛. The 

fitness values between the same station 𝑓(𝑖1, 𝑗1)  is zero.  

4.3.2.2 Route Construction and Pheromone Updating Rule 

In this section, the ants must decide which paths to walk along to complete 

the solution, which is the shortest route, called route construction. Further, while 

constructing the shortest route, the ant evaluates the solution, modifies the trial values, 

and updates the best solution in the pheromone table, which other ants will use to find 

another route in the future. In this research, we used two systems to search for the best 

solution; the ant colony system (ACS) and the max-min ant system (MMAS), which 

are presented as follows.  

A. Ant colony system (ACS)  

The ACS algorithm was proposed by Dorigo, Di Caro, and Gambardella 

(1997)  as a meta-heuristic algorithm for optimization problems such as the traveling 

salesman problem. The ants search for food and walk from one station to another until 

they get food. The pheromones (𝜏(𝑖,𝑗)) are spread to the route they walk, called the route 

construction process (𝑝𝑖𝑗
𝑘 ). Then, other ants can follow that route to bring food. Further, 

other ants can decide to walk on a different route to find a better solution. The ant will 

spread pheromones when the new route is the better solution, called the pheromone 

updating rule. The ACS algorithm uses the pseudorandom proportional rule (Marco 

Dorigo & Gambardella, 1997) to construct the best route by Equation 11 and update 

the pheromone in each iteration when the ant walks through that route, as computed by 

Equation 12. 
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𝑝(𝑖,𝑗)
𝑘 =

{
 

 𝑎𝑟𝑔𝑚𝑎𝑥
𝑙∈𝑌𝑖

𝑘  (𝜏(𝑖.𝑗)
𝛼  ×   𝐹(𝑖,𝑗)

𝛽
)          𝑖𝑓 (𝑞 ≤ 𝑞0),                  

(𝜏(𝑖.𝑗)
𝛼  ×  𝐹(𝑖,𝑗)

𝛽
)

∑ (𝜏(𝑖.𝑗)
𝛼  ×  𝐹

(𝑖,𝑗)
𝛽

)
𝑙∈𝑌𝑖

𝑘

, 𝑤ℎ𝑒𝑛  𝑗 ∈ 𝑌𝑖
𝑘            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(𝑞 > 𝑞0),   

                  (11) 

 

where  𝐹(𝑖,𝑗) = 
1

𝑓(𝑖,𝑗)
, 𝑓(𝑖,𝑗) is a fitness function, 𝑞 is a random value between zero to one, 

𝑞0 is the probability value that the ant constructs the best possible move, 𝛼 and 𝛽 
defined as the relative influence between the heuristic information and the pheromone 

levels,  𝛼 and 𝛽 are equal or greater than one, and 𝑌𝑖
𝑘 is the stations that have not yet 

traveled when moving from station 𝑖 to station 𝑗. 
In the ACS algorithm, however, only one ant allows updated the 

pheromones, as a global update, in each iteration, as computed by Equation 12. 

 

𝜏(𝑖,𝑗)
𝑛 = {

(1 − 𝑝)(𝜏(𝑖,𝑗)
𝑛−1)                           𝑖𝑓 (𝑖, 𝑗) is not travel path,

(1 − 𝑝)(𝜏(𝑖,𝑗)
𝑛−1) +  𝜂 ▽ 𝑇(𝑖,𝑗)

𝑏𝑒𝑠𝑡    𝑖𝑓 (𝑖, 𝑗) is travel path,         
             (12) 

    

where 𝑝  is the evaporation rate of the pheromone and 𝑝 ∈ (0,1),  𝑛  is number of 

iterations, ▽ 𝑇(𝑖,𝑗)
𝑏𝑒𝑠𝑡 is 

1

𝐿𝑏𝑒𝑠𝑡
 , 𝐿𝑏𝑒𝑠𝑡 is the total fitness that provides the best solution for 

each iteration, and 𝜂 is the learning rate. 

 

B. Max-Min Ant System (MMAS) 

The MMAS algorithm was proposed by Stutzle and Hoos (2000). In the 

MMAS algorithm, the random proportional rule was suggested to construct the best 

route by randomizing the probability value when ant (𝑘) at the station 𝑖 walk to station 

𝑗. In this process, the ant must check whether the route is traveled or not yet in each 

iteration. However, when an ant walks through that particular station, that station will 

be removed from the memory. As a result, that ant can walk through that station only 

once. Further, only the best ant can improve the pheromones. The MMAS algorithm 

computed the route construction by Equation 13. 
 

𝑝(𝑖,𝑗)
𝑘 =

(𝜏(𝑖.𝑗)
𝛼  ×  𝐹(𝑖,𝑗)

𝛽
)

∑ (𝜏(𝑖.𝑗)
𝛼  ×  𝐹(𝑖,𝑗)

𝛽
)

𝑙∈𝑌𝑖
𝑘

 when 𝑗 ∈ 𝑌𝑖
𝑘,   (13) 

 

The MMAS algorithm updates the pheromones according to the 

maximum and minimum values. This research sets the maximum and minimum values 

as 𝜏𝑚𝑖𝑛=0.1 and 𝜏𝑚𝑎𝑥=0.95. Hence, 𝜏(𝑖,𝑗)
𝑛  is the pheromone values between 𝜏𝑚𝑎𝑥 

and 𝜏𝑚𝑖𝑛 (𝜏𝑚𝑖𝑛 ≤ 𝜏(𝑖,𝑗)
𝑛 ≤ 𝜏𝑚𝑎𝑥). The MMAS algorithm increases the chance of 

selecting a route that was never selected before, which is calculated by Equation 14. 
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𝜏(𝑖,𝑗)
𝑛 = {

𝜏𝑚𝑖𝑛    if  𝜏(𝑖,𝑗)
𝑛 < 𝜏𝑚𝑖𝑛, 

𝜏𝑚𝑎𝑥    if  𝜏(𝑖,𝑗)
𝑛 > 𝜏𝑚𝑎𝑥,

     (14) 

 

In this research, the learning rate (𝜂) used in Equations 12 and 14 is further computed 

by Equations 15 and 16 when selecting time-based and cyclical Learning rate schedules, 

respectively. 

4.2.3.3  Learning Rate Schedule  

Deep learning techniques have the intent of discovering the optimal 

parameters when training the deep learning models iteratively to minimize a given 

function to the local minimum (P. Li, 2017; Sun, Cao, Zhu, & Zhao, 2019). Many 

techniques are proposed to find the local minimum, such as using different optimization 

algorithms (i.e., SGD, Adam, Adagrad, and adaDelta), tuning the hyperparameters 

(momentum, decay, and learning rate), and applying various learning rate schedules, 

which can increase the performance and decrease the training time of the deep learning 

techniques. However, to optimize the parameters, the gradient is computed with a 

learning rate value that could change at every training iteration using the learning rate 

schedule method (J. Park, Yi, & Ji, 2020).  

In this section, we developed the ACO algorithm by adding the learning rate 

schedule to the algorithm to change the learning rate value while training the ACO 

algorithm, with the objective function of decreasing the fitness values between each 

CNN model and increasing the chance of distributing the pheromones. We briefly 

describe two learning rate schedules: the time-based learning rate and cyclical learning 

rate (CLR), that are used in the experiments, as follows. 

A. Time-based Learning Rate Schedule 

The uncomplicated learning rate schedule is the time-based learning rate 

schedule (J. Park et al., 2020). The time-based scheduler yields the learning rate value 

to drop quickly at the start of the training scheme. The demonstration of the learning 

rate values of the time-based scheduler is shown in Figure 19 a). The time-based 

scheduler is computed by Equation 15. 

 

𝜂𝑛+1 = 
𝜂𝑛

1+(𝑑∗𝑛)
      (15) 

 

where 𝜂𝑛 is the learning rate at iteration 𝑛 , 𝑛 is the number of iterations, 𝑑 is the decay 

value, and avoid 0 in the denominator by adding 1. 

B. Cyclical Learning Rate (CLR) 

The CLR schedule was proposed by Smith (2017)  to adjust the learning 

rate value linearly for a few iterations. In the CLR scheduler, the maximum and 

minimum learning rates are defined, then the learning rate is linearly increased to the 

maximum and linearly decreased to the minimum values for a few iterations. The 

change in the learning rate looks like a triangle shape, so it is called the triangular 
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learning rate policy. The demonstration of the learning rate values of the CLR scheduler 

is shown in Figure 19 b). The algorithm of the CLR scheduler is computed by Equation 

16. 

𝐿𝑜𝑐𝑎𝑙𝐶𝑦𝑐𝑙𝑒 = 𝑚𝑎𝑡ℎ. 𝑓𝑙𝑜𝑜𝑟(1 + 𝑒𝑝𝑜𝑐ℎ/(2 ∗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒))       (16) 

𝐿𝑜𝑐𝑎𝑙𝑋 = 𝑚𝑎𝑡ℎ. 𝑎𝑏𝑠(1 + 𝑒𝑝𝑜𝑐ℎ / 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 − 2 ∗ 𝑐𝑦𝑐𝑙𝑒 + 1) 
𝐿𝑜𝑐𝑎𝑙𝐿𝑅 = 𝑚𝑖𝑛𝐿𝑅 + (𝑚𝑎𝑥𝐿𝑅 −𝑚𝑖𝑛𝐿𝑅) ∗ 𝑚𝑎𝑡ℎ.𝑚𝑎𝑥 (0, (1 − 𝑥)) 

 

where 𝑒𝑝𝑜𝑐ℎ is the number of iterations when training, 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒  is the number of 

iterations in half a cycle, 𝑚𝑖𝑛𝐿𝑅 is the minimum learning rate, 𝑚𝑎𝑥𝐿𝑅 is the maximum 

learning rate, and 𝑥 is training data. 
 

4.3.5 Ensemble CNNs 

The ensemble method was proposed to enhance the recognition performance by 

combining the output of various machine learning models to assemble the final optimal 

recognition model (Alabbas, Khudeyer, & Jaf, 2016; Chompookham & Surinta, 2021). 

Consequently, the ensemble method guarantees better performance (Dietterich, 2000; 

Ganaie et al., 2021).  

In this research, the machine learning models employed in the ensemble 

method were pre-trained state-of-the-art CNN models, comprising MobileNetV1, 

MobileNetV2, DenseNet121, NASNetMobile, and Xception (Chollet, 2016; Howard et 

al., 2017a; Huang et al., 2018; Mark Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018; 

Zoph et al., 2018). We then trained CNN models with the following fine-tuned 

hyperparameters; optimization algorithms, data augmentation techniques, and learning 

rate (H. Li et al., 2020; Poojary, Raina, & Mondal, 2020). In this step, we collected 

diverse CNN models already used in the model selection by the ACO algorithm. 

Further, the output probabilities of the CNN models selected by the ACO algorithm 

were performed in the ensemble method. 

This section briefly presents the ensemble methods; unweighted average, 

weighted average, and cost-sensitive probability, that were performed in the 

experiments. 

 

        

a) b) 
 

Figure 19 Illustration of the learning rate values when using different learning rate 

schedules: a) time-based learning rate and b) cyclical learning rate. 
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A. Unweighted Average Method 

In this research, the output probabilities of CNN models were used in the 

ensemble methods. Further, the output probabilities were computed by the softmax 

function. For the unweighted average method, all the models have the same priority (Ju 

et al., 2018). Assigning a high weight value to any model is not necessarily. 

Furthermore, the outputs are averaged and the highest probability (𝑎𝑟𝑔𝑚𝑎𝑥(𝑝′)) is 

selected as a final recognition (J. Li et al., 2021). The unweighted average method is 

calculated by Equation 17. 

 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑝′) =  
1

𝑛
∑ (𝑦⃗⃗),𝑛
𝑖=1      (17) 

 

where   𝑦⃗  is the weight vector and  𝑛 is the number of CNN models. 

B. Weighted Average Method 

For the weighted average method, assigning weight values to the models is 

required. Weights were proposed to compute with the output probabilities of the CNN 

models (Florea & Andonie, 2019). The highest weight was given to the most achieved 

CNN model, although the lower weight was assigned to the other CNN models 

(Harangi, 2018). For the final recognition, the outputs were averaged and then the 

argmax function was proposed to select the final output. The weighted average method 

is calculated by Equation 18. 

 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑝′) =  
1

𝑛
∑ (𝑦⃗⃗𝛼𝑖)
𝑛
𝑖=1 ,      (18) 

 

where 𝑛 is the number of CNN models and  𝛼𝑖  is the weight values that compute with 

the weight vector (𝑦⃗). 

In this research, a grid-search method was used to discover the optimal 

weight parameters for each CNN model. The set of weight parameters was passed to 

the softmax activation function to scale the weight before computing the weights with 

the output probabilities. Consequently, the summation of all weights is equal to one 

(Nwankpa, Ijomah, Gachagan, & Marshall, 2018). The softmax activation function was 

computed by Equation 19. 

 

𝜎(𝑍) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑗=1

,           (19) 

 

where 𝑧 is an input weight vector, 𝑧𝑖   is the elements of 𝑧,   𝑒𝑧𝑖 is the exponential 

function for 𝑧𝑖 , 𝑒
𝑧𝑗 is the exponential function for 𝑧𝑗 , where 𝑗 = 1, . . , 𝐾, and 𝐾 is the 

number of weight vectors. 
 

C. Cost-sensitive Learning Method 

Rojarath and Songpan (2021) proposed a cost-sensitive learning method that 

is designed for weighted voting in the ensemble learning method. In the cost-sensitive 
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learning method, the true positive (𝑇𝑃𝑖) rate (is called sensitivity) and output 

probabilities (𝑃𝑟𝑜𝑏𝑖) of class 𝑖 were multiplied and used as the weight parameter of 

class 𝑖. In our research, the output probabilities were provided by the CNN models. 

Hence, the weight parameters were computed depending on the number of models (𝑛). 

The weight parameters of class 𝑖 were then averaged and proposed as a new weight of 

class 𝑖. The new weight of each class is computed by Equation 20. 

 

𝑁𝑒𝑤𝑊𝑒𝑖𝑔ℎ𝑡
𝑖
=  

1

𝑛
∑ (𝑇𝑃𝑖,𝑗 ∗ 𝑃𝑟𝑜𝑏𝑖,𝑗)
𝑛
𝑗=1 ,     (20) 

 

where 𝑇𝑃𝑖,𝑗  is true positive of class 𝑖 and model 𝑗, 𝑃𝑟𝑜𝑏𝑖,𝑗 is the output probabilities of 

class 𝑖 and model 𝑗, when 𝑁 is the number of models, and 𝑇𝑃𝑖 is computed by Equation 

21. 
 

𝑇𝑃𝑖 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖

𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖
    (21) 

 

4.4 Plant Leaf Datasets 

Two plant leaf image datasets used in the experiment were taken from natural 

environments. 

4.4.1 The Mulberry Leaf Dataset 

Chompookham and Surinta (2021) collected the mulberry leaf dataset using 

smartphones and DSLR cameras. This dataset has ten cultivars and contains 5 ,262 

mulberry leaf images taken from natural environments in 5  provinces of Thailand; 

Maha Sarakha, Phitsanulok, Chiang Mai, Buriram, and Nakhon Ratchasima. Further, 

ten mulberry cultivars a) Black Austurkey, b) Black Australia,  c) Taiwan Maechor,  d) 

Taiwan Strawberry, e) King Red, f) King White, g) Kamphaeng Saen 4 2 , h) Chiang 

Mai 60, i) Buriram 60, and j) mixed breed mulberry Chiang Mai 60 + Buriram 60, as 

shown in Figure 20. 

 

 
 

 

Figure 20 Examples of the mulberry leaf dataset. 
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Figure 21 Examples of the turkey-plant disease image dataset. 
 

4.4.2 The Turkey-plant Dataset 

Turkoglu et al. (2021) collected the Turkey-plant disease image dataset in 2021, 

which is of common diseases and pests found in Turkey. The challenge of this dataset 

is that the dataset contains unconstrained images, including different perspectives and 

different parts of plants. The Turkey-plant disease images were taken from natural 

environments using a Nikon 7200D camera with resolution of 4000x6000 pixels and 

stored in the RGB channel. This dataset consists of 1 5  categories and contains 4 ,447 

plant disease images, including a) Apple Aphis Spp, b) Apple Eriosoma Lanigerum, c) 

Apple Monillia Laxa, d) Apple Venturia Inaequalis, e) Apricot Coryneum Beijerinckii, 

f) Apricot Monillia Laxa, g) Fruit Trees Cancer Symptom, h) Cherry Aphis Spp, i) Fruit 

Trees Drying Symptom, j) Peach Monillia Laxa, k) Peach Parthenolecanium Corni, l) 

Pear Erwinia Amylovora, m) Plum Aphis Spp, n) Walnut Eriophyes Erineus, and o) 

Walnut Gnomonia Leptostyla, as shown in Figure 21. 

 

4.5 Performance Evaluation 

We used six evaluation metrics to measure the performance of the proposed method 

(Hicks et al., 2022; Hossin & M.N, 2015), as follows: 

 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (22) 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (23) 

 



 

 

 

 48 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (24) 

 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
          (25) 

 

F1− score =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
            (26) 

 

where TP, TN, FP, FN are true positive, true negative, false positive, and false negative, 

respectively.  

We also present the graph of the receiver operating characteristic (ROC) curve 

(Hajian-Tilaki, 2013; R. Kumar & Indrayan, 2011) that is used to comprehensively 

measure each performance index. In the ROC, the vertical axis is the true positive rate 

(TPR), which is equivalent to sensitivity, and the horizontal axis is the false positive 

rate (FPR), defined in the following: 

 

FPR = 1 −  Specificity            (27) 
 

We also present the area under the ROC curve (AUC) value to the separability 

measurement that the proposed model can determine between classes. Thus, the AUC 

value close to one perfectly classifies all the positive and negative classes. 

4.6 Experimental Results 

4.6.1 Implementation Detail 

For the implementation detail, we employed ant colony optimization (ACO) to 

automate select CNN models. Then, the selected CNN models were sent to classify 

using ensemble CNN models. The TensorFlow deep learning framework running on 

Google Colaboratory was used for all experiments. In these experiments, we evaluated 

the proposed method on two datasets, mulberry leaf and Turkey-plant. The mulberry 

leaf dataset was divided into training, validation, and test sets with a ratio of 70:10:20. 

We divided the Turkey-plant dataset with a ratio of 80:10:10 for training, validation, 

and test sets, respectively. The setups of each algorithm are described as follows. 

CNN. According to the ACO algorithms that we employed to choose the most 

appropriate CNN models, we planned to create many different CNN models based on 

pre-trained MobileNetV1 (Howard et al., 2017a), MobileNetV2 (M Sandler et al., 

2018), DenseNet121 (Huang et al., 2018), NASNetMobile (Zoph et al., 2018), and 

Xception (Chollet, 2016) models. Furthermore, we trained CNN models with the 

following hyperparameters: optimizers (SGD and RMSProp) (G. Hinton, Srivastava, & 

Swersky, 2012; Ruder, 2017), data augmentation techniques (height shift, vertical flip, 

and fill mode) (Perez & Wang, 2017; Shorten & Khoshgoftaar, 2019), learning rate 

(0.1, 0.01, and 0.001). As a result, 15 CNN models were obtained and used in the ACO 

process. 

ACO. In the first stage, two ACO algorithms were proposed to evaluate the 

performance of the ACO framework, including the ACS and MMAS. These two ACO 



 

 

 

 49 

algorithms were used to optimize the pheromones, which is the main objective of ACO 

algorithms. In addition, we also added two learning rate schedules to the ACO 

algorithms, including time-based and cyclical learning. Indeed, we evaluated the 

learning rate schedules with various learning rates values between 0.1 and 0.0001. In 

the second stage, we proposed two new fitness functions as follows. The fitness 

function computed from 1) the training loss is called FFtl and 2) the loss, error, and 

weighted accuracy is called FFtlew. Hence, we employed a grid-search technique (Zöller 

& Huber, 2019) to optimize the basic ACO parameters, including alpha (in the range 

between 1 and 5), beta (in the range between 1 and 9), evaporation rate (between 0 and 

1), number of ants (in the range from 20 to 100), and number of iterations (200 

iterations). 

Ensemble Learning. For ensemble learning, three ensemble learning methods 

were compared, including unweighted average, weighted average, and cost sensitive. 

In these processes, we also employed the grid-search algorithm to find the optimal 

weighted parameters for ensemble learning. 

4.6.2 Recognition Performance on the Mulberry Leaf Dataset 

4.6.2.1 Assessment of Ant Adaptation in ACO Algorithm 

In this section, we experimented with the number of ants that correlated with 

accuracy performance and response time obtained from finding the best route with ACS 

and MMAS algorithms. We determined the number of ants per route as 10, 20, 30, ..., 

and 70. The maximum iteration was assigned to 200 iterations. In this experiment, the 

ACO parameters with the following values; 𝛼 = 1, 𝛽 = 1, and 𝑝 = 0.95, were defined. 

Consequently, the ACO algorithm was allowed to find the best routs, which are the 

appropriate CNN models. Afterward, we sent the output of the CNNs to classify using 

the unweighted ensemble learning method. The results are presented in Table 8. 

As shown in Table 8, it was found that increasing the number of ants also 

increases response time while finding the best route. However, many ants are not 

guaranteed to find the optimal route and high accuracy. The ACS algorithm obtained 

the highest accuracy of 95.06% when using 50 ants, while the MMAS algorithm 

achieved the highest accuracy of 95.09% when using only 20 ants. Moreover, we 

compared the results of two algorithms (MMAS and ACS) using the paired t-test 

method and found that the MMAS algorithm is significant compared to the ACS 

algorithm (p < .05). 

4.6.2.2 Effect of Adding Learning Rate Schedule to ACO  

This section first focused on adjusting ACO parameters, including the 

fitness function, ACO algorithm, beta, and decay. Second, we experimented with 

adding the learning rate schedules (Time-based and cyclical) into the ACO algorithms. 

For the fitness function, we proposed two models consisting of FFtl and FFtlew to present 

the pheromone distribution after ants had walked along the possible paths. The best 

number of ants in each ACO algorithm was selected from the previous experiment, as 
shown in Section 4.6.2.1. Hence, we used the grid-search method to search the optimal 

beta and decay parameters. For the learning rate schedule, the learning rate value 
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between 0.1-0.0001 was selected. Finally, after the ants chose the most acceptable CNN 

models, we used ensemble learning with the unweighted average method to evaluate 

the proposed method. The experimental results are presented in Table 9. 

 

The experimental results from Table 9 show that optimizing the ACO 

parameters slightly affects the accuracy performance between 0.05-0.07%. We also 

evaluated the performance of the ACO algorithms (MMAS and ACS) when applying 

two different fitness functions (FFtl and FFtlew). First, we discovered that the FFtlew 

model slightly obtained better accuracy when combined with MMAS and ACS 

algorithms than the FFtl model with statistically significance at p < .01 (t-value = -

7.25379 and p-value = 0.000014). Second, we observed two learning rate schedules: 

time-based and cyclical, that applied to the ACO algorithms. In comparison, the ACS 

algorithm when combined with cyclical learning rate schedules achieved an accuracy 

of 95.17%. The results showed that the cyclical learning rate schedules always achieved 

better accuracy than the Time-based learning rate schedules.  

 

Table 8 Evaluation performances (average accuracy and standard deviation) of the 

ACO algorithms. 

ACO No. of Ants Accuracy Response Time (s.) 

 

ACS 

10 94.88±0.092 9.32 

20 94.91±0.098 14.5 

30 94.91±0.074 15.6 

40 95.02±0.096 16.4 

50 95.06±0.071 20.6 

60 94.91±0.232 22.7 

70 94.88±0.137 27.6 

 

MMAS 

10 95.02±0.071 6.71 

20 95.09±0.085 13.1 

30 95.01±0.000 14.9 

40 95.01±0.000 20.4 

50 95.04±0.058 28.3 

60 95.00±0.029 32.6 

70 95.04±0.035 36.4 
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Table 9 Accuracy performance (%) of the ACO algorithms on the mulberry leaf 

dataset when applying learning rate schedule and training on different fitness 

functions. 

Fitness 

Function 
ACO Beta Decay 

Learning Rate 

Schedule 

Learning 

Rate 

Accuracy 

(%) 

FFtl 

ACS 1 0.95 

None - 95.06±0.071 

Time-based 0.1 95.04±0.058 

Cyclical  0.001 95.02±0.029 

MMAS 1 0.95 

None - 95.09±0.085 

Time-based 0.001 95.04±0.035 

Cyclical  0.1 95.04±0.058 

FFtlew  

ACS 9 0.95 

None - 95.13±0.106 

Time-based 0.001 95.15±0.085 

Cyclical  0.001 95.17±0.035 

MMAS 8 0.95 

None - 95.14±0.092 

Time-based 0.001 95.11±0.074 

Cyclical  0.01 95.15±0.054 

 

As shown in Figure 22, we illustrated the distribution of the pheromone in epoch 

1 (first column), epoch 75 (second column), and epoch 150 (third column) when using 

the ACS algorithm with different learning rate schedules. We found that the ACS 

algorithm makes the distribution of pheromones poor (see Figure 22 a)). As a result, 

the ACS algorithm chooses the same CNN models without considering the new models. 

In comparison, when using the ACS algorithm with a cyclical learning rate schedule, 

the pheromone distribution gets better after epoch 75, as shown in Figure 22 c) in the 

second and third columns. Significantly, addition of a learning rate schedule increases 

the chance that the ACS algorithm selects the new best CNN model. 

We demonstrate two graphs to confirm that adding the learning rate schedule 

improves the performance of the ACS algorithm. Figure 23 a) represents the fitness 

value of ACS+Cyclical that dropped after epoch 75, while the fitness value of the ACS 

algorithm did not reduce after epoch 75. Thus, the chance of discovering the a CNN 

model is increased. Consequently, Figure 23 b) illustrates the accuracy of the 

ACS+Cyclical and ACS algorithms. The graph showed that the ACS+Cyclical 

algorithm outperformed using only the ACS algorithm in every epoch, except only 

epoch 125. 

 

 

 

 

 



 

 

 

 52 

     
a) 

      
b) 

     
c) 

 

Figure 22 Illustrated the adaptation of the pheromone when using (a) ACS algorithm, 

(b) ACS algorithm with time-based learning rate schedule, and (c) ACS algorithm 

with cyclical learning rate schedule. 

 

       
       a)              b) 

 

Figure 23 Illustration of a) the fitness values and b) accurate performance of the ACS 

and ACS+Cyclical algorithms. 
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Table 10 Performance of the ACO algorithms when classified the results with 

ensemble learning methods on the mulberry leaf dataset. 

ACO 

Learning 

Rate 

Schedule 

Learning 

rate 

Ensemble Learning Method 

Unweighted Average Weighted Average Cost-sensitive 

Accuracy F1-score Accuracy F1-score Accuracy F1-score 

ACS 
Time-based 0.001 95.15±0.085 0.9500±0.0009 95.34±0.031 0.9520±0.0003 95.15±0.085 0.9500±0.0009 

Cyclical 0.001 95.17±0.035 0.9501±0.0004 95.33±0.046 0.9519±0.0005 95.17±0.035 0.9501±0.0004 

MMAS 
Time-based 0.001 95.11±0.074 0.9497±0.0007 95.26±0.149 0.9513±0.0018 95.11±0.074 0.9497±0.0007 

Cyclical 0.01 95.15±0.054 0.9501±0.0005 95.30±0.036 0.9517±0.0003 95.15±0.054 0.9501±0.0005 

 

4.6.2.3 Performance of Ensemble Methods 

From the experiment in Section 4.6.2.2, we used the unweighted ensemble 

learning method to evaluate the performance of the ACO algorithms. As a result, we 

found that the ACO algorithms achieved the highest performance when training using 

FFtlew fitness function. Hence, in this section, we experimented with three ensemble 

learning methods; an unweighted average, weighted average, and cost-sensitive, to 

present the ensemble learning methods affecting the performance of the image 

classification system. 

 

As shown in Table 10, the cost-sensitive and unweighted average methods 

presented the same performance with 95.17% accuracy when using the ACS algorithm 

with a cyclical learning rate (learning rate = 0.001). On the other hand, the weighted 

average methods achieved the highest performance with an accuracy of 95.34% when 

using the ACS algorithm with the time-based learning rate schedule (learning rate 

=0.001). The precision, recall, and the ROC curve are shown in Figure 24 a), 24 b), and 

25, respectively. So, we obtained the AUC value of 0.997 (see Figure 25). 

 

 
 

a) b) 

 

Figure 24 Illustration of the precision a), and recall b) of the ensemble methods. 
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Figure 25 Illustration of the receiver-operating characteristic curve of the ACS 

algorithm with two learning rate schedule: time-based and cyclical. 

 

The confusion matrices of the unweighted average and weighted average 

learning methods are shown in Figure 26. We found that the most misclassified class 

was the class of king white. It was classified as the Taiwan Maechor. We also visualized 

the misclassified images. We found that misclassified images were taken with a lower 

perspective, were backlit, and in low light, as shown in Figure 27. 

 

  a)      b) 

 

Figure 26 The confusion matrices of the unweighted average a) and weighted 

average b) ensemble method on the mulberry leaf dataset. 
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Figure 27 Illustration of the misclassified images on the mulberry leaf dataset. 

 

Figure 28 shows the model selection or shortest path using the ACO algorithm. 

Figure 28 a) and 28 b) show different shortest paths of the 5 CNN models that achieved 

an accuracy of 95.20%. Figures 28 c) and 28 d) show that using more CNN models 

sometimes did not achieve the highest accuracy. The ACO algorithm selected 8 (see 

Figure 28 c)) and 7 (see Figure 28 d)) CNN models and achieved slightly less 

performance with an accuracy of 95.14%. 

4.6.3 Recognition Performance on the Turkey-plant Dataset 

The previous section reported on the evaluation of the ACO algorithm on the 

mulberry leaf dataset and found that the proposed method assigned the best CNN 

models for use in the ensemble learning method. In this section, we then experimented 

with the ACO algorithm on the Turkey-plant dataset to ensure that the proposed 

algorithm always selects the best model. The performance of the proposed method is 

shown as follows. 

 

4.6.3.1 Performances Evaluation of CNNs  

This section reports on using the pre-trained CNN models that were trained 

on the ImageNet and mulberry leaf datasets consisting of MobileNetV1, MobileNetV2, 

NASNetMobile, DenseNet121, and Xception. For the fine-tuning scheme, we divided 

90% of the Turkey-plant dataset as a training set, 10% as a validation set, and 10% as 

a test set. Then, we fine-tuned the CNN models with the following parameters; two 

optimization algorithms (SGD and RMSProp), the learning rate value of 0.1 and 

0.0001, and the batch size of 8 and 16. 
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a)                        b) 

 
     c)         d) 

 

Figure 28 Illustrated four different paths that selected using the ACO algorithm, 

including a) 1->2->11->13->12, b) 1->13->11->2->12, c) 1->2->8->13->12->7-

>6->11, and d) 1->2->12->13->4->7->5. Note that the arrow sign (->) means the 

sequence of the CNN models when experimenting in the ensemble learning method. 

 

Table 11 Performance evaluation of the CNN models on the Turkey-plant dataset. 

Model Optimizer 
Learning 

rate 

Batch 

Size 

Accuracy (%) 

Pre-

trained 

Model 

Pre-trained 

Model of 

Mulberry 

Dataset 

MobileNet RMSprop 0.0001 8 96.67 96.90 

MobileNetV2 RMSprop 0.0001 16 95.34 95.79 

NASNetMobile RMSprop 0.0001 8 87.80 91.57 

DenseNet121 SGD 0.01 8 98.00 98.89 

Xception RMSprop 0.0001 8 97.34 96.67 
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As shown in Table 11, we found that the DenseNet121 architecture achieved 

the highest accuracy of 98.89% when using SGD optimization and fine-tuned on the 

mulberry leaf dataset. In contrast, NASNetMobile obtained an accuracy of only 87.80% 

when using the pre-trained model of the ImageNet, which is the worst performance. In 

the following experiments, however, we used the ACO algorithm to select the best CNN 

models from all the CNN models trained in this section. 

4.6.3.2 Comparison of Learning Rate Schedule in the ACO Algorithm 

To compare the accuracy performance of the learning rate schedule (time-

based and cyclical), we then adjust the following parameters; learning rate, beta, decay, 

and fitness function.  

As shown in Table 12, the experimental results indicated that training the 

ACO algorithm using the learning rate schedule consistently achieved better 

performance than without using the learning rate schedule. Consequently, using the 

FFtlew fitness function achieved higher performance than the FFtl fitness function. The 

result showed that the MMAS method when tuning with beta = 8 and decay = 0.95 and 

using a time-based learning rate schedule with a learning rate of 0.001 achieved an 

accuracy of 99.11% on the Turkey-plant dataset. 

 

Table 12 Accuracy performance (%) of the ACO algorithms on the Turkey-plant 

dataset when applying learning rate schedule and training on different fitness 

functions. 

Fitness 

Function 
ACO Beta Decay 

Learning Rate 

Schedule 

Learning 

Rate 

Accuracy 

(%) 

FFtl 

ACS 1 0.95 

None - 98.94±0.186 

Time-based 0.1 99.02±0.121 

Cyclical  0.001 99.02±0.121 

MMAS 1 0.95 

None - 98.94±0.099 

Time-based 0.001 99.07±0.099 

Cyclical  0.1 98.94±0.186 

FFtlew 

ACS 9 0.95 

None - 98.98±0.121 

Time-based 0.001 98.98±0.336 

Cyclical  0.001 99.02±0.121 

MMAS 8 0.95 

None - 99.02±0.121 

Time-based 0.001 99.11±0.157 

Cyclical  0.01 99.02±0.121 
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Table 13 Performance of the ACO algorithms with ensemble learning methods on the 

Turkey-plant dataset. 

ACO 
Learning 

rate 

schedule 

Learning 

rate 

Ensemble Learning Methods 
Unweighted Average Weighted average Cost-sensitive 

Accuracy F1-score Accuracy F1-score Accuracy F1-score 

ACS 
Time-based 0.001 98.98±0.336 0.9903±0.0031 99.33±0.000 0.9934±0.0000 98.94±0.364 0.9893±0.0037 

Cyclical 0.001 99.02±0.121 0.9910±0.0007 99.29±0.098 0.9929±0.0010 98.94±0.243 0.9894±0.0024 

MMAS 
Time-based 0.001 99.11±0.157 0.9916±0.0014 99.29±0.098 0.9929±0.0010 99.07±0.243 0.9907±0.0024 
  Cyclical 0.01 99.02±0.121 0.9910±0.0010 99.33±0.000 0.9934±0.0000 98.94±0.243 0.9894±0.0024 

 

4.6.3.3 Performance Evaluation of Ensemble Learning Methods 

In this experiment, we compared the accuracy and F1-score results of three 

ensemble learning methods; unweighted average, weighted average, and cost-sensitive. 

We show the obtained results with the ensemble learning methods on the Turkey-plant 

dataset in Table 13. 

To summarize the experimental results, the weighted average ensemble 

learning method outperformed both the unweighted average and cost-sensitive in terms 

of accuracy. The weighted average method achieved an accuracy of 99.33% and an F1-

score of 99.34% on the Turkey-plant dataset. On the other hand, the cost-sensitive 

method achieved the worst performance. Furthermore, the precision, recall, and ROC 

curve are shown in Figure 29 a), 29 b), and 30, respectively. The AUC value (see Figure 

30) showed that the ACS method using the cyclical learning rate achieved a very high 

value of 0.99995. 

 

       
 a)       b) 

 

Figure 29 Precision a), and recall b) of the ensemble CNN methods on the turkey-

plant dataset. 
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Figure 30 Comparison of ROC curve of MMAS with different learning rate schedule 

on the turkey-plant dataset. 

We present the confusion matrix of the weighted average method in Figure 

31. It shows only three images that were misclassified. The misclassified images are 

visualized in Figure 32. 

   

 

Figure 31 The confusion matrix of the weighted average method on the Turkey-plant 

dataset. 
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Figure 32 Illustration of the three misclassified images on the Turkey-plant dataset. 

 

 
a)                    b) 

 

Figure 33 Illustrated two paths that were selected using the ACO algorithm, 

including a) 1->12->13 and b) 1->10->13. 

 

Figure 33 illustrates the shortest path using the ACO algorithm. Figure 33 

a) and 33 b) present different shortest paths of the 3 CNN models. As a result, Figure 

33 a) achieved an accuracy of 99.33% and Figure 33 b) attained an accuracy of 99.11%. 

 

4.7 Big-O Analysis Results 

 We used the Big-O analysis to measure the time computation performance of 

the proposed algorithm, as follows. 

  

4.7.1 Big-O analysis of ACO algorithm 

As shown in Algorithm 2, Lines 2-6 are used as the route construction by ant 

systems: ACS and MMAS. An ant will find the best route in each iteration using ACS 

or MMAS algorithms. In this case, Big-O = O(|M|), where |M| is the number of ants. 

Line 7 is the pheromone updating that uses Big-O = O(1), but it computes the route in 

each iteration. Hence, Big-O = (1.|N|). In Line 10, the pseudo-code allows the program 

to save the best route, using Big-O = O(1). However, it computes in every iteration. In 
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this algorithm, the Big-O analysis is O(|M|+1.|N|+1.|N|). In conclusion, the Big-O 

analysis of this algorithm is Big-O = O(|M|.|N|). 

 

Algorithm 2: ACO algorithm 

1. For  𝑖 =1 to 𝑁 do 

2. For  𝑗 =1 to 𝑀 do 

3. Route construction by ant system 

4.     if  ACS algorithm          

5.     if  MMAS algorithm      

6. End for  
7. Update the pheromone by ant system 

8. if   ACS algorithm        

9. if   MMAS algorithm    

10. Save best ACO solution (𝑇(𝑖,𝑗)
𝑏𝑒𝑠𝑡) 

11. End for 

 

 

4.7.2 The Big-O analysis of the ACO algorithm combined with an ensemble 

method 

 

Algorithm 3: ACO algorithm combined with ensemble method 

1. For  𝑖 =1 to 𝑁 do 

2. For  𝑗 =1 to 𝑀 do 

3. Route construction by ant system 

4.     if  ACS algorithm          

5.     if  MMAS algorithm      

6. Create ensemble CNNs  

7. For  𝑘 =1 to 𝑅 do 

8. if  unweighted average method       

9. if  weighted average method           

10. if  cost-sensitive learning method  

11. End for   

12. End for 

13. Update the pheromone by ant system 

14. if   ACS algorithm        

15. if   MMAS algorithm    

16. Save best ACO solution (𝑇(𝑖,𝑗)
𝑏𝑒𝑠𝑡) 

17. End for 

 

As shown in Algorithm 3, Lines 2-12 are used as the route construction by ant 

systems. In this study, Big-O = O(|M|.|R|), where |M| is the number of ants and |R| is 

the number of CNN models. Line 13 is the pheromone updating that uses Big-O = O(1), 

but it computes the route in every iteration , then Big-O = (1.|N|). In Line 16, the pseudo-

code allows the program to save the best route, using Big-O = O(1). In this algorithm, 
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the Big-O analysis is O(|M|.|R|+1.|N|+1.|N|). In conclusion, the Big-O analysis of this 

algorithm is Big-O = O(|M|.|R|.|N|). 

 

4.7.3 The Big-O Analysis of the ACO algorithm combined learning rate 

schedule and ensemble method 

 

Algorithm 4: ACO algorithm combined learning rate schedule and ensemble 

method 

1. For  𝑖 =1 to 𝑁 do 

2. For  𝑗 =1 to 𝑀 do 

3. Route construction by ant system 

4.     if  ACS algorithm          

5.     if  MMAS algorithm      

6. Create ensemble CNNs  

7. For  𝑘 =1 to 𝑅 do 

8. if  unweighted average method       

9. if  weighted average method           

10. if  cost-sensitive learning method  

11. End for   

12. End for 

13. Calculate η by learning rate schedule 

14. if   time-based scheduler                       
15. if   cyclical learning rate scheduler       
16. Update the pheromone by ant system 

17. if   ACS algorithm        

18. if   MMAS algorithm    

19. Save best ACO solution (𝑇(𝑖,𝑗)
𝑏𝑒𝑠𝑡) 

20. End for 

 

As shown in Algorithm 4, Lines 2-12 are used as the route construction by ant 

systems. In this study, Big-O = O(|M|.|R|), where |M| is the number of ants and |R| is 

the number of CNN models. Line 13 computes the learning rate using Big-O = O(1), 

but it computes in every iteration, then Big-O = (1.|N|). Line 16 is the pheromone 

updating that uses Big-O = O(1), but it computes the route in every iteration, then Big-

O = (1.|N|). In Line 19, the pseudo-code allows the program to save the best route, using 

Big-O = O(1). In this algorithm, the Big-O analysis is O(|M|.|R|+1.|N|+1.|N|). In 

conclusion, the Big-O analysis of this algorithm is Big-O = O(|M|.|R|.|N|). 

To conclude, the ACO algorithm has a Big-O analysis with higher performance 

than the ACO algorithm combined with the ensemble method. Additionally, Big-O 

analysis of the ACO algorithm combined with the ensemble method shows a similar 

analysis with the ACO algorithm combined learning rate schedule and ensemble 

method. 
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4.8 Comparison of the Proposed ACO Algorithm and Other Existing Methods 

We compared our proposed ACO algorithm and existing methods on two datasets: 

mulberry leaf and Turkey-plant. The experimental results showed that the proposed 

ACO algorithm, which changes the fitness function and adds a learning rate schedule 

to find the shortest path of the CNN models, strongly outperformed the previous method 

on both mulberry leaf and Turkey-plant datasets with an accuracy of 95.34% and 

99.33%, respectively. The comparative results of the two plant leaf datasets are shown 

in Table 14. 

 

Table 14 Recognition performance on the Turkey-plant and the mulberry leaf datasets 

with the existing methods. 

Dataset Reference Method Accuracy (%) 

The mulberry 

leaf dataset 

Chompookham 

and Surinta 

(Chompookham & 

Surinta, 2021) 

5-EnsCNNs 94.75 

Our proposed Automatic model Selection 

(The proposed ACO 

algorithm and Ensemble 

CNNs with weighted 

average method) 

95.34 

The Turkey-

plant dataset 

Turkoglu et al. 

(Turkoglu et al., 

2021) 

PlantDiseaseNet: Ensemble 

CNNs with 5 CNN models  

97.56 

 

Our proposed Automatic model Selection 

(The proposed ACO 

algorithm and Ensemble 

CNNs with weighted 

average method) 

99.33 

 

4.9 Discussion 

In this paper, we proposed an automatic model selection based on the ant colony 

optimization (ACO) algorithm that aims to select the robust convolutional neural 

network (CNN) model. In the original ACO algorithm, however, we found that the 

ACO algorithm selects the shortest path based on the attractiveness values calculated 

from the pheromones table. It is highly possible that the ants may walk on the same 

path. So, the chance of finding new routes is low. We then proposed the new fitness 

function, called FFtlew  and added a learning rate schedule to the ACO algorithm that 

distributes the value of pheromones to the appropriate pheromone values, as shown in 
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Figures 22 a) and 22 c). Consequently, all the selected CNN models, which were 

automatically selected using the ACO algorithm, achieved better performance when 

classified using the ensemble CNNs method. 

 

4.10 Conclusion 

This research proposed a new ant colony optimization (ACO) algorithm that 

aims to select the robust convolutional neural network (CNN) models in ensemble 

CNNs. For the proposed ACO algorithm, we first designed a new fitness function, and 

second, the learning rate schedule was added to the ACO algorithm to learn the fitness 

function and decrease the fitness function in each iteration. The advantage of the 

proposed methods is the distribution of the pheromone values, so it could take the 

chance to select the new robust CNN models, not select only the old CNN models. 

Subsequently, the robust CNN models selected by the proposed ACO algorithm were 

used in the ensemble learning method. Furthermore, when the proposed ACO algorithm 

selects two sets of CNN models, these two sets of CNN models always attained high 

performance. 

We evaluated the proposed ACO algorithm on two plant leaf datasets: mulberry 

and Turkey-plant. First, we trained state-of-the-art CNN models (MobileNetV1, 

MobileNetV2, DenseNet121, NASNetMobile, and Xception) with fine-tuned various 

hyperparameters, including data augmentation techniques (height shift, vertical flip, 

and fill mode), optimization algorithms (SGD and RMSProp), and learning rate (0.1, 

0.01, and 0.001), which is 15 CNN models in total. Hence, the proposed ACO algorithm 

enables the automatic selection of robust CNN models. Second, for the ACO algorithm, 

we also compared two ACO frameworks: the ant colony system (ACS) and the max-

min ant system (MMAS), to present the best ACO framework. We found that the 

MMAS framework outperformed the ACS framework. Third, three ensemble learning 

methods; unweighted average, weighted average, and cost-sensitive, were compared. 

In our experiments, the weighted average method performed the best. Further, the grid-

search method was proposed to discover the weighted parameters. As a result, the 

proposed ACO algorithm achieved high accuracy on the Turkey-plant dataset with 

above 99.33% and achieved 95.34% on the mulberry leaf dataset. We compared our 

proposed ACO algorithm with other methods and found that the proposed ACO 

algorithm outperformed the existing methods on mulberry and Turkey-plant leaf 

datasets. 

There is still space for improving the accuracy of the mulberry leaf dataset 

because the proposed ACO algorithm achieved an accuracy of only 95.34%. To 

enhance the performance, we plan to work on the ACO algorithm using local search in 

future work. Other meta-heuristic methods include particle swarm optimization (PSO) 

(Gad, 2022; Jana, Mitra, Pan, Sural, & Chattaraj, 2019) and artificial bee colony 

optimization (M. Zhao, Song, & Xing, 2022), also the aim of our considerations. The 

combination and hybrid approaches, such as PSO & line spectral frequencies (LSF) 

(Neekabadi & Kabudian, 2018), genetic algorithm & voltage source inverter (VSI) 

(Lopez, Cruz, & Gutierrez, 2021), harmony search & evolution strategy, will be 

considered in future work. 



 

 

 

Chapter 5 

Discussion 

 

The research objective described in the dissertation is to design and develop an 

automatic image classification system using deep learning to classify plant disease 

problems. Firstly, we focused on classifying plant leaf images taken in the lab. We 

introduced multiple grids to divide plant leaf images. The divided images were then 

extracted for robust features using traditional feature extraction methods. Then, the 

dimensionality reduction method was used to reduce the feature vector size and bring 

the feature vector learned and classified using machine learning methods. Secondly, we 

proposed the ensemble convolutional neural network (CNN) method to create robust 

CNN models and then combined the output of each CNN model to generate the optimal 

predictive model, called the ensemble method. In this process, we classified plant leaf 

disease images that were captured from natural environments. Finally, we focused on 

the optimization algorithm called ant colony optimization (ACO) to automatically 

select the robust CNN models. We improved the performance of the ACO algorithm by 

proposing a new fitness function and adding the objective function to the ACO 

algorithm to distribute the pheromone values. We proved that the ACO algorithm when 

adding the proposed method could automatically select the robust CNN models and 

improve the efficiency of the image classification system.  

We briefly discussed the challenges of an automatic image classification system 

using the traditional method and deep learning method. 

In Chapter 2, due to the problem of classifying leaves of different species with 

similar leaf shapes and leaves of the same plant but with different leaf shapes, we 

presented multiple grids and a dimensionality reduction-based descriptor approach to 

solving this problem. First, the multiple grid method was used to divide the leaf images 

into subareas and then calculate the subarea using robust feature extraction methods, 

including histogram of oriented gradients (HOG), local binary patterns (LBP), and color 

histogram. The distinctive features of the plant leaf were extracted in this process. 

Second, the distinctive features were fed to principal component analysis (PCA), which 

is a dimensionality reduction method, to reduce the feature vector size. Finally, the 

machine learning techniques, including support vector machine (SVM) and multi-layer 

perceptrons (MLP), were used to create the model from the reduction features. The 

experimental result showed that the proposed method achieved high accuracy with 

more than 99% on the Folio dataset. 

Chapter 3 presented the ensemble CNN method to classify plant leaf images taken 

in natural environments. First, the robust CNN models were created based on state-of-

the-art CNN architectures, including MobileNetV1, MobileNetV2, Xception, 

DenseNet121, and NASNetMobile. We fine-tuned the CNN models using three 

optimization algorithms (stochastic gradient descent (SGD), Adam, and RMSProp), 

different learning rates (0.1, 0.01, 0.001, and 0.0001), batch sizes (8, 16, 32, and 64), 

and different data augmentation methods. Second, three and five robust CNN models 

were discovered and used in the ensemble learning method, called 3-EnsCNNs and 5-

EnsCNNs. Finally, the output probabilities of CNN models were then transferred to the 

ensemble learning method to classify the plant leaf images. Three ensemble methods 

were compared for the ensemble learning method: unweighted majority vote, 
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unweighted average, and weighted average. The proposed methods were evaluated on 

three plant leaf image datasets: mulberry, tomato, and corn. The experimental results 

showed that the weighted average ensemble method outperformed other ensemble 

methods for the ensemble learning method. The ensemble CNN method achieved more 

than 99% accuracy on the tomato and corn leaf diseased datasets and above 94% on the 

mulberry leaf dataset. 

Chapter 4 aimed to select the best-CNN models for use in the ensemble CNN 

method. We then proposed an automatic model selection based on the ACO algorithm. 

The most significant of the proposed ACO algorithms is the chance of finding new 

routes and still obtaining a high classification performance. To improve the 

performance of the ACO algorithm, we presented the new fitness function and learning 

rate schedules used for calculating the pheromones. The proposed method could 

distribute the pheromone to the appropriate values. The proposed ACO algorithm 

increases the chance of automatically selecting the best-CNN models. Further, the best-

CNN models were used in the ensemble learning method, called the ensemble CNN 

method. The ensemble CNN method is highly accurate when classified using the best-

CNN models. 

 

5.1 Answers to the Research Questions 

This section answered three research questions (RQ) related to improving the 

plant leaf classification system in detail, according to the research question in Section 

1. 

RQ1: Plant species generally can be classified from plant organs, such as 

leaves, bark, flowers, seeds, and stems. However, the leaf is the most distinctive plant 

part that could be easier classified than other parts. Is it possible to classify plant leaf 

images using image processing and machine learning methods? Extracting the features 

from plant leaves is an important method. Furthermore, many local descriptor methods 

are proposed to extract the robust features (called handcraft features) from objects that 

appear in the image. Could machine learning techniques accurately classify the plant 

leaf images that extract the handcraft features using local descriptor methods and color 

features?  

To answer RQ1, we focused on improving the image processing and machine 

learning methods to classify plant leaf images taken in a lab with a white background, 

called the Folio dataset, which contained 32 different plant leaf species. First, we 

proposed a grid-based technique to divide plant leaf images into subareas and then 

extracted the features using different feature extraction methods: HOG, LBP, and color 

histogram. We also used PCA to decrease the feature size calculated from the feature 

extraction methods. Hence, relatively low-dimensional features were transferred to the 

machine learning techniques to create a model and classify. To select the best machine 

learning technique, we compared two techniques: SVM and MLP, in terms of accuracy 

and computation time. The results showed that the SVM technique slightly 

outperformed the MLP technique. When comparing the feature extraction techniques, 

we found that the color histogram technique was better than the HOG and LBP 

methods. Consequently, the combination of these three techniques showed outstanding 
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results. As a result, the proposed method achieved an accuracy above 98.7% on the 

Folio dataset. 

RQ2: In the previous RQ, image processing and machine learning methods 

were proposed to classify plants from plant leaf images. However, most plant diseases 

showed on the leaves, such as downy mildew, leaf spot, leaf blotch/leaf blight, and rust. 

Could we classify the disease if the disease appears on the plant leaf? Could we classify 

the plant leaf diseases using the deep learning method, such as CNN? Additionally, is 

there any method to enhance the performance of the deep learning method? 

From work to answer RQ1, we discovered that image processing and machine 

learning techniques could be proposed to recognize the plant leaf images. In this 

research, we aimed to use a deep learning technique to classify plant leaf images: 

healthy and disease, taken from natural environments. To include differnet plant leaf 

diseases, we then selected the tomato and corn leaf disease datasets, which is the subset 

of the PlantVillage dataset that is taken from natural environments. For healthy plants, 

we collected 5,262 mulberry leaf images of ten cultivars from five provinces of 

Thailand: Chiang Mai, Phitsanulok, Nakhon Ratchasima, Buriram, and Maha 

Sarakham, called mulberry leaf dataset. This dataset was taken from natural 

environments and images were recorded from different perspectives.  

For the deep learning technique, we first used CNNs to create a robust model. 

Five CNN models: MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and 

Xception, were trained. The data augmentation techniques, including height shift, 

vertical flip, fill mode, and mixed-method, were also employed when training the CNN 

models. In this process, we create various robust CNN models. Second, we use the 

ensemble CNNs method to classify the plant leaf images. We combined three and five 

CNN models, called 3-EnsCNNs and 5-EnsCNNs. The multiple CNN outputs could 

benefit more from classification than only single CNN output. The experimental results 

showed that the ensemble CNNs method consistently outperformed the single CNN on 

the mulberry leaf dataset and two leaf disease datasets: tomato and corn leaf disease. 

As a result, we achieved an accuracy of 94.75% on the mulberry leaf dataset and above 

99.4% on two leaf disease datasets.  

We could guarantee from our experimental results that the ensemble CNNs 

method could enhance the performance of the CNN model on the plant leaf 

classification. 

RQ3: If the ensemble learning with the weighted average method performs 

better classification performance than using only one CNN model. How could we select 

the best-CNN models to create the ensemble CNNs method? However, could we use 

ACO can automatically select robust CNN models and ensemble the CNN models in 

the ensemble learning method?  
 

We found from RQ2 that the ensemble CNNs method performs better than one 

CNN model. However, selecting the best-CNN models is not manageable when we 

have too many of them. We proposed the automated method to select the best-CNN 

models based on ACO. The proposed ACO method computed the pheromone with the 
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new fitness function and learning rate schedules, such as the time-based and cyclical. 

This technique could create more distributed pheromone values. Then, ants could create 

the new best path. As a result, the proposed method could automatically select many 

sets of the best-CNN models. We then created ensemble CNNs that were automatically 

selected using the proposed ACO method and evaluated on the mulberry leaf and 

Turkey-plant disease image datasets. The result showed that each set of the best-CNN 

models achieved high accuracy. 

5.2 Future Work 

 This thesis presented a novel automated plant leaf classification system using a 

deep learning method. However, the research still has a gap in enhancing the 

performance of plant leaf image classification. Firstly, if the plant leaf images are 

inadequate, the data augmentation techniques, such as generative adversarial networks 

(GAN) (Shorten & Khoshgoftaar, 2019), AutoAugment (Cubuk, Zoph, Mané, 

Vasudevan, & Le, 2019), and the sample paring method (Inoue, 2018), are the most 

acceptable solution to generate new plant leaf images. Secondly, the local search and 

incremental local search are suggested for the ACO algorithm. Other complex and 

robust meta-heuristic methods, such as particle swarm optimization (PSO)  (Gad, 2022; 

Jana et al., 2019), artificial bee colony optimization (M. Zhao et al., 2022),  and also 

the hybrid approaches, such as PSO & line spectral frequencies (LSF) (Neekabadi & 

Kabudian, 2018), genetic algorithm & voltage source inverter (VSI) (Lopez et al., 

2021), and harmony search & evolution strategy (Weyland, 2015) are solutions to 

selecting robust CNN models.
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