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ABSTRACT

Knowledge of botany is necessary in order to classify plants accurately.
Sometimes, even experts can misclassify a plant. To reduce errors that are made by a
human, in this thesis, we aimed to invent an automated plant leaf classification system
that could classify plants from leaves using deep learning techniques. The proposed
method could also classify diverse plants and identify plant diseases from leaves. In
this thesis, we presented three approaches to addressing the challenges of plant leaf
classification.

In the first approach, we invented a method to classify various healthy plant
leaf images taken in the laboratory, called the multiple-grid method. This method could
extract robust features from the local area using different feature extraction methods:
histogram of oriented gradients (HOG), local binary patterns (LBP), and color
histogram. Hence, the principal component analysis (PCA) technique was proposed to
reduce the size of the feature and finally fed to the machine learning techniques: support
vector machine (SVM) and multi-layer perceptrons (MLP). The proposed method
achieved high accuracy in plant leaf image recognition.

In the second approach, the leaf images (healthy and diseased) taken in the
natural environments were classified using the ensemble convolutional neural networks
(CNNs) method. For the CNN models, we created various CNN models based on five
architectures:  MobileNetV1, MobileNetVV2, Xception, DenseNetl21, and
NASNetMobile. The CNN models were fine-tuned with different parameters, including
optimizers, batch sizes, and data augmentations. For the ensemble learning method, we
classified the output probabilities of 3 CNN models (called 3-EnsCNNs) and 5 CNN
models (called 5-EnsCNNs) with three different ensemble learning methods:
unweighted majority vote, unweighted average, and weighted average. As a result, the
ensemble CNN with the weighted average method outperformed other ensemble
learning methods on three different plant leaf datasets.

In the third approach, we automatically selected the best-CNN models
using the ant colony optimization (ACQ) algorithm used in the ensemble CNN method.
According to the ACO algorithm, we first proposed the new fitness function computed
by the loss and error while training the CNN models. Second, the learning rate
schedule was included in the ACO algorithm to decrease the fitness value between each



CNN model while training the ACO algorithm. We compared the performance of two
learning rate schedules: the time-based and cyclical learning rate, and found that
two learning rate schedules contributed to improving the ACO algorithm.
Consequently, the proposed ACO algorithm outperformed the existing methods on
mulberry leaf and turkey plant datasets.

We also found that many deep learning techniques could be proposed for
automated plant leaf image classification. However, when we focus on the ensemble
CNNs method, we should have an automated method to select the best-CNN models.
Further, the proposed ACO algorithm is one of the best solutions for creating an
automated plant leaf classification system. Adding the new robust CNN models to the
system enables the proposed method to train the ACO algorithm and automatically
choose the best-CNN models.

Keyword : Plant Leaf Recognition, Multiple Grids Approach, Local Descriptor,
Dimensionality Reduction, Support Vector Machine, Multi-Layer Perceptron,
Convolutional Neural Network, Ensemble Method, Ensemble Learning Method,
Ensemble Convolutional Neural Network, Ant Colony Optimization, Automatic
Model Selection, Metaheuristic, Learning Rate Schedules, Time-based Learning Rate
Schedule, Cyclical Learning Rate
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Chapter 1

Introduction

1.1 Introduction

Plants are critical to human life and have many side-benefits, such as being used as
food, medicine, and industry (Du, Wang, & Zhang, 2007). Medicinal plants have
especially been used in folk medicine since ancient times. Herbs are often identified by
experience through touch or olfaction (Hoffman, Cruickshanks, & Davis, 2009).
However, some plants have similar botanical characteristics but have different benefits
and toxins.

Nowadays, researchers use artificial intelligence (Al) to classify plant species and
enable people without botanical knowledge to use Al to classify plant species
accurately (Vo, Dang, Nguyen, & Pham, 2019). Generally, many different plant organs
are useful for classification, including leaves, bark, flowers, seeds and stems. However,
leaf analysis is most important as leaves has some features and characteristics, including
texture, shape, color, and other geometric features (Z. Q. Zhao et al., 2015). The
performance of many plant recognition systems depends on the features extracted from
leaves (Suwais, Alheeti, & Dosary, 2022).

We found that most of the research in plant disease classification uses leaves to
determine plant diseases (Aravind et al., 2018; A. Kumar & Vani, 2019; Puangsuwan
& Surinta, 2021; Turkoglu, Yanikoglu, & Hanbay, 2021; Enkvetchakul & Surinta,
2022). Hence, early classification could decrease the severity and spread of the disease.
It also could effectively help an agriculturalist prevent diseases. Most researchers
classified plants based on leaves since only the leaves are sufficient for classification
(Khmag, 2017; Waéldchen, Rzanny, Seeland, & Mader, 2018). However, the most
severe difficulty in recognizing leaf images is that the leaf images were taken in natural
environments. So, images taken from different perspectives have a chance to increase
noise, backlighting and shadow in the image, which are barriers to accurate
classification.

Obviously, a person with limited knowledge about plants and plant diseases will
benefit from this research area. In this thesis, we proposed an automated classification
system to address the challenge problems of plant leaf images taken in real-world
environments. Accurate performance was achieved.

1.2 Research Aim

This thesis aims to develop an automatic plant leaf classification system using a
deep learning technique.

1.3 Research Questions

Classifying a plant species is not easy for ordinary people who would like to be an
expert in the task which requires time spent in study. We can now use artificial
intelligence to classify some plant species instead of botanists. However, creating the
automated plant classification system is not completed research. The is still a gap to
improve the performance of the system. In this thesis, we have three research questions



that could enhance the performance of the automated plant classification system, as
follows.

RQ1. Plant species generally can be classified from plant organs, such as leaves,
bark, flowers, seeds, and stems. However, the leaf is the most distinctive plant part that
could be easier classified than other parts. Is it possible to classify plant leaf images
using image processing and machine learning methods? Extracting the features from
plant leaves is an important method. Furthermore, many local descriptor methods are
proposed to extract the robust features (called handcraft features) from objects that
appear in the image. Could machine learning techniques accurately classify the plant
leaf images that extract the handcraft features using local descriptor methods and color
features?

RQ2. In the previous RQ, image processing and machine learning methods were
proposed to classify plants from plant leaf images. However, most plant diseases
manifest symptoms on the leaves, such as downy mildew, leaf spot, leaf blotch/leaf
blight, and rust. Could we classify the disease if the disease appears on the plant leaf?
Could we classify the plant leaf diseases using the deep learning method, such as
convolutional neural network (CNN)? Additionally, is there any method to enhance the
performance of the deep learning method?

RQa3. If the ensemble learning with the weighted average method achieves
better classification performance than using only one CNN model. How could we select
the best-CNN models to create the ensemble CNNs method? Could we use ant colony
optimization (ACO) to compute the optimal route that combines the best-CNN models
and use the CNN models in the ensemble learning method?

We will present a concrete answer to all research questions (RQ1 to RQ3) in
Chapter 5.

1.4 Contributions

The significant contribution of the thesis is a novel image classification system for
an automatic selection of best-CNN models using the proposed ACO algorithm for
classified plant leaf images. In this thesis, we performed experiments on four plant leaf
datasets: Folio (Munisami, Ramsurn, Kishnah, & Pudaruth, 2015), Mulberry leaf
(Chompookham & Surinta, 2021), PlantVillage (especially, Tomato and corn leaf
diseases) (Hughes & Salathé, 2015), and Turkey-plant disease (Turkoglu et al., 2021).

The first part of the thesis concentrated on the traditional method of image
processing and machine learning techniques. Three feature extraction methods were
employed to extract the robust features from the subarea of the divided leaf images
using a grid-based method. Hence, the dimension reduction method was proposed due
to the enormous dimension of the feature vector before transferring features to the
machine learning technique to create the model and classify, as presented in Chapter 2.

In the second part, the CNN architectures, which are one of the most successful
deep learning methods, were used to classify plant leaves and plant leaf diseases.



Moreover, the output probabilities of each state-of-the-art CNN model were then
combined and operated by the ensemble learning method to classify the final output,
called the ensemble CNNs method, as shown in Chapter 3.

Finally, a novel automatic model selection method based on the ACO algorithm is
presented in Chapter 4. The principle of the ACO algorithm is using an agent, called
ant, to find the shortest route from one location to another. It will spread the pheromones
along that particularly suitable path. Then, other ants could follow that specific route.
However, other ants could find other routes if that path is the shortest. In this thesis, the
ACO algorithm is proposed to choose the best-CNN models as the best route to obtain
the highest classification accuracy. We create the ensemble CNN model using the best-
CNN models that are strongly suggested by the proposed ACO algorithm. Furthermore,
two main functions were added to the ACO algorithm; these were 1) the new fitness
function that is computed from the loss and error values of the interested CNN models,
and 2) the learning rate schedules, which is used in the training process, is proposed to
learn on the new fitness function and attempt to lower the fitness value between each
CNN model. The proposed method also directly affects the distribution of the
pheromones, increasing the chance of discovering the new best route.

This thesis is based on the following publications.

e Chompookham, T., Gonwirat, S., Lata, S., Phiphiphatphaisit, S., & Surinta, O.
(2020). Plant Leaf Image Recognition Using Multiple-Grid Based Local
Descriptor and Dimensionality Reduction Approach. The 3rd International
Conference on Information Science and System (ICISS), 72-77.
https://doi.org/10.1145/3388176.3388180

e Chompookham, T., & Surinta, O. (2021). Ensemble methods with deep
convolutional neural networks for plant leaf recognition. Letters, ICIC Express,
15(6), 553-565. https://doi.org/10.24507/icicel.15.06.553

1.5 The Automated Plant Leaf Image Recognition System

The main objective of the research presented in this thesis is to study the
traditional methods (image processing and machine learning techniques), deep
learning, and optimization model selection algorithm to automatically select the best
models for the ensemble learning method. In this chapter, we presented the basic
knowledge that assists the reader in understanding the broad idea of the automated plant
leaf image recognition system, as described below.

1.5.1 Plant

Plant anatomy or plant structure describes the physical and external forms of
the structure and role of plants. The body of plants generally consists of parts (Evert,
2006), as shown in Figure 1, which are further divided into two parts.

1) The root system is usually the underground system. It attaches the plant to
the soil. The root system absorbs water and minerals into the stem as food storage.

2) The shoot system appears on the ground, including leaf, node, stem, flower,
and fruit. Actually, we classify plants from the shoots.
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Figure 1 Illustrates the basic plant structure.
(“Characteristics and Structures of Plants,” 2020)

To classify the plant leaves, botanists mainly focus on the external features of
the leaves. The leaves are thin, spread above the ground, and can photosynthesize.
Botanists usually analyze the pattern of the leaves, such as size, shape, color, lobes, and
veins (Mauseth, 2016). The different parts of the plant leaf are shown in Figure 2, while
various plant leaves are shown in Figure 3.

Apex — %
7 Lobes
Teeth = —— Veins
Insertion point ~_
_— Petiole

Figure 2 Illustrates the leaf features.
(Cope, Corney, Clark, Remagnino, & Wilkin, 2012)



Figure 2 presents the features of the plant leaf (Cope et al., 2012; Valliammal,
2013) as follows.

- Apex is the top of the leaf and has different characteristics.

- Lobes are leaf margins that have a groove concave towards the midline of the
leaf.

- Teeth are the edge of the plant leaf.

- Veins are the center of the leaves connected to the petiole and transfer water
and nutrients to the rest of the plant.

- Insertion point is the point between the petiole and the leaf.

- Petiole is the substantial part that that connects the leaf to the stem.

bosod
YYIKJ

Figure 3 Examples of different shapes of plant leaf
(Munisami et al., 2015)

Early blight Late blight Leaf mold Manillialaxa; Farthenolecanium

Tomato Peach Plum

L X

Apbhis spp Eriosoma lanigerum  Monillia laxa %?)?gi?;ll‘i;‘ Eriophyes erineus = Erwinia amylovora

Apple Walnut Pear

Figure 4 Examples of plant leaf diseases.
(Turkoglu et al., 2021)



1.5.2 Plant Diseases

Plant disease is a serious concern as it destroys plants and agricultural products,
reduces product quality, and increases the cost of production. Plant disease can affect
every part of the plant, especially the leaves. The causes of plant diseases are bacteria,
insects, fungi, and nutrition deficiencies (Sinha & Shekhawat, 2020), as shown in
Figure 4. The early detection of the disease is a good solution to prevent the spread of
the disease.

In artificial intelligence, image processing and machine learning techniques are
proposed to classify plant leaf diseases ( Sladojevic, Arsenovic, Anderla, Culibrk, &
Stefanovic, 2016; Kusumo, Heryana, Mahendra, & Pardede, 2018; Approach &
Leonowicz, 2021), as shown in the following section.

1.5.3 Image Processing and Machine Learning Techniques

Traditionally, image processing and machine learning techniques are proposed
to solve many problems in image classification, such as plant leaf disease classification,
and aim to precisely classify images into the appropriate category (Ponnusamy,
Sathiamoorthy, & Manikandan, 2017). The traditional framework of the image
processing and machine learning techniques is shown in Figure 5. For plant leaf image
classification, first, the leaf images could be taken from the laboratory with a white
background. It is uncomplicated to apply image processing techniques to extract leaves
and background. Second, all leaves are then sent to transform (such as rotation, resize,
or translation) and improve the image quality (Sonka, Hlavac, & Boyle, 1993). These
methods are called the image pre-processing process. Third, a feature extraction method
is required to extract the robust features from the leaf images. Many well-known feature
extraction methods, such as local binary patterns (LBP) (Ojala, Pietikainen, &
Maenpaa, 2002), scale-invariant feature transform (SIFT) (Lowe, 2004), histogram of
oriented gradients (HOG) (Dalal & Triggs, 2005), and speeded up robust feature
(SURF) (Bay, Tuytelaars, & Van Gool, 2006), have been proposed to extract the
features from the keypoint or patterns of the images. Several methods also extract
features depending on geometric, statistical, and color features (Mutlag, Ali, Aydam,
& Taher, 2020). Fourth, the machine learning model is created according to the robust
features extracted from the previous process. This process is called classification. The
well-known and successful machine learning techniques that could be proposed to
address the image classification problems, such as support vector machines (SVM)
(Vapnik, 1998), artificial neural networks (ANN) (Jain, Mao, & Mohiuddin, 1996), and
k-nearest neighbor (K-NN) (Altman, 1992). Finally, the output of the classification
process is the accurate class labels.

T ]
[ Input / Feature . . / /
fpw /—> Pre-Processing ¥ . —»  Classification —¥ Output /
[ Images | Extraction / /

L /

Figure 5 Illustrated processes of the image classification using image processing and
machine learning techniques.
(Ponnusamy et al., 2017)



1.5.4 Deep Learning Technique

The deep learning technique (G. E. Hinton, Osindero, & Teh, 2006) is very
effective and widely applied to many problems, such as detection, classification, and
clustering (Abas, Ismail, Yassin, & Taib, 2018; Durmus, Giines, & Kirci, 2017;
Harangi, 2018; S. Park, Suh, & Lee, 2020). However, CNN architecture is the most
well-known deep learning technique (Ganaie, Hu, Malik, Tanveer, & Suganthan, 2021).
Yan LeCun proposed the first CNN architecture that contained only five layers, called
LeNet5 (LeCun, Bottou, Bengio, & Haffner, 1998). LeNet5 was proposed to classify
the handwritten digits. Furthermore, the CNN architecture became popular when Alex
Krizhevsky proposed the novel CNN architecture, called AlexNet, which contained
eight layers and won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Krizhevsky, Sutskever, & Hinton, 2012). The AlexNet architecture was run
for around six days at that particular time on two GTX 580 3G GPU. After that, many
CNN architectures were proposed and were successful in the ILSVRC competition,
such as VGG (Simonyan & Zisserman, 2014), Inception (Szegedy et al., 2014), ResNet
(He, Zhang, Ren, & Sun, 2015), MobileNet (Howard et al., 2017a; M Sandler, Howard,
Zhu, Zhmoginov, & Chen, 2018), DenseNet (Huang, Liu, Van Der Maaten, &
Weinberger, 2018) and NASNet (Zoph, Vasudevan, Shlens, & Le, 2018). The CNN
architectures have also been applied in the agriculture domain (Amara, Bouaziz, &
Algergawy, 2017; DeChant et al., 2017; Mohanty, Hughes, & Salathé, 2016; Sladojevic
etal., 2016).

The basic concept of CNN architecture is shown in Figure 6. The CNN
architecture mainly contains convolutional and pooling layers that are designed to
extract robust features from the images using convolutional operation (LeCun et al.,
1998), which is the mathematical calculation. Hence, the features are fed to the neural
networks with fully connected calculations. It is called a fully connected layer. Further,
the output of the fully connected layer is the prediction class. The calculation of the
convolutional and pooling layers is illustrated in Figures 7 and 8.

Convolution Layer
Fully Connected

Layer
- Q@ Output
© o
. © o
(o}
o

Tnput Pooling Layer

777777777777777777777777777777777777777777777777777777777777777777

Feature Extraction Classification

Figure 6 Illustration of the convolutional neural network architecture
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Figure 8 Illustration of the pooling operations: (a) max pooling and (b) average
pooling.

1.5.5 Ensemble Learning

The ensemble learning method was proposed to improve the efficiency of a
single classifier model. The main idea is to propose multiple classifiers to generate
robust models. Then, the outputs of each robust model are combined to produce one
final output (Hansen & Salamon, 1990), further reducing classification errors.

In this thesis, we combined output from various CNN models and then
aggregate the CNN output to the ensemble learning method to classify the final result.
We briefly introduce three ensemble learning methods that were used in our
experiments, as follows.

1) Unweighted Majority Vote Method
The unweighted majority vote is the simplest calculation method in
which the outputs of each classifier are counted (Dogan & Birant, 2019). So, the class
with the highest majority is selected as the final classification.



2) Unweighted Average Method
In this method, the output probabilities derived from CNN models are
averaged. Also, the highest probability value is selected as the final classification (Ju,
Bibaut, & van der Laan, 2018).
3) Weighted Average Method
The weighted average method is an extension of the unweighted average
method by assigning different weighted parameters to the output probabilities. The best
classifier result a high weighted value and assign the lowest weight to the worst
classifier (Harangi, 2018). Therefore, the summation of all weighted values is equal
one.

1.5.6 Ant Colony Optimization

Ant Colony Optimization (ACO) (M. Dorigo, 1992) is a metaheuristics method
(Blum & Roli, 2003; Glover & Kochenberger, 2003) inspired by nature in solving
complicated combinatorial optimization (CO) (Papadimitriou & Steiglitz, 1982). In this
thesis, the ACO is proposed as the automated model selection method to discover the
robust CNN models. Actually, the researcher should manually select numbers of robust
CNN models. With the manual model selection, it takes too much time to discover the
best combination of CNN models to achieve the highest classification result. When the
proposed ACO method is examined, it could be automated to select the optimal number
of CNN models within the shortest time. Furthermore, the output probabilities of the
CNN models selected by the proposed ACO method are classified using the ensemble
learning method.



Chapter 2
Plant Leaf Image Recognition using Feature Extraction and Machine

Learning

The process of plant species classification is a significant and challenging
problem. Focus on plant leaf image classification is the main objective of many
researchers because plant leaves are found almost all year round. The achieved method
of plant leaf image recognition is based on extracting robust features from the plant leaf
and uses the well-known machine learning technique as a classification method. As a
result, recognition accuracy is often not very high. In order to improve recognition
accuracy, first, we proposed a multiple-grid technique to divide the leaf image into
small grids. Second, compute the feature from each grid using well-known local
descriptors. Third, dimensionality reduction is proposed to transform and decrease the
correlated variables of the feature vector. Finally, the feature vector with a relatively
low-dimensional is transferred to the machine learning techniques, which are the
support vector machine and multi-layer perceptron algorithms. We have evaluated and
compared the proposed algorithm with the bag of visual words method and the deep
convolutional neural network, including AlexNet and GoogLeNet architectures, on the
Folio leaf image dataset. The experiments showed that the proposed algorithm has
improved and obtained very high accuracy.

2.1 Introduction

Plants are living things that relate directly to humans and are used as food and
medicine. Botanists have collected and studied various plant species, which can be of
some benefit to humans. However, while the physical characteristics of some plants are
similar, they have different benefits and toxins. As such, the ability to distinguish the
types of plants requires advanced knowledge of botany. A typical plant classification
problem is the diversity of plants and their botanical characteristics. Researchers find
that classification of plant species is a challenging problem. Nowadays, computer vision
and machine learning techniques are proposed as tools for recognizing plants.

This research aims to use image processing and machine learning for plant
classification by classifying plant leaf photos taken from the laboratory. Wéldchen and
Méde (2018) said that over the past 10 years, researchers have tried to recognize plants
from various parts, including leaves, plant blossoms, and fruits (Caballero & Aranda,
2010; Cerutti, Tougne, Mille, Vacavant, & Coquin, 2013; Cho, 2012). Most researchers
are interested in the leaves because the plant leaves have a specific shape, surface shape,
color, and leaf structure (Caglayan, Guclu, & Can, 2013; Hossain & Amin, 2010). The
plant leaf images used in this research are divided into two conditions 1) Plant leaf
taken in an outside environment (Wang, Huang, Du, Xu, & Heutte, 2008) and 2) Plant
leaf taken in a laboratory on a white background (Munisami et al., 2015; Pawara,
Okafor, Schomaker, & Wiering, 2017; Pawara, Okafor, Surinta, Schomaker, &
Wiering, 2017).
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Cerutti, Tougne, Coquin, & Vacavant (2013) used curvature-scale space for
recognizing margin shape and Leaf classification from plant leaf characteristics by
semi-supervised fuzzy C-means (FCM) training the margin shape with 12 terms. Then,
it learns on the Pl@ntLeaves database, which is divided into three subsets, which are
scan, pseudoscan, and photograph, using the Top-K method evaluated on the test set.
The experimental results showed that the accuracy rates of the Top-K method using
K=10 on the scan, pseudoscan, and photograph datasets were obtained as 95%, 92%,
and 80%, respectively.

Munisami et al. (2015) collected images of plant leaves taken in the laboratory,
called the Folio dataset. The Folio dataset contains 637 images of 32 plant species. In
their research, feature extraction methods, including plant shape and color histogram,
were proposed to extract features from the plant images, which were the used to create
the model using K-nearest neighbor. Their method achieved an accuracy rate of 87.3%.
Pawara et al. (2017) used deep convolutional neural networks (CNNSs), including
AlexNet and GoogLeNet architectures, to classify plant leaf image datasets. Moreover,
their experiments used local descriptors: histogram of oriented gradients (HOG) and
bags of visual words (BOW) to extract the features. Then, the support vector machine
(SVM), multi-layer perceptron (MLP), and K-nearest neighbor (KNN) were employed
for the classification of plant leaf images. Their experiments divided datasets into two
sets: 80% for the training set and 20% for the test set. The results showed that the
AlexNet architecture trained with the fine-tuned model was the most accurate, with a
97.67% accuracy. Moreover, Pawara, Okafor, Schomaker, et al. (2017) used 6 data
augmentation methods that were rotation, blur, contrast, scaling, illumination, and
projective transformation. The data augmentation methods can add images from the
training set up to 25 times. The training set increased to 11,125 images and was trained
using the AlexNet architecture. The experimental results showed that increasing the
training set using the contrast data augmentation method increased the accuracy to
99.04%. Moreover, when evaluated using the GoogLeNet architecture, it was found
that the illumination method achieved the highest accuracy rate at 99.42%.

Another set of plant leaf images taken in the laboratory was the Flavia dataset
presented by Salman, Semwal, Bhatt, & Thakkar (2017). This includes 32 plant species
and contains 1,907 leaf images. The shape feature of the plant leaves was extracted
before being classified by the SVM method. The accuracy obtained from their method
was 85%. At the same time, Arafat et al. (2016) developed an automatic leaf
classification system using colored SIFT as a feature extraction method and SVM as a
classification. Khmag (2017) extracted robust features by geometrical and shape
features. Then, the features were sent to classify using the SVM classifier and obtained
an accuracy above 97%. Chaki, Parekh, & Bhattacharya (2015) proposed texture-based
constraints to extract and classify features using the MLP method. For the MLP, the
MLP network contained an input layer with 44 nodes, a hidden layer with 30 nodes,
and 31 nodes as an output layer. Their method achieved an accuracy rate of 87.1% on
the test set.

Contributions: The research focuses on the importance of plant leaf recognition
by experimenting with the Folio dataset, which contains 32 different plant species. This
research used feature extraction methods and a dimensionality reduction approach to
extract the relative component from leaf images that are divided into multiple grids.
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The proposed method is simple but effective. The multiple grids divide plant leaves
into sub-regions, then the method brings the sub-region to calculate the special features
using various feature extraction techniques that extract the distinctive characteristics of
the plant leaves. The feature extraction methods are a histogram of oriented gradients
(HOG), local binary pattern (LBP), and color histogram. Finally, the features are fed to
the dimensionality reduction method using principal component analysis (PCA) to
reduce the feature vector size. The size reductions have a direct effect on training time
and increase the recognition efficiency. This paper used the feature vector in the
training process and recognition by a support vector machine (SVM) and Multi-layer
perceptron (MLP). This proposed method obtained a very high recognition rate
compared to the deep learning method.

Paper Outline: This paper has been organized as follows. In Section 2.2, the
method for plant leaf recognition is explained. Section 2.3, the dataset and pre-
processing with plant leaf images, which are used in our experiments are described. In
Section 2.4, experimental results are presented. The last section discusses the
significant findings from this study and suggests future work.

2.2 Proposed Plant Leaf Recognition Method

This study uses multiple grids and dimensionality reduction based on three feature
extraction techniques. The process of this research is shown in Figure 9. The input
images were forwarded to the multigrid-based process to divide the images into sub-
region. A sub-region was calculated by three feature extraction technigques and followed
by PCA to decrease the number of feature vectors. Finally, all features were
concatenated and used as a feature vector (fi, f2, ..., fn)- Then, the feature vector was

transferred to the classification process.

Input Image

v

Multi-Grid Based

B | “mm
H ﬂ i
v

1x1 8x4 4x4

FE+PCA l FE,+ PCA ’ FE +PCA

Figure 9 Proposed plant leaf recognition method.
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2.2.1 Multiple Grid-based Technique

The working process of the multiple-grid technique is to divide the leaf images
into sub-regions using a grid method to determine the sub-region. In these experiments,
the grid method was determined at 6 different sizes, 1x1, 2x1, 4x2, 8x4, 2x2, and 4x4.
After that, each sub-region was calculated to find the feature vector by HOG, LBP, and
color histogram.

2.2.2 Feature Extraction Techniques
2.2.2.1 Histogram of Oriented Gradients (HOG)

HOG was introduced by Dalal and Triggs (2005). It is the feature extraction
method that extracts the characteristics of the image by calculating the oriented
gradients from gradients image by finding gradients in horizontal (G,) and vertical
directions (G, ) which are calculated from pixel intensities (I(x, y)) at coordinate (x, y)
as the following equation:

Gy=Ix+1,y)—I(x—1,y) 1)
Gy =1(x,y+1)—I(x,y—1) (2

The magnitude (M) and gradient orientation (6) are calculated as the
following equation:

M(x,y) =,/GZ + G} (3)

0,y = tan‘lg—y 4)

X,
4 X

where M(x,y) is magnitude of gradients, 6, , is gradient orientation at coordinate
x,y. Then, gradient orientation values will be taken to the weighted vote process and
will be kept in the orientation bins (f) (Karaaba, Surinta, Schomaker, & Wiering,
2015).

Finally, gradient orientation values, which are kept in each orientation bin,
will be taken to do the normalization by the L2-norm method.

2.2.2.2 Local Binary Patterns (LBP)

LBP was proposed by Ojala et al. (2002) for invariant texture classification.
LBP is first designed for extracting characteristics of pixel points from neighborhood
pixels which are calculated from gray values as the following equation:

LBPP,R = Zg;é S(gp - gc)zp (5)

where
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9e is the gray value of the central pixel.

Ip is the gray value of its neighbor pixels.

P is the total number of involved neighbors.
R is the radius of the neighborhood.

The central pixel will be used as the threshold value (7) to compare with the values of
neighborhood pixels, s(x) = {1, x =T 0, x <T. The following process brings the
values 1 and 0 from neighborhood pixels together as concatenates. Then, they were
converted from binary format to decimal format. Consequently, the decimal values
were put into the specified bins and used as the feature vector.

2.2.2.3 Color Histogram

This research used two color models: RGB and HSV color models. We used
only hue (H) values because hue values show the true color. Therefore, the color values
used for histogram creation consist of red (R), green (&), blue (B), and hue. Thus, the
histogram of the RGB and H values consists of 256 and 360 color values.

2.2.3 Dimensionality Reduction

From the Multiple-grid based method, a lot of sub-regions will be created,
which are used for calculation of unique features. This causes high dimensionality of
the feature vector and results in computational complexity. Therefore, dimensionality
reduction is one of the best ways to minimize the feature vector. This research uses
PCA (Cootes, Taylor, Cooper, & Graham, 1995) in feature vector reduction. The
feature vector from each technique has been reduced to only 80 Features. These
techniques also improved the accuracy rate.

2.2.4 Classification Algorithms

This research used two algorithms, SVM (Vapnik, 1998) and MLP (Haykin,
2008), as classification models. The SVM with the RBF kernel and MLP by
determining the two hidden layers were employed. The dropout method was selected
for the prevention of an overfitting problem.

2.3 Plant Leaf Dataset

The plant leaves images used in the experiment were taken in the laboratory.
Thus, most images have a white background. The background makes the leaves
prominent and clearly separates them from the background.

2.3.1 Folio Dataset

The leaf images used in the experiment were the Folio dataset, presented in 2015
(Munisami et al., 2015). The images represent 32 plant species (see Figure 10) and
contain 637 images in the dataset. All images were taken in the laboratory with a white
background and were stored in JPEG format. The size of the images is 2322x4128 and
2448x3264 pixel resolution. The plants were cultivated on the University of Mauritius
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farm. In the Folio dataset, twenty images of each plant species were collected, except
for mulberry with 19 images and eggplant with 18 images.

Some Image differentiation of each species is shown in Figure 11. Some plant
leaves still have similar shapes, e.g., star apple and pomme jacquot (See Figure 12).
The factors mentioned above have directly affected the accuracy of recognition.

¢

4

Beaumier du perou Eggplant Fruitcitere Guava Hibiscus
Ficus Duranta gold Ashanti blood Bitter orange Cocur demoiselle
Pomme jacquot Star apple Barbados cherry Sweet olive Croton

’
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Caricature plant Coffee Ketembilla Chinese guava Lychee
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Mulberry leaf
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Betel Chyrsanthemum Jackfruit
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Thevetia
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\'ien;gnrmni Chocolate tree Sweet potato

Geranium Pimento

Figure 10 Examples of 32 plant leaves of the Folio dataset.
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Figure 11 Examples of plant leaf images of the Folio dataset: a) papaya, b)
Chrysanthemum, and c) Ketembilla.

a)

Figure 12 Illlustrated the similar shape between different plant leaves. The leaf
images of a) star apple and b) pomme jacquot leaves.

2.3.2 Dataset Pre-processing

The pre-processing of the plant leaf images from the Folio dataset is very
simple. The process starts by converting all the images to black and white to find the
plant leaf area, called the region of interest (ROI). Then, crop the plant image according
to the ROI. The following process is to check the leaf images which are in the horizontal



17

or vertical positions. If a particular image is in the horizontal position, then the rotation
method is used to rotate the image into the vertical position, as shown in Figure 10,
followed by resizing all images to the vertical size of 400 pixels. So, the width of each
image will have different sizes depending on the actual size to avoid image distortion.
Consequently, the feature extraction methods are computed from this process.

2.4 Experimental Results

We compared the feature extraction techniques, color histogram, LBP, HOG, PCA,
and HOG-BOW, to two deep learning techniques: AlexNet and GoogLeNet.

In this experiment, 10-fold cross-validation was examined to evaluate the results of
the plant leaf recognition methods. We used a training set of 80% of 637 images in
total. For the evaluation metric, the recognition rate (accuracy) and standard deviation
were used to measure the performance of each feature extraction technique. Moreover,
we used SVM algorithm and then the grid-search technique was used to search for the
best parameters. We found that the best C and gamma parameters of the SVM with the
RBF kernel were 100 and 0.1, respectively. For MLP, two hidden layers were used
where the size of each hidden layer is 512 and 512 hidden units, respectively. The
dropout regularization was used to prevent neural networks from overfitting. The
dropout rates of 0.5 for all hidden units were selected. Further, as for the output layer,
the softmax function was used. Tables 1 and 2 show the experimental results (average
test accuracy and standard deviation).

Table 1 Plant leaf recognition results of the 15 different techniques on the Folio
dataset

. . Training Time (Sec) Test Accuracy (%)
Multiple Grid Methods SUM MLP SUM MLP
Color-Histogram 221.86 232.42 | 96.254+1.87 | 95.94+1.94
LBP 278.80 284.80 |94.4541.06 | 91.87+2.22
HOG 201.27 206.83 | 94.1442.45 | 94.14+2.34
Color-Histogram-PCA 182.88 189.49 |97.73+1.30 | 97.11+1.28
LBP-PCA 278.15 285.29 |94.1441.06 | 94.14+1.74
HOG-PCA 202.12 209.53 |93.83+2.62 | 93.91+1.83
Color-Histogram-LBP 496.61 511.65 |97.81+1.15|96.09+1.65
Color-Histogram-HOG 419.10 435.47 |98.13+1.39 | 96.64+1.38
LBP-HOG 481.14 489.10 |97.50+1.46 | 96.87+1.98
Color-Histogram-LBP-HOG 697.46 716.77 |98.67+0.91 | 97.42+1.48
Color-Histogram-LBP-PCA 460.96 469.78 |98.67+1.11 | 98.28+1.51
Color-Histogram-HOG-PCA 384.91 393.20 |98.59+1.46 | 98.28+1.32
LBP-HOG-PCA 480.19 488.94 |97.50+1.46 | 97.58+1.01
Color-Histogram-LBP-HOG- 663.01 672.19 |99.06+0.89 | 98.75+0.92

PCA
HOG-BOW (Pawara, Okafor, - - 92.784+2.17| 92.37+1.78
Surinta, et al., 2017)
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Table 2 Comparing results between proposed methods and fine-tuned deep learning
methods on the Folio dataset

Method Test Accuracy (%)
AlexNet (Pawara, Okafor, Surinta, et al., 2017) 97.67+1.60
GoogleNet (Pawara, Okafor, Surinta, et al., 2017) 97.63+1.84
Proposed Method (Color-Histogram-LBP-HOG-PCA) 99.06+0.89

The results in Table 1 showed the recognition performances obtained from the
combination of multiple grid approaches with various feature extraction techniques, the
result of the HOG-BOW method, and the training time on the Folio dataset. Then, 15
different results are shown in Table 1. Here, the HOG-BOW method achieved an
inferior performance compared to other feature extraction techniques. On the other
hand, the Color-Histogram-LBP-HOG-PCA, when combined with the SVM algorithm
with the RBF kernel, significantly outperformed other techniques and provided a high
accuracy of 99.06%. Subsequently, the plant leaf recognition obtained a high accuracy
of 98.75% when combined with the Color-Histogram-LBP-HOG-PCA and MLP
algorithm.

We also compared our proposed method with the find-tuned deep CNNs, which are
AlexNet and GoogleNet architectures (Pawara, Okafor, Surinta, et al., 2017). The
accuracy of results compared between our proposed method and the fine-tuned deep
CNNSs are shown in Table 2.

2.5 Conclusion

In this paper, we investigated many different plant leaf recognition techniques on
the Folio dataset. From the experimental results, we concluded that the performance of
multiple grids and dimensionality reduction-based descriptors, which is our proposed
method, was much better than the histogram of oriented gradients combined with the
bag-of-words technique and fine-tuned deep CNN architectures, which are AlexNet and
GoogleNet architectures as well. We also showed that PCA, which is a dimensionality
reduction technique, increased the accuracy performance and decreased the number of
feature vectors of the plant leaf recognition system. Because of the high accuracy of the
deep CNNs, in future work, we would like to study the effect of parallel CNN
architecture and use this architecture to train the plant leaf images. This technique may
be necessary to improve training times and accuracy performance.



Chapter 3
Ensemble Learning Methods with Deep Convolutional Neural
Networks

Recognition of plant leaves and diseases from images is a challenging task in
computer vision and machine learning. This is because various problems directly affect
the performance of the system, such as the leaf structure, differences of the intra-class,
similarity of shape between inter-class, perspective of the image, and even recording
time. In this paper, we propose the ensemble convolutional neural network (CNN)
method to tackle these issues and improve plant leaf recognition performance. We
trained five CNN models; MobileNetV1l, MobileNetV2, NASNetMobile,
DenseNet121, and Xception, accordingly to discover the best CNN based model.
Ensemble methods; unweighted average, weighted average, and unweighted majority
vote methods, were then applied to the CNN output probabilities of each model. We
have evaluated these ensemble CNN methods on a mulberry leaf dataset and two leaf
disease datasets; tomato and corn leaf disease. As a result, the individual CNN model
shows that MobileNetV2 outperforms every CNN model with an accuracy of 91.19%
on the mulberry leaf dataset. The Xception combined with data augmentation
techniques (Height Shift+Vertical Flip+Fill Mode) achieved an accuracy of 91.77 %.
We achieved very high accuracy above 99% from the DenseNet121 and Xception
models on the leaf disease datasets. For the ensemble CNNs method, we selected the
based models according to the best CNN models and predicted the output of each CNN
with the weighted average ensemble method. The results showed that 3-Ensemble
CNNs (3-EnsCNNs) performed better on plant leaf disease datasets, while 5-EnsCNNs
outperformed on the mulberry leaf dataset. Surprisingly, the data augmentation
technique did not affect the ensemble CNNs on the mulberry leaf and corn leaf disease
datasets. On the other hand, application of data augmentation was slightly better than
without only on the tomato leaf disease dataset.

3.1 Introduction

Plants are essential to human life and can be used as food and even medicine (Du
etal., 2007). There is a wide diversity of plants in nature. Importantly, some plant leaves
look very similar, such as the shape of the Japanese maple and coral plants or cannabis.
It is quite difficult for people who are not familiar with the plants to identify them.
Thus, the identification of plants requires expertise, such as that of taxonomic botanists,
and plant scientists. Therefore, researchers have implemented plant identification
systems so that people without botanic knowledge can use them as an identification tool
to recognize the plant species (Vo et al., 2019). Usually, plants can be classified from
various components, called plant organs, such as leaves, flowers, bark, seeds, and
stems. However, if we want to consider plant diseases, most diseases are determined by
the leaves. Therefore, researchers have used plant leaves to classify plant categories and
diseases (Aravind et al., 2018; Mokeev, 2019; Munisami et al., 2015; Pawara, Okafor,
Surinta, et al., 2017). Importantly, the spread of disease is a big problem for
agriculturists because it affects agricultural products and profit on trading. It is
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necessary for farmers to inspect agricultural products early to prevent and treat the
disease in time.

Due to the fast spread of disease, many researchers have proposed artificial
intelligence systems to stop disease spread and recognize the disease types. Many
benchmark plant leaf and plant leaf disease datasets were compiled, such as PlantCLEF,
Leafsnap, PlantVillage,and PlantDoc (Goéau, Bonnet, & Joly, 2015; Hughes & Salathé,
2015; N. Kumar et al., 2012; Singh et al., 2020), to create effective learning models.
The plant leaf images in the benchmark datasets were typically collected from natural
environments. Hence, these collections of leaf images are more complex than images
collected under standardized conditions in a laboratory, such as camera angles when
capturing the leaves, different objects appear in the image, brightness and contrast while
taking the picture, zoom in and out into the leaf, and even loss of focus. These issues
affect the accuracy of the plant leaf recognition systems.

The objective of this research is to improve plant leaf recognition based on the
ensemble CNN method.

The following are contributions of this research;

1. In this paper, we propose the ensemble convolutional neural network (CNN)
method to overcome challenges in plant leaf and plant leaf disease recognition. To
discover the best CNN model, we first trained five CNN models consisting of
MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception. Second,
we chose the best three and five CNN models, called 3-EnsCNNs and 5-EnsCNNs.
Finally, the CNN output probabilities of each CNN model were then given to the
ensemble method to do the actual classification.

2. We compared three ensemble methods, namely the unweighted majority vote,
unweighted average, and weighted average, for the plant leaf and plant leaf disease
recognition. The experimental results showed that the weighted average method
outperformed the other ensemble methods and was also significantly better than the
individual CNN model.

3. This paper also provides a new standard mulberry leaf dataset for comparison of
image recognition methods. The mulberry leaf dataset contains 5,262 leaf images and
includes 10 species that grow in Northern and Northeast Thailand.

3.2 Related Work

Image processing and machine learning techniques have been proposed to address
plant leaf recognition problems. Wang et al. (2008) proposed a framework for
recognizing the plant leaf with a complicated background. The feature vector was
extracted from the shape of the leaf using Hu geometric and Zernike orthogonal
moments. The moving center hypersphere method was used as a classifier. The feature
vector was also extracted from the shape, color, edge, and direction of the plant leaf
(Patil, Pattanshetty, & Nandyal, 2013; Wang et al., 2008). The feature vector was
recognized using machine learning techniques, such as K-nearest neighbour (KNN) and
support vector machine (SVM). Chompookham et al. (2020) presented a multiple grid
method that divided the plant leaf images into sub-regions. The feature extraction
techniques, including a histogram of oriented gradients (HOG), local binary pattern
(LBP), and color histogram, were proposed to extract features from each sub-region.
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Principal component analysis (PCA) was used to reduce the dimension of the feature
vector. The most correlated variables were given to the SVM classifier.

CNN methods are currently employed to recognize plant leaves and diseases.
Atabay (2016) invented a new CNN architecture with five layers for plant leaf datasets.
This CNN architecture comprises four sets of convolutional layers and one soft max
layer. In this architecture, the exponential linear unit (ELU) is employed instead of the
rectified linear unit (ReLU) after the max-pooling layer. The proposed CNN
architecture provided 97.27% accuracy on the Flavia dataset and 99.11% on the
Swedish dataset. Jeon and Rhee (2017) modified the GoogLeNet architecture for plant
leaf recognition by changing the first Inception layer from 3 to 5 layers. The modified
GoogLeNet architecture performed better with the leaf image dataset and the damaged
leaf image. Furthermore, Pawara et al. (2017) proposed to use AlexNet and GooglLeNet
for three plant leaf datasets: AgrilPlant, LeafSnap, and Folio. Two strategies of training,
training from scratch and fine-tuned, were presented. The performance data showed
that GoogLeNet with fine-tuning outperformed AlexNet with fine-tuning and training
from scratch on AgrilPlant and LeafSnap datasets, whereas AlexNet with fine-tuning,
showed the best performance on the Folio dataset. Additionally, the CNN architectures
performed around 20% better than BOW and local descriptor combined with the
machine learning techniques (KNN, SVM, and MLP).

Pawara et al. (2017) used both scratch and pre-trained weights to train the AlexNet
and GoogLeNet models. The data augmentation techniques, including rotation, blur,
contrast, scaling, illumination, and projective transformation, were used to generate
new images. With these data augmentation techniques, the size of the training set was
increased by 25 times. As a result, the CNN model that trained from scratch obtains
more benefits from data augmentation techniques. For the Swedish dataset, the fine-
tuned AlexNet and GoogLeNet achieved 99.76% and 99.92% accuracy. For the Folio
dataset, approximately 99% accuracy was achieved from the fine-tuned AlexNet and
GoogLeNet. Consequently, the results of the AgrilPlant were 97.27% with fine-tuned
AlexNet and 98.60% with fine-tuned GoogLeNet. Moreover, Kumar and Vani (2019)
compared four CNN architectures of LeNet, VGGNet, Xception, and ResNet50, and
trained from scratch for tomato leaf disease recognition. The result illustrated that the
VGGNet outperformed other CNN models.

For the ensemble CNN method, a two-level architecture, called stacked CNN
(Mokeev, 2019) was proposed. In the first level, two CNN models are created by
learning the data from the plant dataset. In the second level, the predictive values of the
CNN models are then learned again using machine learning techniques, such as random
forest, gradient boosting, and extreme gradient boosting. As a result, the stacked CNN
combined with the gradient boosting classifier was the best method and obtained an F1-
score of 0.953. Moreover, the ensemble CNN method can also compute the probability
output obtained from CNN models to find the final result. Three ensemble methods
comprised an unweighted majority vote (Surinta, Schomaker, & Wiering, 2013),
unweighted average, and weighted average ensemble methods (Guo et al., 2019).

The CNN architectures were proposed to address many recognition applications
(Kreuter, Takahashi, Omae, Akiduki, & Zhang, 2020; S. Park et al., 2020). Also, the
recognition performance was enhanced when the ensemble method was combined. In
this study, we proposed the framework of the ensemble CNN.
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3.3 Ensemble Convolutional Neural Networks Framework
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Figure 13 The framework of the proposed ensemble CNNs

The effect of multiple CNN models on the ensemble learning framework is
regularly better than a single CNN model because ensemble learning can well integrate
the advantages of multiple CNN models (Zhang, Yan, Ma, & Xu, 2020). In this section,
we introduce the ensemble CNNs framework to address the plant leaf recognition
problems, as shown in Figure 13. The first part of the framework combines with state-
of-the-art CNN architectures, called multiple CNNs. In order to find the baseline CNN
models, five pre-trained CNN models: MobileNetV1, MobileNetV2, NASNetMobile,
DenseNet121, and Xception are proposed. Subsequently, the transfer learning and data
augmentation techniques are applied in this step. The details of the ensemble CNNs are
described in Section 3.3.1 in the second part, the output probabilities of the CNN
models are given to be recognized by the ensemble methods. We propose to use three
ensemble methods, namely the unweighted majority vote, unweighted average, and
weighted average to do the actual classification. The ensemble methods are explained
in Section 3.3.2

3.3.1 Multiple Convolutional Neural Networks

This section briefly describes the CNN that is combined in multiple CNNs:
MobileNetV1, MobileNetVV2, Xception, DenseNet121, and NASNetMobile. We also
present the optimization algorithms (stochastic gradient descent and RMSProp) that are
applied to optimizing the CNN model, as follows.

3.3.1.1 Convolutional Neural Network Architectures

MobileNetV1. MobileNetV1 was proposed by Howard et al. (2017). It was
designed to address a huge number of parameters by using factorized convolutions,
which included depthwise and pointwise convolutions, called depthwise separable
convolution. Due to the depthwise convolutions, each input channel is computed with
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the kernel size of 3x3. The output of the depthwise convolutions decreased from 3x3x3
to 1x1x3 convolutions. After that, the depthwise convolutions reduced to 1x1
convolutions, called pointwise convolutions.

MobileNetV2. MobileNetV2 was proposed by Sandler et al. (2018), which
improved on MobileNetV1 (Howard et al., 2017b). The MobileNetV2 architecture
comprises 11 layers: one convolution layer, seven inverted residual blocks, one
convolution layer, one average pooling layer, and one convolution layer. The inverted
residual block contains three layers: 1x1 convolution with ReLU®6 activation function,
depthwise separable convolution with ReLU6, and 1x1 convolution with the linear
transformation.

Xception. Chollet (2016) designed the Xception architecture. This
architecture is the extreme version of the inception module and was implemented to
address the problems of deeper networks, computation time, and overfitting. The
depthwise separable convolutions are applied in the extreme inception module. The
Xception architecture is divided into three main flows: entry, middle, and exit. In the
entry flow, the first layer is the input image with 229x229x3 pixels, followed by 32
convolution layers with ReLU, 64 convolution layers with ReLU, and three residual
connections. In the middle flow, eight stacked residual connections are attached. The
exit flow is a stack of one residual connection, followed by two depthwise separable
convolutions and global average pooling.

DenseNet121. In 2018, Huang, Liu, Van Der Maaten, & Weinberger (2018)
invented DenseNet architecture. In this architecture, the knowledge is collected
according to the connections from the current layer and are combined in the following
layers, called DenseNet. The DenseNet architecture contains a convolution layer,
pooling layer, three dense blocks and transition layers, one dense block, and a
classification layer. According to the size of the bottleneck, the layers of the DenseNet
can increase from 121 to 264 depth. The concept of the growth rate of the convolution
layers was implemented, and then, the next convolution layer was double increased.
The bottleneck structure is implemented and directly impacts a decrease in the number
of the parameters. Also, the number of the parameters of the DenseNet architecture is
smaller than that of the ResNet architecture.

NASNetMobile. Zoph et al. (2018) proposed a neural architecture search,
called NASNet. The NASNet architecture can also be scalable by increasing normal
and reduction cells using a recurrent neural network (RNN). Then, reinforcement
learning was proposed to search for the best architecture. Also, the NASNet
architectures consist of NASNetLarge and NASNetMobile.

3.3.1.2 Optimization Algorithms for CNN Architectures

The optimization algorithms were invented to deal with minimizing the
objective function (P. Li, 2017). Consequently, the best optimizer can guarantee the
optimal value with fast learning and obtain more reliable performance. We briefly
explain two optimization algorithms used in our experiments as follows.
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Stochastic Gradient Descent (SGD). One of the most popular optimization
algorithms is the SGD algorithm. In the SGD optimizer, the algorithm allows updating
the parameter until it converges to the minimum and enables moving to the better local
minima (Ruder, 2017). The SGD optimizer can be computed as:

0=0-n-VJ(6;xj) (6)

Where 6 is objective function, n is learning rate, 8 = 6 — n - 179](9; xi;ji) update the
parameters of the objective function, and x, jare training examples and labels.

RMSProp. Hinton et al. (2012) invented a mini-batch version of the RProp
algorithm, namely the RMSprop algorithm. The RMSprop algorithm is the adaptive
learning rate method. It uses the sign gradient to calculate and update the value of the
learning rate (Ruder, 2017).

n
Orr1 =6 — Taaedt
(7)
E[9%]; = YE[g%];-1 + (1 — ) g?

where E[g?]; = nE[g%],—1 + (1 — n)g? is squared gradients for each weight, g,is the
gradient of the cost function, y is a decay constant. Note that the best values of decay
constant and learning rate are 0.9 and 0.001 (P. Li, 2017; Ruder, 2017).

3.3.2 Ensemble Methods.

In this section, the idea of the ensemble method combines with several weights
(see Figure 13) that are learned from the CNN models to generate the optimal predictive
model. In this section, we mainly emphasize three ensemble methods as follows.

Unweighted Average. The most common of the ensemble methods is the
unweighted average method. In this method, first, the probability values (w; w; ..., wy),
which is the output of the last layer of the CNN models, are calculated using the softmax
activation function (Ju et al., 2018). Second, we average all the probability values of
the CNN models and selected the highest probability as a result. The unweighted

average method is computed as p’ = % .y, where y is the weight vector and n is the
number of ensemble CNN models.

Unweighted Majority Vote. In this method, instead of averaging all the
probability values of the CNN models, the highest probabilities are selected as the
output. Then, it votes by counting the majority from all the predicted labels and makes
a final decision (Harangi, 2018). The unweighted majority vote method is calculated as

4

p' = % *,argmax (¥), where arg max (y) is the highest probability value of weight
vector y and n is the number of ensemble CNN models.
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Weighted Average. The weighted average method is the extended version of
the unweighted average by multiplying the different weight values to the CNN outputs
(Harangi, 2018). Additionally, the sum of weight values is equal to one. The equation

of the weighted average method is given by p’ = %Z{;lai y, where a is the weight

values that multiply with the weight vector y and n is the number of ensemble CNN
models.

3.4 Plant Leaf Datasets

In the section, we introduce the benchmark mulberry leaf dataset. We collected
mulberry leaves that were growing in Thailand. In this dataset, the mulberry leaf images
are diverse in brightness, shadow, and even camera angles because the images were
captured from the natural environment. We provide the mulberry leaf dataset with the
aim of plant leaf recognition. We have also evaluated the deep learning algorithms for
the tomato and corn leaf disease datasets classification, which is the subset of the
PlantVillage dataset.

3.4.1 Mulberry Leaf Dataset

The mulberry leaf dataset is a collection of images of 10 cultivars that were
taken in natural environments using DSLR cameras and smartphones. We collected the
data from three regions of Thailand: northern (Chiang Mai), central (Phitsanulok), and
northeast (Nakhon Ratchasima, Buriram, and Maha Sarakham) The mulberry field
areas are shown in Figure 14. In this research, the mulberry leaf images were captured
from the natural environments, as shown in Figure 15. We recorded the images from
different perspectives. There is a shadow that appears in the photograph when holding
the camera at a low position. However, when shooting from an eye-level position, the
resulting image is sharp and the image is not then backlit. All leaf images were recorded

in the JPEG format.
o O King Red

Chiang Mai 9 > N > O Taiwan Maechor
Chiang Mai 60 O () Taiwan Strawberry

Black Austurkey
O Black Austraria

Phitsanulok o O Mixed Chiang Mai 60+Buriram 60

King Red O O Kamphaeng Saen 42

King White

Taiwan Maechor O

= : @ Buri Ram
Nakhon Ratchasima ° ® o :
King White

Black Austurkey

O Buriram 60
O Chiang Mai 60

3 ; Black Austurkey
Chiang Mai 60 O

Figure 14 lllustration of the mulberry field area in Thailand has been collected as a
dataset in this study consisting of Maha Sarakham, Buriram, Nakhon Ratchasima,
and Phitsanulok, and Chiang Mai.



26

) g W D))

Figure 15 Illustration of the ten mulberry leaf cultivars including a) KingRed, b) King
White, ¢) Taiwan Maechor, d) Taiwan Strawberry, e)Black Austurkey, f) Black
Australia, g) Chiang Mai 60, h) Buriram 60,i) Kamphaeng Saen 42, and j) Mixed
Chiang Mai 60+Buriram 60

The mulberry leaf images were resized to 224x224 pixel resolution. The mulberry leaf
dataset includes ten cultivars, which are four cultivars from Thailand: Chiang Mai 60
(386 images), Buriram 60 (500 images), Kamphaeng Saen 42 (640 images), and 761
images of mixed-breed mulberry (Chiang Mai 60 + Buriram 60). Three cultivars of
Australia consist of King Red (500 images), King White (350 images), and
BlackAustralia (637 images). Two cultivars of Taiwan consist of Taiwan Maechor (500
images) and Taiwan Strawberry (500 images). Also, 488 images of the Black Austurkey
are from Turkey. This dataset contains 5,262 images in total. Note that mulberry experts
advised examination of each mulberry species to label the data and avoid the errors due
to the similarity pattern and shape of the leaves.

3.4.2 PlantVillage Dataset

The PlantVillage dataset is a collection of plant images proposed by Penn State
University (Hughes & Salathé, 2015) that collects various plant leaves and plant leaf
diseases. The PlantVillage dataset has 54,309 images. In our study, we selected only
tomato and corn leaf disease datasets. The details of these datasets are as follows.

3.4.2.1 Tomato Leaf Disease Dataset. This dataset consists of 10 categories:
nine diseased tomato leaves and one healthy leaf (Durmus et al., 2017; A. Kumar &
Vani, 2019). It contains 18,162 tomato leaf images, including 2,127 bacterial spots,
1,000 early blights, 1,910 late blights, 952 leaf mold, 1,771 septoria leaf spot, 1,676
spider mites, two-spotted spider mite, 1,404 target spots, 373 tomato mosaic virus,
5,357 tomato yellow leaf curl virus, and 1,592 healthy tomato leaves. The tomato leaf
diseases dataset is shown in Figure 16.
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3.4.2.2 Corn Leaf Disease Dataset. This dataset contains four classes and has
3,852 images (Aravind et al., 2018; Kusumo et al., 2018). One healthy category has
1,162 images and three corn leaf diseases: 513 images of cercospora leaf spot, gray leaf
spot, 1,192 images of common rust, and 985 images of northern leaf blight. The corn
leaf disease dataset is illustrated in Figure 17.

'S 2 ) ) J)

Figure 16 Examples of leaf disease datasets: tomato leaf disease images, including a)
bacterial spot, b) early blight, c) late blight, d) leaf mold, e) septoria leaf spot, f)
spider mites two-spotted spider mite, g) target spot, h) tomato mosaic virus, i) tomato
yellow leaf curl virus, and j) healthy, respectively

Figure 17 Examples of leaf disease datasets: corn leaf disease images, including a)
cercospora leaf spot gray leaf spot, b) common rust, ¢) northern leaf blight, and d)
healthy (from left to right)
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Table 3 The best training hyperparameters and the accuracy (%) of each single model
obtained with 5-fold cross-validation and test set on the mulberry leaf dataset.

o Learnin | Batch s Test

Models Optimizer g Rate Size Validation Accuracy
MobileNetV1 RMSprop | 0.0001 8 97.35 +0:005 89.83
MobileNetV2 RMSprop | 0.0001 16 97.08 + 0:006 91.19
NASNetMobile | RMSprop | 0.0001 8 97.38 £ 0:004 86.65
DenseNet121 SGD 0.01 8 98.61 + 0:002 90.80
Xception RMSprop | 0.0001 8 97.94 + 0:006 91.00

3.5 Experimental Setup and Results

3.5.1 Mulberry Leaf Dataset

Mulberry Leaf Dataset. In this experiment, the pre-trained models of five CNNs
consisting of MobileNetV1l, MobileNetV2, NASNetMobile, DenseNet121, and
Xception, were used as the initial weight, and then trained on the Mulberry leaf dataset.
The results in Table 1 are based on 5-fold cross-validation to avoid overfitting and on
an independent test set. The training set contained 3,719 images and the independent
test set included 1,543 images. The experimental settings used to train the CNN models
were as follows; image resolution is 224x224 pixels, the three optimization algorithms
were SGD, Adam, and RMSprop, the learning rate was 0.1, 0.01, 0.001, and 0.0001,
the batch size was 8, 16, 32, and 64, and the number of iterations was 500 epochs.

For the experimental results, we discovered that the RMSprop optimizer achieved
higher accuracy when training with MobileNetVV1, MobileNetVV2, NASNetMobile, and
Xception models. The SGD optimizer gave better results when training with the
DenseNet121. In contrast, Adam Optimizer showed worse performance on all CNN
models. The best parameters for each CNN model are shown in Table 3.

From the results in Table 3, it can be seen that DenseNet121 outperforms other
CNN methods with a cross-validation accuracy of 98.61%. Moreover, MobileNetV2
was the best CNN model when applied to the test set. The recognition performance of
MobileNetV2 was 91.19%, while the worst recognition performance was
NASNetMobile. We evaluated the single CNN model using 5-fold cross-validation on
the mulberry dataset to avoid overfitting. The result showed that all CNN models
achieved high accuracy and low standard deviation values. The accuracy of the CNN
models was slightly decreased by approximately 7% on the independent test set.
Consequently, it is guaranteed that these CNN models are not overfitted on the tomato
and corn leaf disease datasets when using the same CNN parameters.

In Table 4, we show the experimental results with the data augmentation techniques
and CNN models on the mulberry dataset. We compared six data augmentation
techniques (DA) consisting of DA1-Height Shift, DA2-Vertical Flip, DA3-Fill Mode,
DA4-Height Shift+Fill Mode, DA5-Height Shift+Vertical Flip+Fill Mode, and DA6-
Mixed DA. We defined the data augmentation as; Height shift = 0.25, Fill Mode =
Reflect, and Flip Vertical = True. The experiments showed that the best performance
was with the Xception model when training the model with three data augmentation
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Table 4 Performances evaluation of the CNNs and data augmentation techniques on
the mulberry leaf dataset.

Data Test Accuracy
Augmentation MobileNetV1|MobileNetV2 m%’;:gt DenseNet121| Xception

DAl 86.58 91.12 88.42 90.03 90.45
DA2 89.31 90.02 88.69 90.01 90.25
DA3 87.49 90.02 88.69 90.01 90.25
DA4 88.20 90.80 88.66 90.47 88.53
DA5 88.85 91.32 90.15 90.67 91.77
DA6 90.34 84.06 89.63 91.06 84.12

Techniques (DA5S) (height shift, vertical flip, and fill mode) with the accuracy of
91.77%. Xception outperforms every CNN model. Subsequently, the CNN models that
obtained high accuracy when combined with three data augmentation techniques were
MobileNetV2, and NASNetMobile although mobileNetV1 and DenseNet121 models
achieved results higher than 90% when mixed with 10 data augmentation techniques
(DA®).

3.5.2 Experiments on the Tomato and Corn Leaf Datasets

In this section, we compared CNN architectures composed of VGG16,
MobileNetV1, MobileNetVV2, NASNetMobile, DenseNet121, and Xception to obtain
the best performance on the tomato and corn leaf disease datasets. The best data
augmentation techniques that we found from Table 4 were also applied to training the
CNNs. For the leaf (tomato and corn) disease datasets, we divided 90% of data as a
training set and 10% as a test set. The test accuracy is shown in Table 5 and Table 6.

From the results in Table 5, it can be seen that Kumar and Vani (2019) proposed
VGG16 for recognition in the tomato leaf disease dataset and achieved an accuracy of
99.25% without applying the data augmentation technique. In these experiments, we
considered training the CNN models applying the data augmentation and without

Table 5 Performance evaluation of the CNNs on the tomato leaf disease dataset.

Methods Model Size Data Augmentation
No DA | DAS3 DA4 | DA5 | DAG6

VGG16 (A. Kumar

& Vani, 2019) N/A 99.25 - - - -

MobileNetV1 250MB | 99.26 | 99.60 | 99.26 | 99.46 | 99.33
MobileNetV2 179MB | 99.26 | 99.26 | 99.86 | 99.13 | 99.20
NASNetMobile 373MB | 99.33 | 99.46 | 99.73 | 99.26 | 99.53
DenseNet121 279MB | 99.46 | 99.53 | 99.87 | 99.53 | 99.66

Xception 159 MB 99.66 99.73 | 99.20 | 99.87 | 99.80
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Table 6 Performance evaluation of the CNNs on the corn leaf disease dataset.

Model Size Data Augmentation (DA)
Methods

No-Aug | DA3 | DA4 | DA5 | DAG6

(gfféﬁ que;r%'\lﬂs) R ) RN - S

(A?gxfi;:; I:te:{?\zlgfza) NIA - | 8370 | - - - -
MobileNetV1 24.9 MB 97.92 |98.44 | 99.20 | 98.44 | 99.20
MobileNetV2 17.9MB 98.18 |97.66 | 99.21 | 97.40 | 98.18
NASNetMobile 37.3 MB 98.44 |95.83 | 99.21 | 98.96 | 99.21
DenseNet121 27.9 MB 98.44 |98.70 | 98.70 | 98.70 | 98.96
Xception 159 MB 98.70 |98.70 | 98.44 | 98.70 | 99.22

applying the data augmentation techniques. The results showed that the DenseNet121
and Xception using data augmentation surpassed all CNN models with an accuracy of
99.87%.

As seen in Table 6, accurate results appeared when applying the data augmentation
techniques. It shows that Xception combined with mixed data augmentation techniques
(DAG) provided an accuracy of 99.22%. Moreover, the MobileNetV2 and
NASNetMobile combined with two data augmentation techniques (DA4 — Height
Shift+Fill Mode), and NASNetMobile combined with mixed data augmentation
techniques (DAG6), provided an equal accuracy of 99.21%. Furthermore, without
applying the data augmentation technique, CNN architecture still showed a better result
than the previous studies with an improvement of approximately 10% in accuracy.

3.5.3 Experiments of the Ensemble CNN models on the Plant Leaf Datasets.

As can be seen from Table 3, we decided to use the three best CNNs to construct
the ensemble CNNSs, including Xception, MobileNetV2, and DenseNet121, called 3
Ensemble CNNs (3-EnsCNNs). We also selected five CNNS (MobileNetV1,
MobileNetVV2, NASNetMobile, DenseNet121, and Xception) combined with data
augmentation techniques, called 5 Ensemble CNNs (5-EnsCNNs). In these
experiments, the outputs after applying the softmax function of every single CNN
model were then used in the decision layer of the ensemble method. We used three
ensemble methods to recognize the plant leaf datasets, including the unweighted
majority vote, unweighted average, and weighted average methods.

Table 7 shows the results obtained with the ensemble CNNSs. For the ensemble
methods, the results emphasize that the weighted average outperforms the unweighted
majority vote and average methods on three plant leaf datasets. Subsequently, the 3-
EnsCNNs performed better than 5-EnsCNNs on tomato and corn leaf disease datasets,
except for the mulberry leaf dataset that obtained the best result when applying 5-
EnsCNNs. The data augmentation techniques, surprisingly, without the data



31

Table 7 Performance of the ensemble CNN methods applied on plant leaf datasets.

Test accuracy (%)

Datasets/DA NllJar;\év:‘;itg/h\%(ie Unweighted Average| Weighted Average
3-Ens 5-Ens 3-Ens 5-Ens 3-Ens 5-Ens
CNNs | CNNs | CNNs CNNs CNNs CNNs
Mulberry leaf dataset
No DA 92.81 93.65 94.55 94.68 94.49 94.75
DA 92.61 92.81 94.03 94.23 94.41 94.55
Tomato leaf disease dataset
No DA 99.20 99.20 99.79 99.86 99.86 99.79
DA 99.26 99.20 99.86 99.79 99.93 99.86
Corn leaf disease dataset
No DA 98.44 98.70 99.45 99.21 99.47 99.24
DA 98.44 98.70 99.21 99.21 99.31 99.30

augmentation technique show the best accuracy on mulberry leaf and corn leaf disease
datasets. On the other hand, the recognition performance with application of the data
augmentation technique was 99.93% on the tomato leaf disease dataset.

As a result, the weighted average ensemble approach also achieved accuracies
of 99.93% and 99.47% on the tomato and corn leaf disease dataset, respectively. The
results lead us to conclude that the ensemble methods can increase the performance of
the CNN architectures.

3.6 Conclusion

In this paper, we have proposed ensemble CNN architectures to improve
recognition performance on the plant leaf datasets. In order to obtain the CNN based
models, we first compared five state-of-the-art CNNs: MobileNetV1, MobileNetV2,
NASNetMobile, DenseNet121, and Xception. The CNN models were trained with a
transfer learning technique and the training sample enlarged using data augmentation
techniques. We evaluated five CNN models on the mulberry leaf dataset and two plant
leaf disease datasets: tomato and corn. Second, we selected the three best CNN models
to establish the ensemble CNNs: Xception, MobileNetV2, and DenseNet121, called 3-
EnsCNNs. Additionally, five CNN models: MobileNetV1l, MobileNetV2,
NASNetMobile, DenseNet121, and Xception, were applied as 5-EnsCNNSs. Finally,
three ensemble methods: the unweighted majority vote, unweighted average, and
weighted average methods, were proposed to classify the output of CNN models. The
weighted average method was selected from the best experimental result.

With the individual CNN model, the DenseNet121 achieved 98.61% accuracy with
cross-validation and outperformed all models. Additionally, MobileNetV2 showed the
highest performance on the test set of the mulberry leaf dataset with an accuracy of
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91.19%. In the best of our experiments, the data augmentation techniques: Height Shift,
Vertical Flip, and Fill Mode, could slightly improve the performance of the CNN
models, especially by significantly increasing the efficiency of the Xception model. The
Xception combined with data augmentation techniques obtained an accuracy of
91.77%. For tomato and corn leaf disease datasets, the DenseNet121 and Xception
achieved very high accuracy above 99%. Our experimental results also achieved high
accuracy when compared to previous work.

To create a mobile application to address the issue of plant leaf recognition, we
recommend using the CNN models of MobileNetVV2, MobileNetV1, DenseNet121, and
NASNetMobile, respectively. These CNN models provided accuracy above 99% on the
tomato and corn leaf disease datasets. The size of these CNN models is approximately
25-40 MB, which is relatively small. In comparison, we recommend using
MobileNetV2 for plant leaf recognition.

As for the ensemble CNN, the experimental results showed that the 3-EnsCNNs
achieved the highest accuracy performance on the tomato and corn leaf disease datasets.
Moreover, 5-EnsCNNs outperformed 3-EnsCNNSs only on the mulberry leaf dataset.
Surprisingly, ensemble CNN without data augmentation techniques achieved the
highest accuracy on two plant leaf datasets, mulberry and corn. However, more than
99% accuracy was obtained from the tomato and corn leaf disease datasets. The highest
accuracy of 94.75% was obtained with the mulberry leaf dataset because the tomato
and corn leaf disease images contained only one leaf in the image (see Figure 16 and
Figure 17) while the mulberry leaf images were taken from the natural environment
with different perspectives, sunlight conditions, and several leaves appear in the image
(Figure 14 Illlustration of the mulberry field area in Thailand has been collected as a
dataset in this study consisting of Maha Sarakham, Buriram, Nakhon Ratchasima, and
Phitsanulok, and Chiang Mai.).

There is still a deficiency in improving the accuracy of the mulberry leaf dataset
because the ensemble CNN method achieved only 94.75% accuracy. In future work,
we plan to work on other data augmentation techniques such as generative adversarial
networks (GAN) (Shorten & Khoshgoftaar, 2019), AutoAugment (Cubuk, Zoph, Mané,
Vasudevan, & Le, 2019), and sample paring (Inoue, 2018) methods. Another direction
for future work would be designing new ensemble CNNs. Bio-inspired algorithms, such
as an artificial bee colony, bat algorithm, particle swarm optimization, and ant colony
optimization will be employed to optimize the weight of the ensemble method
(Darwish, 2018; Joel & Priya, 2018)



Chapter 4
Automated Model Selection using Evolutionary Ant Colony
Optimization with Learning Rate Schedule to Recognize Plant Leaf
Images

The model selection method is a necessary process proposed to discover robust
models that enhance the performance of the recognition systems. In this research, a new
ant colony optimization (ACO) is proposed to select the robust models of a
convolutional neural network (CNN). Further, the robust models are performed in the
ensemble learning method, called ensemble CNNSs. The advantage of the evolutionary
ACO algorithm is that it guarantees to select the set of robust CNN models every
running time because the new fitness function and the learning rate schedule embedded
in the ACO algorithm increases the distribution of the pheromones. When the new CNN
models were added to the systems, the proposed ACO algorithm allowed an agent to
find the new CNN model, while the original ACO algorithm always selected the same
CNN model. For the evaluation, we assessed the proposed ACO algorithm on two plant
leaf datasets: mulberry and Turkey-plant, and also compared the results with existing
methods. In our experiments, we trained 15 CNN models with different tuning
parameters. These CNN models were used in the automatic model selection based on
the ACO algorithm. We first compared two ACO algorithms, including the ant colony
system (ACS) and the max-min ant system (MMAS). The result showed that the
MMAS algorithm outperformed the ACS algorithm. Hence, three ensemble learning
methods (unweighted average, weighted average, and cost-sensitive learning) were
evaluated and it was found that the weighted average method is the best ensemble
method. Additionally, the weighted parameters were discovered by the grid-search
method was executed when finding the weighted parameters. The proposed ACO
algorithm achieved an accuracy above 99.33% and 95.34% on the Turkey-plant and
mulberry leaf datasets, respectively.

4.1 Introduction

Recognition of plant species and diseases by humans requires experience, so
only a small mistake could cause many problems. In this case, many expert people are
required. On the other hand, due to computer technology advancements, many
researchers have proposed plant recognition systems to detect and recognize plant
diseases and classify plant species (DeChant et al., 2017; Hassan et al., 2021; X. Li & Chen,
2010). A plant recognition system could be invented to prevent the risk of using the
wrong plant species in medicine and to stop the spread of diseases on the farms in the
early phase (Dhaware & Wanjale, 2017; Sinha & Shekhawat, 2020). Consequently,
taking advantage of the precision and speed of computer technology is very useful in
creating highly efficient plant recognition systems. So, it could be performed
automatically with fewer errors and reduced working time (Fathi Kazerouni,
Mohammed Saeed, & Kuhnert, 2019; Hughes & Salathé, 2015).

Agriculturalists could recognize plant species and diseases by plant leaves.
Hence, when creating the plant recognition systems, many researchers collected plant
leaves and took images in laboratories with white backgrounds (Arafat, Saghir, Ishtiaq,
& Bashir, 2016; Munisami et al., 2015; Pawara, Okafor, Surinta, et al., 2017).
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Nevertheless, this may not be suitable for actual use. When leaf images are taken in the
laboratory, image processing techniques could propose extracting shape, color, and
texture from images, called a feature, and then recognize features using machine
learning techniques (Patil et al., 2013; Wang et al., 2008). In comparison, many
researchers took plant leaves in real-world environments with many conditions, such as
complex backgrounds, light, shadow, and perspective, while taking the images
(Chompookham & Surinta, 2021; Kusumo et al., 2018; Turkoglu et al., 2021; Vo et al.,
2019). Under these circumstances it might be more challenging to increase the
performance of the plant leaf recognition systems.

Deep learning techniques, especially convolutional neural networks (CNNs),
are used when leaf images are taken in real-world environments (Atabay, 2016; A.
Kumar & Vani, 2019; Turkoglu et al., 2021). The biggest advantage of the CNN method
is that they combine the feature extraction method and recognition into one architecture.
Then, extracting the shape and region of interest are not required. However, using only
one CNN model does not guarantee the highest performance on plant leaf recognition.
Importantly, to deal with the problems of accuracy performance, the ensemble CNNs
method is proposed due to the power of multiple CNN models that could make a better
recognition than using only one CNN model (Chompookham & Surinta, 2021;
Enkvetchakul & Surinta, 2022; Mokeev, 2019; Puangsuwan & Surinta, 2021). The
problem of the ensemble CNNs method is discovering the best combination between
various CNN models and the best number of CNN models used in ensemble learning.

Contribution. In this research, we proposed the ant colony optimization (ACO)
algorithm as the model selection method to automatically discover the best combination
of CNN models. We aim to present a new model selection based on the ACO algorithm
by adding two functions to the ACO algorithm, including two new fitness functions and
two learning rate schedules (time-based and cyclical learning). These two functions
allow the ACO algorithm to find the robust CNN models. Consequently, the robust
CNN models are used in the ensemble learning method.

The original ACO algorithm computed the pheromones table based on the
fitness function, which is highly possible to select the same CNN models, even if the
system has new robust CNN models because the values of pheromones are not
distributed. Therefore, the proposed ACO algorithm could distribute the values of the
pheromones table and have a high chance of selecting new robust CNN models. To
demonstrate the significant improvement of the new ACO algorithm, we evaluated the
proposed algorithm on two plant leaf datasets: mulberry leaf and Turkey-plant and
achieved high accuracy.

This paper has been organized as follows. Section 4.2 summarizes the overview
of related work. Section 4.3 describes the proposed ant colony optimization algorithm
for plant leaf image recognition. Two plant leaf datasets are described in Section 4.4.
Evaluation metrics and experimental results are presented in Sections 4.5, 4.6., and 4.7
the discussion and conclusion are presented in Sections 4.8 and 4.9.
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4.2 Related Work

Much recent research has been conducted to address problems of plant leaf
recognition. This section describes the related work on recognizing plants, including
the ACO, CNN, and ensemble learning methods.

4.2.1 Ant Colony Optimization (ACO) Algorithm

The ACO algorithm was proposed in many applications (Fahmi, Zarlis,
Nababan, & Sihombing, 2020; S. Li, Wei, Liu, Zhu, & Yu, 2022; Pitakaso, Almeder,
Doerner, & Hartl, 2007). However, only a few studies proposed the ACO algorithm in
the plant recognition domain. Li and Chen (2010) and Ghasab et al. (2015) used ACO
as the feature selection method. In 2010, shape features of the weed leaf were extracted
(X. Li & Chen, 2010). The ACO algorithm was used to search for the best feature
subset. Hence, the SVM algorithm was employed to create the model from the best
feature subset selected using the ACO algorithm. For the feature selection methods,
they compared the ACO algorithm with the genetic algorithm (GA) in terms of accuracy
and number of features. The result showed that the ACO algorithm outperformed the
GA algorithm in accuracy and number of features.

Further, Ghasab et al. (2015) presented an expert system for automatically
recognizing different plant species from leaf images. In their study, firstly, the shape,
morphology, color, and texture of the plant leaves were extracted as possible features.
Secondly, the ACO algorithm was applied as the feature decision-making method to
select the best features. Lastly, the selected features were then transferred to a support
vector machine (SVM) to create a robust model and classify plant species. When
evaluating their proposed method, around 2,050 images selected from FCA and Flavia
datasets were tested and the results achieved an accuracy of 95.53%.

4.2.2 Convolutional Neural Networks (CNNs)

Due to the success of the deep learning technique, numerous researchers mainly
use CNNs to address their problems. Many new architectures, including ResNet,
NASNet, DenseNet, ResNext, EfficientNet, etc. (Huang et al., 2018; Tan & Le, 2019;
Xie, Girshick, Dollar, Tu, & He, 2016; Zoph et al., 2018), have been proposed. Further,
CNNs are proposed in agriculture (Adhitya, Prakosa, Koppen, & Leu, 2019;
Neforawati, Herman, & Mohd, 2019). Pawara et al. (2017) compared the performance
of the well-known CNN architectures (AlexNet and GooglLeNet) with two feature
extraction methods; a histogram of oriented gradients (HOG) and a bag of visual words
with HOG (BOW-HOG) on three plant datasets, including AgrilPlant, LeafSnap, and
Folio. Further, two feature extraction methods were trained by machine learning
techniques; K-nearest neighbor (KNN), support vector machine (SVM), and multilayer
perceptron (MLP). The experimental results showed that both CNN architectures
outperformed the hand-crafted features methods and achieved an accuracy above 97%
on three datasets. Jeon and Rhee (2017) used GoogLeNet to improve the performance
of plant leaf recognition. GoogLeNet was trained on the distortion and discoloration of
leaf images, called damaged leaf images. The experimental results showed that above
94% accuracy was obtained when trained on the damaged leaf images with damage of
around 30%. Bisen (2021) proposed a new CNN architecture that contains 11 layers to
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recognize 15 plant species via leaf images in the Swedish dataset. Subsequently, data
augmentation techniques were used while training the proposed CNN, including
rotation, width shift, height shirt, zoom, rescale, and resize. Their proposed CNN
achieved an accuracy of 97% and outperformed the existing method (Turkoglu et al.,
2021).

Hassan et al. (2021) used many deep CNN models (InceptionV3,
InceptionResNetV2, MobileNetV2, and EfficientNetB0) to identify and diagnose plant
leaf diseases on the PlantVillage dataset. This dataset has 14 plant species and contains
54,305 images of 38 classes (healthy and diseased). While training the CNN models,
the dataset was divided into training and test sets in their experiments with different
ratios (80:20, 70:30, and 60:40). The results showed that the CNN models had an
accuracy rate above 90% when trained with few epochs (30-50). Subsequently, The
EfficientNetBO slightly outperformed three other CNN models: InceptionV3,
InceptionResNetV2, and MobileNetV2.

Moreover, Quach et al. (2022) used the CNN model as the feature extraction
method. Their method extracted the robust features from the leaf images by many
feature extraction methods; shape, texture, color, Fourier descriptor, vertical and
horizontal projection, and vein. Hence, the CNN model computed these robust features.
The output was designated with 100 features and fed to the SVM classifier. Their
method achieved an accuracy of 99.58% on the test set of the Flavia leaf dataset.

4.2.3 Ensemble Learning Methods

Recognizing plant leaf images using a single CNN model does not always
guarantee good results. The ensemble learning method is proposed to improve the
performance of the single CNN model by combining output of various CNN models
and classifying using ensemble learning (Chompookham & Surinta, 2021;
Enkvetchakul & Surinta, 2022; Mokeev, 2019) .

Peker (2021) proposed a multi-channel capsule network ensemble (MCCNE).
The multi-channel included five channels: R-channel, G-channel, B-channel, Gabor
filter, and principal component analysis (PCA). As a result, the input images were
computed by five different techniques. Hence, the features computed from each feature
extraction technique were sent to the capsule network to create the model. Further, the
output of each capsule network was classified using the majority voting method. Their
proposed method was evaluated on a tomato dataset containing nine disease classes and
one healthy class. Consequently, when evaluating the single model, which is the Gabor
filter combined with a capsule network, it achieved an accuracy rate of 96.15%.
However, the result showed that the MCCNE method, which is the ensemble learning
method, achieved an accuracy of 98.15% on the tomato leaf disease dataset and
outperformed the existing methods.

Turkoglu et al. (2021) trained the deep learning models of six state-of-the-art
CNN models (AlexNet, GoogLeNet, ResNetl8, ResNet50, ResNet101, and
DenseNet201) on the Turkey-plant dataset, which contain 15 diseases of 4,447 images.
For the experiments, first, the experimental results of the CNN models showed that the
AlexNet and GooglLeNet achieved accuracy less than 90%, while other CNN models
achieved an accuracy above 90%. Therefore, DenseNet201 was the best single CNN
model evaluated on the Turkey-plant dataset. Second, they experimented with using
CNN models to extract spatial features and concatenate them, followed by the SVM
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algorithm. This method was called PlantDiseaseNet-EF. Third, the method of
extracting features using the CNN model and classifying using SVM was proposed.
Hence, the prediction outputs were then classified using a majority vote. This method
is called PlantDiseaseNet-MV. Consequently, the experimental results of
PlantDiseaseNet-EF and PlantDiseaseNet-MV performed much better than the single
CNN model. Moreover, the PlantDiseaseNet-MV method achieved an accuracy of
97.56% and slightly outperformed the PlantDiseaseNet-EF method.

To enhance the performance of plant leaf recognition, Chompookham and
Surinta (2021) proposed ensemble CNNs to recognize plant leaf images on three
benchmark datasets: mulberry leaf, tomato, and corn leaf diseases. First, five CNN
models; MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception,
and various data augmentation techniques were used as the single CNN model to
recognize leaf image datasets. However, the single CNN model achieved only
approximately 90% accuracy on the mulberry leaf dataset. On the other hand, the CNN
model achieved above 99% accuracy on the tomato and corn leaf disease datasets.
Furthermore, the ensemble CNNs with combined output probabilities of 3 (called 3-
EnsCNNSs) and 5 (called 5-EnsCNNs) robust CNN models and classified using three
ensemble learning methods: unweighted majority vote, unweighted average, and
weighted average. As a result, the 5-EnsCNNs with the weighted average ensemble
method achieved an accuracy of 94.75% on the mulberry leaf dataset, which is
improved by around 4.75%.

Additionally, Prem and Surinta (2022) trained four lightweight CNN
architectures (EfficientNetB1, InceptionResNetV2, MobileNetV2, and
NASNetMobile) with data augmentation techniques, then sent the output probability of
each CNN model to classify using the ensemble learning methods: unweighted majority
vote and unweighted average. The plant leaf images were randomly selected and trained
by the CNN model. Their method was different from the other research in that it
combined the output from the same CNN model, while other research combined the
output from various CNN models. As a result, the ensemble CNNs outperformed the
single CNN model on all plant leaf datasets. Consequently, the EfficientNetB1 is the
best CNN architecture when combined with the ensemble CNNS.

4.3 The Proposed Ant Colony Optimization for Automated Model Selection
4.3.1 Overview of the Ensemble CNNs Framework

In this section, we present the ensemble CNNs framework for plant leaf
recognition, as shown in Figure 18. The details of the ensemble CNNs are described as
follows.

A. The Training Scheme. First, many pre-trained models of the state-of-the-art
CNN architectures were trained and fine-tuned to create the robust CNN model on the
plant leaf dataset. Second, the ACO algorithm, which is the metaheuristic optimization
algorithm, was proposed as the model selection method to select the robust CNN
models from all the CNN models. For example, as shown in Figure 18, CNN models 3,
1, and 5 were automatically selected by the ACO algorithm. Third, we combined the
particular CNN models. Also, the output probabilities of each model were used to find
the weighted parameters by the grid-search method. Finally, the selected CNN models
and the weighted parameters were transferred to the test scheme.
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Figure 18 Illustration of the ensemble CNNs based on the automatic model selection
by the proposed ACO algorithm.

B. The Test Scheme. The test image was directly sent to CNN models, which
were selected in the training scheme, to compute the output probabilities. Hence, the
output probabilities of each CNN model were computed with the weighted parameters
to obtain the final recognition, called the ensemble method.

4.3.2 Ant Colony Optimization (ACO)

The ACO algorithm is the metaheuristic method employed to solve complex
optimization problems with the best solutions (S. Li et al., 2022; Pettersson & Lundell
Johansson, 2018). The design of the ACO algorithm was inspired by ant behavior
during a foraging cycle for food (M. Dorigo, 1992). In the foraging cycle, ants spread
pheromones that trail to a food source. Hence, other ants could follow the pheromones
until they found the food and carry it back to the nest. Thereby, the shortest route has
more pheromones, so ants could easily track the shortest route without returning to their
nest. The most successful application that applied the ACO algorithm was in the
traveling salesman problem, which used the ACO algorithm to find the shortest route
such that a salesman visits each city only once until returning to the origin city
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(Dewantoro, Sihombing, & Sutarman, 2019). The ACO algorithm has been applied in
many domains, such as path planning for mobile robots (Chen et al., 2021),
optimization routes in wireless sensor networks (Sharmin, Anwar, & Motakabber,
2018), and searching the penalty parameter in the kernel function of the support vector
machine (SVM) algorithm (Yan, Enhua, & Shuangting, 2020).

Algorithm 1: The proposed ACO Algorithm for model selection

Input:

number of iterations: N

number of ants: M

number of CNN model: R

pheromone: ©

fitness function: f

weight parameters: alpha (@), beta (B), evaporation rate (p),
learning rate value (7)

Initialization:
fi,j define by fitness function
if TL model using Equation (8)

if TLEW model using Equation (9)

Process:
For i=1to N do
For j=1to M do
Route construction by ant system
if ACS algorithm using Equation (11)
if MMAS algorithm  using Equation (13)
Create ensemble CNNs
For k=1to R do
if unweighted average method  using Equation (17)
if weighted average method using Equation (18)
if cost-sensitive learning method using Equation (20)
End for
End for
Calculate # by learning rate schedule
if time-based scheduler using Equation (15)
if cyclical learning rate scheduler  using Equation (16)
Update the pheromone by ant system
if ACS algorithm using Equations (12)
if MMAS algorithm using Equations (12) and (14)
Save best ACO solution (T

End for

Output:
The best ACO solution (T
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In this research, the ACO algorithm is proposed as the model selection method
to select robust CNN models by considering the loss and error values from various CNN
models. First, instead of the fitness value between pairs of the cities, the validation loss
and error rate of each CNN model was used to create the fitness function. Second, the
learning rate schedule was embedded in the ACO algorithm. These two proposed
methods enabled the ACO algorithm to compute and adjust the pheromones. The
pheromones will distribute and increase the chance of selecting the robust CNN models.
So, the set of the robust CNN models has been used in the ensemble CNNs method.
The process of the proposed ACO algorithm is shown in Algorithm 1.

4.3.2.1 Fitness Functions

The fitness function represents the fitness value between the first station (i) and
the second station (j). In this study, the training values of the CNN models between two
robust CNN models are employed to compute the fitness model (f (i, j)), including
training loss values, training error, and constant weight parameters. The minimum
fitness value of all selected CNN models reflects the most attractive path. We proposed
two fitness functions that use while constructing the robust route of CNN models. Two
fitness functions are presented as follows.

1) Training Loss Model (TL)

The most uncomplicated fitness function is computed using the training
loss value of each CNN model. The training loss model is computed by Equation 8.

where [; is training loss value of CNN model i and [; is training loss value of CNN
model j,i =1,2,..,m, j =1,2,...,n,and m, n are the numbers of CNN models.

2) Training Loss and Error with Weight Parameter Model (TLEW)
We computed the fitness function with training loss and training error values of the
CNN model. In addition, the optimal weight parameter is added to the fitness function
to control the contributing CNN models. The TLEW model is computed by Equation
9.

fG@j = \/((li —e) +wp)?+ ((I; —¢) +wj)?, 9)

where [; and e; is training loss and training error values of CNN model i and w; is the
optimal weight parameter, and w; is defined as follows.
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where x is the accuracy of each CNN model and n is the maximum weight parameter.

Consequently, the fitness table of the whole station is constructed as shown
in Equation 10.

i

0 d(in2)  dlijnt)  dCinn)

iz, jr) 0 dliajnt)  dlizn) 10)
Alim1j) Alim1j) 0 dlimrn)

Alimrj)  dlim2)  Almjn) O

where f (i, j,) is the fitness value between CNN model 1 and CNN model n. The
fitness values between the same station f (i, j;) is zero.

4.3.2.2 Route Construction and Pheromone Updating Rule

In this section, the ants must decide which paths to walk along to complete
the solution, which is the shortest route, called route construction. Further, while
constructing the shortest route, the ant evaluates the solution, modifies the trial values,
and updates the best solution in the pheromone table, which other ants will use to find
another route in the future. In this research, we used two systems to search for the best
solution; the ant colony system (ACS) and the max-min ant system (MMAS), which
are presented as follows.

A. Ant colony system (ACS)

The ACS algorithm was proposed by Dorigo, Di Caro, and Gambardella
(1997) as a meta-heuristic algorithm for optimization problems such as the traveling
salesman problem. The ants search for food and walk from one station to another until
they get food. The pheromones (z(; ;) are spread to the route they walk, called the route
construction process (p{‘j). Then, other ants can follow that route to bring food. Further,
other ants can decide to walk on a different route to find a better solution. The ant will
spread pheromones when the new route is the better solution, called the pheromone
updating rule. The ACS algorithm uses the pseudorandom proportional rule (Marco
Dorigo & Gambardella, 1997) to construct the best route by Equation 11 and update
the pheromone in each iteration when the ant walks through that route, as computed by
Equation 12.
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where F; jy = . f(i,j) 1s a fitness function, g is a random value between zero to one,
)

qo 1S the probability value that the ant constructs the best possible move, a« and
defined as the relative influence between the heuristic information and the pheromone
levels, a and § are equal or greater than one, and Y;¥ is the stations that have not yet
traveled when moving from station i to station j.

In the ACS algorithm, however, only one ant allows updated the
pheromones, as a global update, in each iteration, as computed by Equation 12.

n

1-p) (T?_)l if (i,j) is not travel path,
Tap = { i (12)

(1—p) (i) + n VTS if (i,)) is travel path,

where p is the evaporation rate of the pheromone and p € (0,1), n is number of

iterations, V T24t is L,Lbest is the total fitness that provides the best solution for
@) Lpest
each iteration, and 7 is the learning rate.

B. Max-Min Ant System (MMAS)

The MMAS algorithm was proposed by Stutzle and Hoos (2000). In the
MMAS algorithm, the random proportional rule was suggested to construct the best
route by randomizing the probability value when ant (k) at the station i walk to station
j. In this process, the ant must check whether the route is traveled or not yet in each
iteration. However, when an ant walks through that particular station, that station will
be removed from the memory. As a result, that ant can walk through that station only
once. Further, only the best ant can improve the pheromones. The MMAS algorithm
computed the route construction by Equation 13.

« o b

K (v % Fip) e vk

Py = . when j € Y;", (13)
D Zzeyf(f(w‘) X Fip) l

The MMAS algorithm updates the pheromones according to the
maximum and minimum values. This research sets the maximum and minimum values
as Tmin=0.1 and Tmax=0.95. Hence, T?LD is the pheromone values between tmax
and tmin (tmin < 1 ;) < Tmax). The MMAS algorithm increases the chance of
selecting a route that was never selected before, which is calculated by Equation 14.
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. tmin if T?i’ j < Tmin,

tmax if r?i j > Tmax,

In this research, the learning rate (n) used in Equations 12 and 14 is further computed
by Equations 15 and 16 when selecting time-based and cyclical Learning rate schedules,
respectively.

4.2.3.3 Learning Rate Schedule

Deep learning techniques have the intent of discovering the optimal
parameters when training the deep learning models iteratively to minimize a given
function to the local minimum (P. Li, 2017; Sun, Cao, Zhu, & Zhao, 2019). Many
techniques are proposed to find the local minimum, such as using different optimization
algorithms (i.e., SGD, Adam, Adagrad, and adaDelta), tuning the hyperparameters
(momentum, decay, and learning rate), and applying various learning rate schedules,
which can increase the performance and decrease the training time of the deep learning
techniques. However, to optimize the parameters, the gradient is computed with a
learning rate value that could change at every training iteration using the learning rate
schedule method (J. Park, Yi, & Ji, 2020).

In this section, we developed the ACO algorithm by adding the learning rate
schedule to the algorithm to change the learning rate value while training the ACO
algorithm, with the objective function of decreasing the fitness values between each
CNN model and increasing the chance of distributing the pheromones. We briefly
describe two learning rate schedules: the time-based learning rate and cyclical learning
rate (CLR), that are used in the experiments, as follows.

A. Time-based Learning Rate Schedule

The uncomplicated learning rate schedule is the time-based learning rate
schedule (J. Park et al., 2020). The time-based scheduler yields the learning rate value
to drop quickly at the start of the training scheme. The demonstration of the learning
rate values of the time-based scheduler is shown in Figure 19 a). The time-based
scheduler is computed by Equation 15.

14 Mn
M+t = i@

(15)

where n,, is the learning rate at iteration n , n is the number of iterations, d is the decay
value, and avoid 0 in the denominator by adding 1.

B. Cyclical Learning Rate (CLR)

The CLR schedule was proposed by Smith (2017) to adjust the learning
rate value linearly for a few iterations. In the CLR scheduler, the maximum and
minimum learning rates are defined, then the learning rate is linearly increased to the
maximum and linearly decreased to the minimum values for a few iterations. The
change in the learning rate looks like a triangle shape, so it is called the triangular
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learning rate policy. The demonstration of the learning rate values of the CLR scheduler
is shown in Figure 19 b). The algorithm of the CLR scheduler is computed by Equation
16.

LocalCycle = math. floor(1 + epoch /(2 * stepsize)) (16)
LocalX = math.abs(1 + epoch [ stepsize — 2 x cycle + 1)
LocalLR = minLR + (maxLR — minLR) * math.max(0, (1 — x))

where epoch is the number of iterations when training, stepsize is the number of
iterations in half a cycle, minLR is the minimum learning rate, maxLR is the maximum
learning rate, and x is training data.

4.3.5 Ensemble CNNs

The ensemble method was proposed to enhance the recognition performance by
combining the output of various machine learning models to assemble the final optimal
recognition model (Alabbas, Khudeyer, & Jaf, 2016; Chompookham & Surinta, 2021).
Consequently, the ensemble method guarantees better performance (Dietterich, 2000;
Ganaie et al., 2021).

In this research, the machine learning models employed in the ensemble
method were pre-trained state-of-the-art CNN models, comprising MobileNetV1,
MobileNetV2, DenseNet121, NASNetMobile, and Xception (Chollet, 2016; Howard et
al., 2017a; Huang et al., 2018; Mark Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018;
Zoph et al., 2018). We then trained CNN models with the following fine-tuned
hyperparameters; optimization algorithms, data augmentation techniques, and learning
rate (H. Li et al., 2020; Poojary, Raina, & Mondal, 2020). In this step, we collected
diverse CNN models already used in the model selection by the ACO algorithm.
Further, the output probabilities of the CNN models selected by the ACO algorithm
were performed in the ensemble method.

This section briefly presents the ensemble methods; unweighted average,
weighted average, and cost-sensitive probability, that were performed in the
experiments.
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Figure 19 Illustration of the learning rate values when using different learning rate
schedules: a) time-based learning rate and b) cyclical learning rate.
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A. Unweighted Average Method

In this research, the output probabilities of CNN models were used in the
ensemble methods. Further, the output probabilities were computed by the softmax
function. For the unweighted average method, all the models have the same priority (Ju
et al.,, 2018). Assigning a high weight value to any model is not necessarily.
Furthermore, the outputs are averaged and the highest probability (arg max(p")) is
selected as a final recognition (J. Li et al., 2021). The unweighted average method is
calculated by Equation 17.

arg max(p") = % O, (17)

-

where y is the weight vector and n is the number of CNN models.
B. Weighted Average Method

For the weighted average method, assigning weight values to the models is
required. Weights were proposed to compute with the output probabilities of the CNN
models (Florea & Andonie, 2019). The highest weight was given to the most achieved
CNN model, although the lower weight was assigned to the other CNN models
(Harangi, 2018). For the final recognition, the outputs were averaged and then the
argmax function was proposed to select the final output. The weighted average method
is calculated by Equation 18.

| .
argmax(p’) = =¥ Gay), (18)

where n is the number of CNN models and «; is the weight values that compute with
the weight vector (y).

In this research, a grid-search method was used to discover the optimal
weight parameters for each CNN model. The set of weight parameters was passed to
the softmax activation function to scale the weight before computing the weights with
the output probabilities. Consequently, the summation of all weights is equal to one
(Nwankpa, ljomah, Gachagan, & Marshall, 2018). The softmax activation function was
computed by Equation 19.

eZi

O'(Z) = Zﬁ— (19)

z;)
1e7t

where Z is an input weight vector, z; is the elements of Z, eZ is the exponential
function for z;, e” is the exponential function for z, where j = 1,..,K, and K is the
number of weight vectors.

C. Cost-sensitive Learning Method

Rojarath and Songpan (2021) proposed a cost-sensitive learning method that
is designed for weighted voting in the ensemble learning method. In the cost-sensitive
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learning method, the true positive (TP;) rate (is called sensitivity) and output
probabilities (Prob;) of class i were multiplied and used as the weight parameter of
class i. In our research, the output probabilities were provided by the CNN models.
Hence, the weight parameters were computed depending on the number of models (n).
The weight parameters of class i were then averaged and proposed as a new weight of
class i. The new weight of each class is computed by Equation 20.

NewWeight, = % i=1(TP;; x Prob; ), (20)

where TP, ; is true positive of class i and model j, Prob; ; is the output probabilities of

class i and model j, when N is the number of models, and T'P; is computed by Equation
21.

__ Predicted class;

TP, =

(21)

Actual class;

4.4 Plant Leaf Datasets

Two plant leaf image datasets used in the experiment were taken from natural
environments.

4.4.1 The Mulberry Leaf Dataset

Chompookham and Surinta (2021) collected the mulberry leaf dataset using
smartphones and DSLR cameras. This dataset has ten cultivars and contains 5,262
mulberry leaf images taken from natural environments in 5 provinces of Thailand;
Maha Sarakha, Phitsanulok, Chiang Mai, Buriram, and Nakhon Ratchasima. Further,
ten mulberry cultivars a) Black Austurkey, b) Black Australia, c) Taiwan Maechor, d)
Taiwan Strawberry, e) King Red, f) King White, g) Kamphaeng Saen 42, h) Chiang
Mai 60, i) Buriram 60, and j) mixed breed mulberry Chiang Mai 60 + Buriram 60, as
shown in Figure 20.

W), g h) - i) J)

Figure 20 Examples of the mulberry leaf dataset.
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Figure 21 Examples of the turkey-plant disease image dataset.

4.4.2 The Turkey-plant Dataset

Turkoglu et al. (2021) collected the Turkey-plant disease image dataset in 2021,
which is of common diseases and pests found in Turkey. The challenge of this dataset
is that the dataset contains unconstrained images, including different perspectives and
different parts of plants. The Turkey-plant disease images were taken from natural
environments using a Nikon 7200D camera with resolution of 4000x6000 pixels and
stored in the RGB channel. This dataset consists of 15 categories and contains 4,447
plant disease images, including a) Apple Aphis Spp, b) Apple Eriosoma Lanigerum, c)
Apple Monillia Laxa, d) Apple Venturia Inaequalis, €) Apricot Coryneum Beijerinckii,
f) Apricot Monillia Laxa, g) Fruit Trees Cancer Symptom, h) Cherry Aphis Spp, i) Fruit
Trees Drying Symptom, j) Peach Monillia Laxa, k) Peach Parthenolecanium Corni, I)
Pear Erwinia Amylovora, m) Plum Aphis Spp, n) Walnut Eriophyes Erineus, and 0)
Walnut Gnomonia Leptostyla, as shown in Figure 21.

4.5 Performance Evaluation
We used six evaluation metrics to measure the performance of the proposed method
(Hicks et al., 2022; Hossin & M.N, 2015), as follows:

TP+TN

Accuracy = —m—
y TP+TN+FP+FN

(22)

TP
TP+FP

Precision = (23)
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Sensitivity = . (24)

Specificity = TNTJIrVFP (25)

Fl — score = ——& (26)
2TP+FP+FN

where TP, TN, FP, FN are true positive, true negative, false positive, and false negative,
respectively.

We also present the graph of the receiver operating characteristic (ROC) curve
(Hajian-Tilaki, 2013; R. Kumar & Indrayan, 2011) that is used to comprehensively
measure each performance index. In the ROC, the vertical axis is the true positive rate
(TPR), which is equivalent to sensitivity, and the horizontal axis is the false positive
rate (FPR), defined in the following:

FPR = 1 — Specificity 27

We also present the area under the ROC curve (AUC) value to the separability
measurement that the proposed model can determine between classes. Thus, the AUC
value close to one perfectly classifies all the positive and negative classes.

4.6 Experimental Results
4.6.1 Implementation Detail

For the implementation detail, we employed ant colony optimization (ACO) to
automate select CNN models. Then, the selected CNN models were sent to classify
using ensemble CNN models. The TensorFlow deep learning framework running on
Google Colaboratory was used for all experiments. In these experiments, we evaluated
the proposed method on two datasets, mulberry leaf and Turkey-plant. The mulberry
leaf dataset was divided into training, validation, and test sets with a ratio of 70:10:20.
We divided the Turkey-plant dataset with a ratio of 80:10:10 for training, validation,
and test sets, respectively. The setups of each algorithm are described as follows.

CNN. According to the ACO algorithms that we employed to choose the most
appropriate CNN models, we planned to create many different CNN models based on
pre-trained MobileNetV1 (Howard et al., 2017a), MobileNetV2 (M Sandler et al.,
2018), DenseNet121 (Huang et al., 2018), NASNetMobile (Zoph et al., 2018), and
Xception (Chollet, 2016) models. Furthermore, we trained CNN models with the
following hyperparameters: optimizers (SGD and RMSProp) (G. Hinton, Srivastava, &
Swersky, 2012; Ruder, 2017), data augmentation techniques (height shift, vertical flip,
and fill mode) (Perez & Wang, 2017; Shorten & Khoshgoftaar, 2019), learning rate
(0.1,0.01, and 0.001). As a result, 15 CNN models were obtained and used in the ACO
process.

ACO. In the first stage, two ACO algorithms were proposed to evaluate the
performance of the ACO framework, including the ACS and MMAS. These two ACO
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algorithms were used to optimize the pheromones, which is the main objective of ACO
algorithms. In addition, we also added two learning rate schedules to the ACO
algorithms, including time-based and cyclical learning. Indeed, we evaluated the
learning rate schedules with various learning rates values between 0.1 and 0.0001. In
the second stage, we proposed two new fitness functions as follows. The fitness
function computed from 1) the training loss is called FFy and 2) the loss, error, and
weighted accuracy is called FFyew. Hence, we employed a grid-search technique (Z6ller
& Huber, 2019) to optimize the basic ACO parameters, including alpha (in the range
between 1 and 5), beta (in the range between 1 and 9), evaporation rate (between 0 and
1), number of ants (in the range from 20 to 100), and number of iterations (200
iterations).

Ensemble Learning. For ensemble learning, three ensemble learning methods
were compared, including unweighted average, weighted average, and cost sensitive.
In these processes, we also employed the grid-search algorithm to find the optimal
weighted parameters for ensemble learning.

4.6.2 Recognition Performance on the Mulberry Leaf Dataset
4.6.2.1 Assessment of Ant Adaptation in ACO Algorithm

In this section, we experimented with the number of ants that correlated with
accuracy performance and response time obtained from finding the best route with ACS
and MMAS algorithms. We determined the number of ants per route as 10, 20, 30, ...,
and 70. The maximum iteration was assigned to 200 iterations. In this experiment, the
ACO parameters with the following values; a =1, =1, and p =0.95, were defined.
Consequently, the ACO algorithm was allowed to find the best routs, which are the
appropriate CNN models. Afterward, we sent the output of the CNNSs to classify using
the unweighted ensemble learning method. The results are presented in Table 8.

As shown in Table 8, it was found that increasing the number of ants also
increases response time while finding the best route. However, many ants are not
guaranteed to find the optimal route and high accuracy. The ACS algorithm obtained
the highest accuracy of 95.06% when using 50 ants, while the MMAS algorithm
achieved the highest accuracy of 95.09% when using only 20 ants. Moreover, we
compared the results of two algorithms (MMAS and ACS) using the paired t-test
method and found that the MMAS algorithm is significant compared to the ACS
algorithm (p < .05).

4.6.2.2 Effect of Adding Learning Rate Schedule to ACO

This section first focused on adjusting ACO parameters, including the
fitness function, ACO algorithm, beta, and decay. Second, we experimented with
adding the learning rate schedules (Time-based and cyclical) into the ACO algorithms.
For the fitness function, we proposed two models consisting of FFy and FFyew to present
the pheromone distribution after ants had walked along the possible paths. The best
number of ants in each ACO algorithm was selected from the previous experiment, as
shown in Section 4.6.2.1. Hence, we used the grid-search method to search the optimal
beta and decay parameters. For the learning rate schedule, the learning rate value
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between 0.1-0.0001 was selected. Finally, after the ants chose the most acceptable CNN
models, we used ensemble learning with the unweighted average method to evaluate
the proposed method. The experimental results are presented in Table 9.

The experimental results from Table 9 show that optimizing the ACO
parameters slightly affects the accuracy performance between 0.05-0.07%. We also
evaluated the performance of the ACO algorithms (MMAS and ACS) when applying
two different fitness functions (FFu and FFyew). First, we discovered that the FFyew
model slightly obtained better accuracy when combined with MMAS and ACS
algorithms than the FFy model with statistically significance at p < .01 (t-value = -
7.25379 and p-value = 0.000014). Second, we observed two learning rate schedules:
time-based and cyclical, that applied to the ACO algorithms. In comparison, the ACS
algorithm when combined with cyclical learning rate schedules achieved an accuracy
of 95.17%. The results showed that the cyclical learning rate schedules always achieved
better accuracy than the Time-based learning rate schedules.

Table 8 Evaluation performances (average accuracy and standard deviation) of the
ACO algorithms.

ACO No. of Ants Accuracy Response Time (s.)
10 94.88+0.092 9.32
20 94.91+0.098 14.5
30 94.91+0.074 15.6
ACS 40 95.02+0.096 16.4
50 95.06+£0.071 20.6
60 94.91+0.232 22.7
70 94.88+0.137 27.6
10 95.02+0.071 6.71
20 95.09+0.085 13.1
30 95.01+0.000 14.9
MMAS 40 95.01+0.000 20.4
50 95.04+0.058 28.3
60 95.00+0.029 32.6
70 95.04+0.035 36.4
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Table 9 Accuracy performance (%) of the ACO algorithms on the mulberry leaf
dataset when applying learning rate schedule and training on different fitness
functions.

Function | ACO | Beta Decay| FGRIIAE | ERRS | e
None - 95.06+0.071
ACS 1 0.95 Time-based 0.1 95.04+0.058
Cyclical 0.001 95.02+0.029
i None i 95.090.085
MMAS, 1 0.95 Time-based 0.001 95.04+0.035
Cyclical 0.1 95.04+0.058
None - 95.13+0.106
ACS 9 0.95 Time-based 0.001 95.15+0.085
Cyclical 0.001 95.17+0.035

FFtew
None - 95.14+0.092
MMAS| 8 0.95 Time-based 0.001 95.11+0.074
Cyclical 0.01 95.15+0.054

As shown in Figure 22, we illustrated the distribution of the pheromone in epoch
1 (first column), epoch 75 (second column), and epoch 150 (third column) when using
the ACS algorithm with different learning rate schedules. We found that the ACS
algorithm makes the distribution of pheromones poor (see Figure 22 a)). As a result,
the ACS algorithm chooses the same CNN models without considering the new models.
In comparison, when using the ACS algorithm with a cyclical learning rate schedule,
the pheromone distribution gets better after epoch 75, as shown in Figure 22 c) in the
second and third columns. Significantly, addition of a learning rate schedule increases
the chance that the ACS algorithm selects the new best CNN model.

We demonstrate two graphs to confirm that adding the learning rate schedule
improves the performance of the ACS algorithm. Figure 23 a) represents the fitness
value of ACS+Cyclical that dropped after epoch 75, while the fitness value of the ACS
algorithm did not reduce after epoch 75. Thus, the chance of discovering the a CNN
model is increased. Consequently, Figure 23 b) illustrates the accuracy of the
ACS+Cyclical and ACS algorithms. The graph showed that the ACS+Cyclical
algorithm outperformed using only the ACS algorithm in every epoch, except only
epoch 125.
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Figure 22 Illustrated the adaptation of the pheromone when using (a) ACS algorithm,
(b) ACS algorithm with time-based learning rate schedule, and (c) ACS algorithm
with cyclical learning rate schedule.
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Figure 23 Illustration of a) the fitness values and b) accurate performance of the ACS
and ACS+Cyclical algorithms.
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Table 10 Performance of the ACO algorithms when classified the results with
ensemble learning methods on the mulberry leaf dataset.

Learning Learning : Ensemb!e Learning Method _
ACO Rate Unweighted Average | Weighted Average Cost-sensitive
Schedule | "' Accuracy | Fl-score | Accuracy| Fl-score | Accuracy | Fl-score
Time-based 0.001 95.1540.085 | 0.9500+0.0009| 95.34+0.031 | 0.9520+0.0003 | 95.15+0.085 |0.9500+0.0009
ACS Cyclical 0.001 95.17+0.035 | 0.9501+0.0004| 95.33£0.046 | 0.9519+0.0005| 95.17+0.035 |0.9501+0.0004
Time-based 0.001 95.11+0.074 | 0.9497+0.0007| 95.26+0.149 | 0.9513+0.0018 | 95.11+0.074 |0.9497+0.0007
MMAS Cyclical 0.01 95.15+0.054 |0.9501+0.0005 | 95.30+0.036 | 0.9517+0.0003 | 95.15+0.054 |0.9501+0.0005

4.6.2.3 Performance of Ensemble Methods

From the experiment in Section 4.6.2.2, we used the unweighted ensemble
learning method to evaluate the performance of the ACO algorithms. As a result, we
found that the ACO algorithms achieved the highest performance when training using
FFuew fitness function. Hence, in this section, we experimented with three ensemble
learning methods; an unweighted average, weighted average, and cost-sensitive, to
present the ensemble learning methods affecting the performance of the image
classification system.

As shown in Table 10, the cost-sensitive and unweighted average methods
presented the same performance with 95.17% accuracy when using the ACS algorithm
with a cyclical learning rate (learning rate = 0.001). On the other hand, the weighted
average methods achieved the highest performance with an accuracy of 95.34% when
using the ACS algorithm with the time-based learning rate schedule (learning rate
=0.001). The precision, recall, and the ROC curve are shown in Figure 24 a), 24 b), and
25, respectively. So, we obtained the AUC value of 0.997 (see Figure 25).

Precision performance ks Recall performance

MMAS +Cyclical ACS+Cyclical MMAS+Cyclical N ACS+Cyclical
I :I: L MMAS +Time-based ACS+Time-based MMAS+Time-based = ACS+Time-based

IIII IIII 0.960

0.965

0.960

=
=)
o
o

0.935

"
I I
.95 0.950 L L
0.945 0.945
0.940 0.940

Weighted average Unweighted average Sensitivity Weighted average Unweighted average Sensitivity

Precision
o
=)
[¥]
=]
Recall

a) b)

Figure 24 Illustration of the precision a), and recall b) of the ensemble methods.
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Figure 25 Illustration of the receiver-operating characteristic curve of the ACS
algorithm with two learning rate schedule: time-based and cyclical.

The confusion matrices of the unweighted average and weighted average
learning methods are shown in Figure 26. We found that the most misclassified class
was the class of king white. It was classified as the Taiwan Maechor. We also visualized
the misclassified images. We found that misclassified images were taken with a lower
perspective, were backlit, and in low light, as shown in Figure 27.
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Figure 26 The confusion matrices of the unweighted average a) and weighted
average b) ensemble method on the mulberry leaf dataset.



Chiang Mai 60 + Buriram 60
King Red | 0.0012

Taiwan Maechor | 02411

Chiang Mai 60 [Jf.1485

Chiang Mai 60 + Buriram 60
Kamphaeng Saen 42 48.1078 |

Chiang Mai 60 + Buriram 60
King Red  0.0018

Taiwan Strawberry  0.0589
Chiang Mai 60 | 1.5972
Chiang Mai 60 + Buriram 60

King White
Black Austurkey ‘ X

0.1779 A5
|
Kamphaeng Saen 42 0.2802

Black Australia 0.4897

ISmSE s

King White

Taiwan Maechor 66.9944

Black Australia

Buriram 60 | 0.0509
Taiwan Maechor |24137
Taiwan Strawberry [.9627

Black Australia  [JSlH68

King Red
Chiang Mai 60
Black Australia
King White

Tatwan Maechor

Black Austurkey
Buriram 60
Black Australia
King White

55

King White

A
|3.0252 :

96.9257

King White

| 0.0043
| 0.0064
| 0.0354

0.0006
0.0014
0.0163

§.745

Taiwan Maechor 92.2070

B True Label [] Predicted Label

Chiang Mai 60 66.5241

Taiwan Maechor 56.2199

Figure 27 Illustration of the misclassified images on the mulberry leaf dataset.

Figure 28 shows the model selection or shortest path using the ACO algorithm.
Figure 28 a) and 28 b) show different shortest paths of the 5 CNN models that achieved
an accuracy of 95.20%. Figures 28 c) and 28 d) show that using more CNN models
sometimes did not achieve the highest accuracy. The ACO algorithm selected 8 (see
Figure 28 c)) and 7 (see Figure 28 d)) CNN models and achieved slightly less
performance with an accuracy of 95.14%.

4.6.3 Recognition Performance on the Turkey-plant Dataset

The previous section reported on the evaluation of the ACO algorithm on the
mulberry leaf dataset and found that the proposed method assigned the best CNN
models for use in the ensemble learning method. In this section, we then experimented
with the ACO algorithm on the Turkey-plant dataset to ensure that the proposed
algorithm always selects the best model. The performance of the proposed method is
shown as follows.

4.6.3.1 Performances Evaluation of CNNs

This section reports on using the pre-trained CNN models that were trained
on the ImageNet and mulberry leaf datasets consisting of MobileNetV1, MobileNetV2,
NASNetMobile, DenseNet121, and Xception. For the fine-tuning scheme, we divided
90% of the Turkey-plant dataset as a training set, 10% as a validation set, and 10% as
a test set. Then, we fine-tuned the CNN models with the following parameters; two
optimization algorithms (SGD and RMSProp), the learning rate value of 0.1 and
0.0001, and the batch size of 8 and 16.
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Figure 28 Illustrated four different paths that selected using the ACO algorithm,
including a) 1->2->11->13->12, b) 1->13->11->2->12, ¢) 1->2->8->13->12->7-
>6->11, and d) 1->2->12->13->4->7->5. Note that the arrow sign (->) means the
sequence of the CNN models when experimenting in the ensemble learning method.

Table 11 Performance evaluation of the CNN models on the Turkey-plant dataset.

Accuracy (%)
. Pre-trained
- Learnin Batch Pre-
Model Optimizer rate g Size trained Model of
Model Mulberry
Dataset
MobileNet RMSprop 0.0001 8 96.67 96.90
MobileNetV2 RMSprop 0.0001 16 95.34 95.79
NASNetMobile | RMSprop 0.0001 8 87.80 91.57
DenseNet121 SGD 0.01 8 98.00 98.89
Xception RMSprop 0.0001 8 97.34 96.67
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As shown in Table 11, we found that the DenseNet121 architecture achieved
the highest accuracy of 98.89% when using SGD optimization and fine-tuned on the
mulberry leaf dataset. In contrast, NASNetMobile obtained an accuracy of only 87.80%
when using the pre-trained model of the ImageNet, which is the worst performance. In
the following experiments, however, we used the ACO algorithm to select the best CNN
models from all the CNN models trained in this section.

4.6.3.2 Comparison of Learning Rate Schedule in the ACO Algorithm

To compare the accuracy performance of the learning rate schedule (time-
based and cyclical), we then adjust the following parameters; learning rate, beta, decay,
and fitness function.

As shown in Table 12, the experimental results indicated that training the
ACO algorithm using the learning rate schedule consistently achieved better
performance than without using the learning rate schedule. Consequently, using the
FFuew fitness function achieved higher performance than the FFy fitness function. The
result showed that the MMAS method when tuning with beta = 8 and decay = 0.95 and
using a time-based learning rate schedule with a learning rate of 0.001 achieved an
accuracy of 99.11% on the Turkey-plant dataset.

Table 12 Accuracy performance (%) of the ACO algorithms on the Turkey-plant
dataset when applying learning rate schedule and training on different fitness
functions.

Function | ACO  Beta Decay EGRIOIAE  ERRS L A
None - 98.94+0.186
ACS 1 0.95 Time-based 0.1 99.02+0.121
Cyclical 0.001 99.02+0.121
ik None i 98.94+0.099
MMAS 1 0.95 Time-based 0.001 99.07+0.099
Cyclical 0.1 98.94+0.186
None - 08.98+0.121
ACS 9 0.95 Time-based 0.001 98.98+0.336
Cyclical 0.001 99.02+0.121

FFtew
None - 99.02+0.121
MMAS| 8 0.95 Time-based 0.001 99.11+0.157
Cyclical 0.01 99.02+0.121
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Table 13 Performance of the ACO algorithms with ensemble learning methods on the
Turkey-plant dataset.

Learning Learning : Ensemblt.e Learning Methods _
ACO rate Unweighted Average Weighted average Cost-sensitive
schedule rate Accuracy| F1-score | Accuracy| F1-score | Accuracy| F1-score
Time-based 0.001 98.98+0.336 0.9903+0.0031| 99.33+0.000 0.9934+0.0000| 98.94+0.364| 0.9893+0.0037
ACS Cyclical 0.001 99.02+0.121{ 0.9910+0.0007| 99.29+0.098| 0.9929+0.0010| 98.94+0.243| 0.9894+0.0024
MMAS Time-based 0.001 99.11+0.157/ 0.9916+0.0014| 99.29+0.098| 0.9929+0.0010| 99.07+0.243| 0.9907+0.0024
Cyclical 0.01 99.02+0.121|0.9910+0.0010(99.33+0.000(0.9934+0.0000{98.94+0.243|0.9894+0.0024

4.6.3.3 Performance Evaluation of Ensemble Learning Methods

In this experiment, we compared the accuracy and F1-score results of three
ensemble learning methods; unweighted average, weighted average, and cost-sensitive.
We show the obtained results with the ensemble learning methods on the Turkey-plant
dataset in Table 13.

To summarize the experimental results, the weighted average ensemble
learning method outperformed both the unweighted average and cost-sensitive in terms
of accuracy. The weighted average method achieved an accuracy of 99.33% and an F1-
score of 99.34% on the Turkey-plant dataset. On the other hand, the cost-sensitive
method achieved the worst performance. Furthermore, the precision, recall, and ROC
curve are shown in Figure 29 a), 29 b), and 30, respectively. The AUC value (see Figure
30) showed that the ACS method using the cyclical learning rate achieved a very high
value of 0.99995.
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Figure 29 Precision a), and recall b) of the ensemble CNN methods on the turkey-
plant dataset.



59

OC Curve of MMAS
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Figure 30 Comparison of ROC curve of MMAS with different learning rate schedule
on the turkey-plant dataset.

We present the confusion matrix of the weighted average method in Figure
31. It shows only three images that were misclassified. The misclassified images are
visualized in Figure 32.
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Figure 31 The confusion matrix of the weighted average method on the Turkey-plant
dataset.
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Figure 32 Illustration of the three misclassified images on the Turkey-plant dataset.
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Figure 33 Illustrated two paths that were selected using the ACO algorithm,
including a) 1->12->13 and b) 1->10->13.

Figure 33 illustrates the shortest path using the ACO algorithm. Figure 33
a) and 33 b) present different shortest paths of the 3 CNN models. As a result, Figure
33 a) achieved an accuracy of 99.33% and Figure 33 b) attained an accuracy of 99.11%.

4.7 Big-O Analysis Results

We used the Big-O analysis to measure the time computation performance of
the proposed algorithm, as follows.

4.7.1 Big-O analysis of ACO algorithm

As shown in Algorithm 2, Lines 2-6 are used as the route construction by ant
systems: ACS and MMAS. An ant will find the best route in each iteration using ACS
or MMAS algorithms. In this case, Big-O = O(|M|), where |M| is the number of ants.
Line 7 is the pheromone updating that uses Big-O = O(1), but it computes the route in
each iteration. Hence, Big-O = (1.IN|). In Line 10, the pseudo-code allows the program
to save the best route, using Big-O = O(1). However, it computes in every iteration. In



61

this algorithm, the Big-O analysis is O(JM|+1.|N|+1.|N|). In conclusion, the Big-O

analysis of this algorithm is Big-O = O(|M|.|N|).

Algorithm 2: ACO algorithm

For i =1to N do
For j=1to M do
Route construction by ant system
if ACS algorithm
if MMAS algorithm
End for
Update the pheromone by ant system
if ACS algorithm
if MMAS algorithm
10. Save best ACO solution (T35

11. End for

CoNoOkrWNE

4.7.2 The Big-O analysis of the ACO algorithm combined with an ensemble

method

Algorithm 3: ACO algorithm combined with ensemble method
1. For i=1to N do

2. For j=1to M do

3. Route construction by ant system

4, if ACS algorithm

5. if MMAS algorithm

6. Create ensemble CNNs

7. For k=1to R do

8. if unweighted average method
9. if weighted average method

10. if cost-sensitive learning method
11. End for

12. End for

13. Update the pheromone by ant system

14, if ACS algorithm

15. if MMAS algorithm

16. Save best ACO solution (T

17. End for

As shown in Algorithm 3, Lines 2-12 are used as the route construction by ant
systems. In this study, Big-O = O(|M|.|R|), where |M| is the number of ants and |R| is
the number of CNN models. Line 13 is the pheromone updating that uses Big-O = O(1),
but it computes the route in every iteration, then Big-O = (1.|N|). In Line 16, the pseudo-
code allows the program to save the best route, using Big-O = O(1). In this algorithm,
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the Big-O analysis is O(|M|.|R[+1.|N|+1.|N]|). In conclusion, the Big-O analysis of this
algorithm is Big-O = O(|M|.|R|.|N|).

4.7.3 The Big-O Analysis of the ACO algorithm combined learning rate
schedule and ensemble method

Algorithm 4: ACO algorithm combined learning rate schedule and ensemble
method

1. For i=1to N do

2. For j=1to M do

3. Route construction by ant system
4, if ACS algorithm

5. if MMAS algorithm

6. Create ensemble CNNs

7. For k=1to R do

8. if unweighted average method
9. if weighted average method
10. if cost-sensitive learning method
11. End for

12. End for

13. Calculate # by learning rate schedule
14. if time-based scheduler

15. if cyclical learning rate scheduler
16. Update the pheromone by ant system
17. if ACS algorithm

18. if MMAS algorithm

19. Save best ACO solution (725

20. End for

As shown in Algorithm 4, Lines 2-12 are used as the route construction by ant
systems. In this study, Big-O = O(|M|.|R|), where |M| is the number of ants and |R| is
the number of CNN models. Line 13 computes the learning rate using Big-O = O(1),
but it computes in every iteration, then Big-O = (1.|N|). Line 16 is the pheromone
updating that uses Big-O = O(1), but it computes the route in every iteration, then Big-
O =(1.INJ). In Line 19, the pseudo-code allows the program to save the best route, using
Big-O = O(1). In this algorithm, the Big-O analysis is O(|M|.|R|+1.|N|+1.|N]|). In
conclusion, the Big-O analysis of this algorithm is Big-O = O(|M|.|R|.|N]).

To conclude, the ACO algorithm has a Big-O analysis with higher performance
than the ACO algorithm combined with the ensemble method. Additionally, Big-O
analysis of the ACO algorithm combined with the ensemble method shows a similar
analysis with the ACO algorithm combined learning rate schedule and ensemble
method.
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4.8 Comparison of the Proposed ACO Algorithm and Other Existing Methods

We compared our proposed ACO algorithm and existing methods on two datasets:
mulberry leaf and Turkey-plant. The experimental results showed that the proposed
ACO algorithm, which changes the fitness function and adds a learning rate schedule
to find the shortest path of the CNN models, strongly outperformed the previous method
on both mulberry leaf and Turkey-plant datasets with an accuracy of 95.34% and
99.33%, respectively. The comparative results of the two plant leaf datasets are shown
in Table 14.

Table 14 Recognition performance on the Turkey-plant and the mulberry leaf datasets
with the existing methods.

Dataset Reference Method Accuracy (%)

The mulberry | Chompookham 5-EnsCNNs 94.75
leaf dataset | and Surinta
(Chompookham &
Surinta, 2021)

Our proposed Automatic model Selection 95.34

(The proposed ACO
algorithm and Ensemble
CNNs with weighted
average method)

The Turkey- | Turkoglu et al. PlantDiseaseNet: Ensemble 97.56
plant dataset | (Turkoglu et al., CNNs with 5 CNN models
2021)
Our proposed Automatic model Selection 99.33
(The proposed ACO
algorithm and Ensemble
CNNs with weighted

average method)

4.9 Discussion

In this paper, we proposed an automatic model selection based on the ant colony
optimization (ACO) algorithm that aims to select the robust convolutional neural
network (CNN) model. In the original ACO algorithm, however, we found that the
ACO algorithm selects the shortest path based on the attractiveness values calculated
from the pheromones table. It is highly possible that the ants may walk on the same
path. So, the chance of finding new routes is low. We then proposed the new fitness
function, called FFyew and added a learning rate schedule to the ACO algorithm that
distributes the value of pheromones to the appropriate pheromone values, as shown in
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Figures 22 a) and 22 c). Consequently, all the selected CNN models, which were
automatically selected using the ACO algorithm, achieved better performance when
classified using the ensemble CNNs method.

4.10 Conclusion

This research proposed a new ant colony optimization (ACO) algorithm that
aims to select the robust convolutional neural network (CNN) models in ensemble
CNNs. For the proposed ACO algorithm, we first designed a new fitness function, and
second, the learning rate schedule was added to the ACO algorithm to learn the fitness
function and decrease the fitness function in each iteration. The advantage of the
proposed methods is the distribution of the pheromone values, so it could take the
chance to select the new robust CNN models, not select only the old CNN models.
Subsequently, the robust CNN models selected by the proposed ACO algorithm were
used in the ensemble learning method. Furthermore, when the proposed ACO algorithm
selects two sets of CNN models, these two sets of CNN models always attained high
performance.

We evaluated the proposed ACO algorithm on two plant leaf datasets: mulberry
and Turkey-plant. First, we trained state-of-the-art CNN models (MobileNetV1,
MobileNetV2, DenseNet121, NASNetMobile, and Xception) with fine-tuned various
hyperparameters, including data augmentation techniques (height shift, vertical flip,
and fill mode), optimization algorithms (SGD and RMSProp), and learning rate (0.1,
0.01, and 0.001), which is 15 CNN models in total. Hence, the proposed ACO algorithm
enables the automatic selection of robust CNN models. Second, for the ACO algorithm,
we also compared two ACO frameworks: the ant colony system (ACS) and the max-
min ant system (MMAS), to present the best ACO framework. We found that the
MMAS framework outperformed the ACS framework. Third, three ensemble learning
methods; unweighted average, weighted average, and cost-sensitive, were compared.
In our experiments, the weighted average method performed the best. Further, the grid-
search method was proposed to discover the weighted parameters. As a result, the
proposed ACO algorithm achieved high accuracy on the Turkey-plant dataset with
above 99.33% and achieved 95.34% on the mulberry leaf dataset. We compared our
proposed ACO algorithm with other methods and found that the proposed ACO
algorithm outperformed the existing methods on mulberry and Turkey-plant leaf
datasets.

There is still space for improving the accuracy of the mulberry leaf dataset
because the proposed ACO algorithm achieved an accuracy of only 95.34%. To
enhance the performance, we plan to work on the ACO algorithm using local search in
future work. Other meta-heuristic methods include particle swarm optimization (PSO)
(Gad, 2022; Jana, Mitra, Pan, Sural, & Chattaraj, 2019) and artificial bee colony
optimization (M. Zhao, Song, & Xing, 2022), also the aim of our considerations. The
combination and hybrid approaches, such as PSO & line spectral frequencies (LSF)
(Neekabadi & Kabudian, 2018), genetic algorithm & voltage source inverter (VSI)
(Lopez, Cruz, & Gutierrez, 2021), harmony search & evolution strategy, will be
considered in future work.



Chapter 5

Discussion

The research objective described in the dissertation is to design and develop an
automatic image classification system using deep learning to classify plant disease
problems. Firstly, we focused on classifying plant leaf images taken in the lab. We
introduced multiple grids to divide plant leaf images. The divided images were then
extracted for robust features using traditional feature extraction methods. Then, the
dimensionality reduction method was used to reduce the feature vector size and bring
the feature vector learned and classified using machine learning methods. Secondly, we
proposed the ensemble convolutional neural network (CNN) method to create robust
CNN models and then combined the output of each CNN model to generate the optimal
predictive model, called the ensemble method. In this process, we classified plant leaf
disease images that were captured from natural environments. Finally, we focused on
the optimization algorithm called ant colony optimization (ACO) to automatically
select the robust CNN models. We improved the performance of the ACO algorithm by
proposing a new fitness function and adding the objective function to the ACO
algorithm to distribute the pheromone values. We proved that the ACO algorithm when
adding the proposed method could automatically select the robust CNN models and
improve the efficiency of the image classification system.

We briefly discussed the challenges of an automatic image classification system
using the traditional method and deep learning method.

In Chapter 2, due to the problem of classifying leaves of different species with
similar leaf shapes and leaves of the same plant but with different leaf shapes, we
presented multiple grids and a dimensionality reduction-based descriptor approach to
solving this problem. First, the multiple grid method was used to divide the leaf images
into subareas and then calculate the subarea using robust feature extraction methods,
including histogram of oriented gradients (HOG), local binary patterns (LBP), and color
histogram. The distinctive features of the plant leaf were extracted in this process.
Second, the distinctive features were fed to principal component analysis (PCA), which
is a dimensionality reduction method, to reduce the feature vector size. Finally, the
machine learning techniques, including support vector machine (SVM) and multi-layer
perceptrons (MLP), were used to create the model from the reduction features. The
experimental result showed that the proposed method achieved high accuracy with
more than 99% on the Folio dataset.

Chapter 3 presented the ensemble CNN method to classify plant leaf images taken
in natural environments. First, the robust CNN models were created based on state-of-
the-art CNN architectures, including MobileNetVV1, MobileNetV2, Xception,
DenseNet121, and NASNetMobile. We fine-tuned the CNN models using three
optimization algorithms (stochastic gradient descent (SGD), Adam, and RMSProp),
different learning rates (0.1, 0.01, 0.001, and 0.0001), batch sizes (8, 16, 32, and 64),
and different data augmentation methods. Second, three and five robust CNN models
were discovered and used in the ensemble learning method, called 3-EnsCNNs and 5-
EnsCNNSs. Finally, the output probabilities of CNN models were then transferred to the
ensemble learning method to classify the plant leaf images. Three ensemble methods
were compared for the ensemble learning method: unweighted majority vote,
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unweighted average, and weighted average. The proposed methods were evaluated on
three plant leaf image datasets: mulberry, tomato, and corn. The experimental results
showed that the weighted average ensemble method outperformed other ensemble
methods for the ensemble learning method. The ensemble CNN method achieved more
than 99% accuracy on the tomato and corn leaf diseased datasets and above 94% on the
mulberry leaf dataset.

Chapter 4 aimed to select the best-CNN models for use in the ensemble CNN
method. We then proposed an automatic model selection based on the ACO algorithm.
The most significant of the proposed ACO algorithms is the chance of finding new
routes and still obtaining a high classification performance. To improve the
performance of the ACO algorithm, we presented the new fitness function and learning
rate schedules used for calculating the pheromones. The proposed method could
distribute the pheromone to the appropriate values. The proposed ACO algorithm
increases the chance of automatically selecting the best-CNN models. Further, the best-
CNN models were used in the ensemble learning method, called the ensemble CNN
method. The ensemble CNN method is highly accurate when classified using the best-
CNN models.

5.1 Answers to the Research Questions

This section answered three research questions (RQ) related to improving the
plant leaf classification system in detail, according to the research question in Section
1.

RQL1: Plant species generally can be classified from plant organs, such as
leaves, bark, flowers, seeds, and stems. However, the leaf is the most distinctive plant
part that could be easier classified than other parts. Is it possible to classify plant leaf
images using image processing and machine learning methods? Extracting the features
from plant leaves is an important method. Furthermore, many local descriptor methods
are proposed to extract the robust features (called handcraft features) from objects that
appear in the image. Could machine learning techniques accurately classify the plant
leaf images that extract the handcraft features using local descriptor methods and color
features?

To answer RQ1, we focused on improving the image processing and machine
learning methods to classify plant leaf images taken in a lab with a white background,
called the Folio dataset, which contained 32 different plant leaf species. First, we
proposed a grid-based technique to divide plant leaf images into subareas and then
extracted the features using different feature extraction methods: HOG, LBP, and color
histogram. We also used PCA to decrease the feature size calculated from the feature
extraction methods. Hence, relatively low-dimensional features were transferred to the
machine learning techniques to create a model and classify. To select the best machine
learning technique, we compared two techniques: SVM and MLP, in terms of accuracy
and computation time. The results showed that the SVM technique slightly
outperformed the MLP technique. When comparing the feature extraction techniques,
we found that the color histogram technique was better than the HOG and LBP
methods. Consequently, the combination of these three techniques showed outstanding
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results. As a result, the proposed method achieved an accuracy above 98.7% on the
Folio dataset.

RQ2: In the previous RQ, image processing and machine learning methods
were proposed to classify plants from plant leaf images. However, most plant diseases
showed on the leaves, such as downy mildew, leaf spot, leaf blotch/leaf blight, and rust.
Could we classify the disease if the disease appears on the plant leaf? Could we classify
the plant leaf diseases using the deep learning method, such as CNN? Additionally, is
there any method to enhance the performance of the deep learning method?

From work to answer RQ1, we discovered that image processing and machine
learning techniques could be proposed to recognize the plant leaf images. In this
research, we aimed to use a deep learning technique to classify plant leaf images:
healthy and disease, taken from natural environments. To include differnet plant leaf
diseases, we then selected the tomato and corn leaf disease datasets, which is the subset
of the PlantVillage dataset that is taken from natural environments. For healthy plants,
we collected 5,262 mulberry leaf images of ten cultivars from five provinces of
Thailand: Chiang Mai, Phitsanulok, Nakhon Ratchasima, Buriram, and Maha
Sarakham, called mulberry leaf dataset. This dataset was taken from natural
environments and images were recorded from different perspectives.

For the deep learning technique, we first used CNNs to create a robust model.
Five CNN models: MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and
Xception, were trained. The data augmentation techniques, including height shift,
vertical flip, fill mode, and mixed-method, were also employed when training the CNN
models. In this process, we create various robust CNN models. Second, we use the
ensemble CNNs method to classify the plant leaf images. We combined three and five
CNN models, called 3-EnsCNNs and 5-EnsCNNSs. The multiple CNN outputs could
benefit more from classification than only single CNN output. The experimental results
showed that the ensemble CNNs method consistently outperformed the single CNN on
the mulberry leaf dataset and two leaf disease datasets: tomato and corn leaf disease.
As a result, we achieved an accuracy of 94.75% on the mulberry leaf dataset and above
99.4% on two leaf disease datasets.

We could guarantee from our experimental results that the ensemble CNNs
method could enhance the performance of the CNN model on the plant leaf
classification.

RQ3: If the ensemble learning with the weighted average method performs
better classification performance than using only one CNN model. How could we select
the best-CNN models to create the ensemble CNNs method? However, could we use
ACO can automatically select robust CNN models and ensemble the CNN models in
the ensemble learning method?

We found from RQ2 that the ensemble CNNs method performs better than one
CNN model. However, selecting the best-CNN models is not manageable when we
have too many of them. We proposed the automated method to select the best-CNN
models based on ACO. The proposed ACO method computed the pheromone with the
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new fitness function and learning rate schedules, such as the time-based and cyclical.
This technique could create more distributed pheromone values. Then, ants could create
the new best path. As a result, the proposed method could automatically select many
sets of the best-CNN models. We then created ensemble CNNs that were automatically
selected using the proposed ACO method and evaluated on the mulberry leaf and
Turkey-plant disease image datasets. The result showed that each set of the best-CNN
models achieved high accuracy.

5.2 Future Work

This thesis presented a novel automated plant leaf classification system using a
deep learning method. However, the research still has a gap in enhancing the
performance of plant leaf image classification. Firstly, if the plant leaf images are
inadequate, the data augmentation techniques, such as generative adversarial networks
(GAN) (Shorten & Khoshgoftaar, 2019), AutoAugment (Cubuk, Zoph, Mané,
Vasudevan, & Le, 2019), and the sample paring method (Inoue, 2018), are the most
acceptable solution to generate new plant leaf images. Secondly, the local search and
incremental local search are suggested for the ACO algorithm. Other complex and
robust meta-heuristic methods, such as particle swarm optimization (PSO) (Gad, 2022;
Jana et al., 2019), artificial bee colony optimization (M. Zhao et al., 2022), and also
the hybrid approaches, such as PSO & line spectral frequencies (LSF) (Neekabadi &
Kabudian, 2018), genetic algorithm & voltage source inverter (VSI) (Lopez et al.,
2021), and harmony search & evolution strategy (Weyland, 2015) are solutions to
selecting robust CNN models.
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