

Historical Document Transcription using Deep Learning

Sarayut Gonwirat

A Thesis Submitted in Partial Fulfillment of Requirements for

degree of Doctor of Philosophy in Information Technology

January 2023

Copyright of Mahasarakham University

การถอดความเอกสารโบราณดว้ยการเรียนรู้เชิงลึก

 วิทยานิพนธ์
ของ

สรายทุธ กรวิรัตน์

เสนอต่อมหาวิทยาลยัมหาสารคาม เพื่อเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตร

ปริญญาปรัชญาดุษฎีบณัฑิต สาขาวิชาเทคโนโลยสีารสนเทศ
มกราคม 2566

ลิขสิทธ์ิเป็นของมหาวิทยาลยัมหาสารคาม

Historical Document Transcription using Deep Learning

Sarayut Gonwirat

A Thesis Submitted in Partial Fulfillment of Requirements

for Doctor of Philosophy (Information Technology)

January 2023

Copyright of Mahasarakham University

The examining committee has unanimously approved this Thesis,

submitted by Mr. Sarayut Gonwirat , as a partial fulfillment of the requirements for

the Doctor of Philosophy Information Technology at Mahasarakham University

Examining Committee

(Prof. Rapeepan Pitakaso , Ph.D.)

Chairman

(Asst. Prof. Olarik Surinta , Ph.D.)

Advisor

(Asst. Prof. Rapeeporn Chamchong ,

Ph.D.)

Committee

(Asst. Prof. Chatklaw Jareanpon ,

Ph.D.)

Committee

(Asst. Prof. Phatthanaphong

Chompoowises , Ph.D.)

Committee

Mahasarakham University has granted approval to accept this Thesis as a

partial fulfillment of the requirements for the Doctor of Philosophy Information

Technology

(Assoc. Prof. Jantima Polpinij , Ph.D.)
Dean of The Faculty of Informatics

(Assoc. Prof. Krit Chaimoon , Ph.D.)

Dean of Graduate School

 D

ABST RACT

TITLE Historical Document Transcription using Deep Learning

AUTHOR Sarayut Gonwirat

ADVISORS Assistant Professor Olarik Surinta , Ph.D.

DEGREE Doctor of Philosophy MAJOR Information Technology

UNIVERSITY Mahasarakham

University

YEAR 2023

ABSTRACT

This thesis focuses on handwritten text recognition problems. The

research aimed to approach deep learning methods to improve the performance of
recognitions in a historical document.

Chapter 1 briefly introduces deep learning for handwritten text
recognition systems and uses deep learning techniques for analyzing and recognizing
a historical document, including research questions, the objectives of the dissertation
and its contributions are described.

In Chapter 2, Two deep convolutional neural networks (CNNs): VGGNet
and InceptionResNet, are proposed for handwritten character recognition. The
proposed research investigated two learning strategies, including scratch and transfer
learning, and compared them with traditional machine learning techniques of local
descriptor and support vector machine. The results showed that VGGNet architecture
with transfer learning can reduce learning time. Moreover, it also increased the
efficiency of recognition.

Chapter 3 presents solutions to problems that can reduce handwritten
character recognition performance, such as image degradation, light conditions, low-
resolution images, and even the quality of the capture devices.
We combine the deblur generative adversarial network architecture (DeblurGAN)
with a CNN called DeblurGAN-CNN. The DeblurGAN-CNN could transform the
noisy characters into new clean characters and recognize clean characters
simultaneously. We have evaluated and compared the experimental results of the
proposed DeblurGAN-CNN architectures with the existing methods on four
handwritten character datasets: n-THI-C68, n-MNIST, THI-C68, and THCC-67. For
the n-THI-C68 dataset.

Chapter 4 proposes the architecture of the CNN and recurrent neural
network (RNN), called CRNN architecture, to predict the sequence pattern of the
handwritten text images. We propose a novel cyclical data augmentation strategy
called CycleAugment, to discover various local minima values and prevent
overfitting. Each cycle rapidly decreased the training loss to reach a new local
minima.

 E

Chapter 5 comprises two main sections: - 1) answers to the research
questions and 2) future work. This chapter briefly explains the proposed approaches
and answers three main research questions in handwritten text recognition using deep
learning techniques. Two main approaches are planned to be the focus of future work,
as follows. We might need to synthesize the handwritten text images and use them as
the training set. The GAN is the best choice to study and synthesize the training set.
And to enhance deep learning performance, we plan to work on the ensemble CNNs
technique and combine the DeblurGAN-CNN architecture as a part of the ensemble
CNNs.

Keyword : Handwritten character recognition, Denoising image, Handwritten text
recognition, Generative adversarial network, Convolutional neural network,
DeblurGAN, convolutional recurent neural network, Cycle agumentation

 F

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

This thesis was supported by the scholarships of Kalasin University and was

financially supported by the Royal Golden Jubilee Ph.D. Program by the Thailand

Research Fund (Grant No. PHD/0210/2561). The authors would like to thank the

researchers and give special thanks to Asst. Prof. Dr. Olarik Surinta, my advisor, for his

efforts toward completing this research.

Additionally, I would like to thank my family for the best encouragement and

support all through my studies, my friends, lab mates, colleagues, and research team for

a cherished time spent together in the lab and in social settings.

Sarayut Gonwirat

TABLE OF CONTENTS

 Page

ABSTRACT .. D

ACKNOWLEDGEMENTS ... F

TABLE OF CONTENTS .. G

LIST OF TABLES .. K

LIST OF FIGURES .. L

Chapter 1 Introduction .. 1

1.1 Handwritten Text Recognition in Historical Documents 2

1.1.1 Handwritten Text Recognition System .. 3

1.1.1.1 Data Collection ... 3

1.1.1.2 Pre-processing .. 3

1.1.1.3 Segmentation .. 4

1.1.1.4 Feature Extraction .. 4

1.1.1.5 Recognition .. 4

1.1.2 Deep Learning Techniques ... 4

1.1.2.1 Convolutional Neural Network .. 4

1.1.2.2 Generative Adversarial Networks .. 6

1.1.2.3 Convolutional Recurrent Neural Network...................................... 7

1.2 Research Aim .. 7

1.3 Research Questions ... 7

1.4 Contributions .. 8

Chapter 2 Improving Handwritten Character Recognition by Convolutional Neural
Network.. 10

2.1 Introduction .. 10

2.2 Related Works ... 12

2.2.1 Convolutional Neural Network .. 12

2.2.1.1 Convolutional Layer ... 12

 H

2.2.1.2 Pooling Layer ... 13

2.2.1.3 Fully Connected Layer ... 13

2.2.2 Optimization Method ... 13

2.2.3 CNN based Scratch and Transfer Learning .. 14

2.3 CNN Architectures ... 14

2.3.1 VGGNet Architecture ... 14

2.3.2 Inception-ResNet-v2 architecture ... 15

2.3.2.1 Stem Block ... 16

2.3.2.2 Inception-ResNet Block ... 16

2.3.2.3 Reduction Block ... 17

2.4 Thai Handwritten Character Dataset .. 17

2.5 Experimental Result .. 18

2.6 Conclusions ... 19

Chapter 3 Denoising and Recognition Deep Neural Network for Noisy Handwritten
Characters .. 20

3.1 Introduction ... 20

3.2 Related Work .. 22

3.2.1 Generative Adversarial Network .. 22

3.2.2 Convolutional Neural Network .. 23

3.3 Denoising and Recognition Framework .. 24

3.3.1 DeblurGAN .. 25

3.3.2 DenseNet .. 26

3.3.3 DeblurGAN-CNN Setting and Training ... 28

3.3.3.1 DeblurGAN Training ... 28

3.3.3.2 CNN Training ... 29

3.3.3.3 DeblurGAN-CNN Construction ... 29

3.3.3.4 DebulrGAN-CNN Fine-Truning .. 29

3.4 Handwritten Character Datasets ... 30

3.4.1 The NECTEC Thai Handwritten Character Corpus(THCC-67) 31

 I

3.4.2 The ALICE Offline Thai Handwritten Character Dataset (THI-68) 31

3.4.3 Noisy THI-C68 (N-THI-68) ... 31

3.4.4 Noisy MNIST (n-MNIST) .. 32

3.5 Experiment Results ... 32

3.5.1 Evaluation of The CNN Architectures on THI-C68 Dataset 32

3.5.1.1 COMPARISON of state-of-the-art CNNs 32

3.5.1.2 COMPARISON of the CNNs and other Studies 34

3.5.2 Denoising Performance of DeblurGAN on The n-THI-C68 Dataset 35

3.5.3 Denoising Performance of DeblurGAN on the n-THI-C68 Dataset 36

3.5.4 Comparison of the DeblurGAN-CNN Architecture and Other Approaches
 .. 38

3.6 Discussion ... 39

3.7 Conclusion .. 42

Chapter 4 Efficient Data Augmentation Strategy on CRNN for Handwritten Text
Recognition .. 43

4.1 Introduction ... 43

4.2 Related work .. 45

4.2.1 Handwritten text recognition .. 45

4.2.2 Thai handwritten text recognition .. 46

4.2.3 Improve the deep learning performance with transfer learning and data
augmentation techniques .. 47

4.3. The convolutional recurrent neural network ... 47

4.3.1 Overview of the CRNN architecture .. 48

4.3.2 Convolutional neural network .. 49

4.3.2.1 CCNet ... 49

4.3.2.2 Modified CCNets ... 49

4.3.2.3 Modified VGGs .. 49

4.3.2.4 Modified ResNet50 .. 50

4.3.2.5 Modified DenseNet121 .. 50

4.3.2.6 Modified MobileNetV2 .. 50

 J

4.3.2.7 Modified EfficientNetB1 .. 50

4.3.3 Recurrent neural network ... 51

4.3.3.1 Bidirectional recurrent neural network ... 51

4.3.3.2 Long Short-Term Memory ... 52

4.3.3.3 Gate Recurrent Unit .. 53

4.3.4 Connectionist temporal classification .. 54

4.3.5 The proposed cyclical data augmentation strategy 54

4.3.5.1 Transformation data augmentation technique 54

4.3.5.2 CycleAugment strategy .. 55

4.4 Experimental results ... 56

4.4.1 Thai archive manuscript dataset ... 56

4.4.2 Training strategy ... 57

4.4.2.1 Optimization algorithms ... 57

4.4.2.2 Transfer Learning ... 58

4.4.3 Quantitative evaluation ... 58

4.4.4 Performance of different combination of CRNNs 59

4.4.5 Performance of CRNN with CycleAugment strategy 60

4.4.6 Performance on short word recognition ... 64

4.5 Discussion ... 66

4.5.1 CycleAugment strategy .. 66

4.5.2 Effective of transfer learning technique ... 67

4.5.3 Improvement of short word recognition ... 67

4.6. Conclusion .. 67

Chapter 5 Discussion .. 69

5.1 Answers to The Research Questions .. 71

5.2 Future Work .. 73

REFERENCES .. 74

BIOGRAPHY .. 84

LIST OF TABLES

 Page

Table 1 Configuration of the VGG16 and VGG19 architectures 15

Table 2 Performances of different models on THI-C68 dataset 19

Table 3 Overview of the handwritten character datasets. ... 30

Table 4 Recognition performances (mean validation accuracy: 5-cv, standard
deviation, and test accuracy) of four CNN models: VGG19, InceptionResNet,
MobileNetV2, and DenseNet121, using different learning methods (SL, TL, and TL-
nDA) on the THI-C68 dataset. ... 33

Table 5 The performance (mean validation accuracy: 5-cv, standard deviation, and
test accuracy) comparison of the CNN models using different learning methods with
other studies on the THI-C68 dataset. .. 34

Table 6 The performance of the CNN architectures and DeblurGAN-CNN
architectures on the n-THI-C68 dataset. .. 36

Table 7 The configuration detail, computation times and differential accuracy of
different CNNs and DeblurGAN-CNNs .. 36

Table 8 The performance comparison of DeblurGAN-CNN architectures with other
approaches on the n-MNIST dataset. ... 39

Table 9 The performance comparison of DeblurGAN-CNN architectures with the
HOGFoDRs-SVM method on the THCC-67 dataset... 39

Table 10 Configuration details of CRNN architectures .. 49

Table 11 The categories of Thai characters and other symbols. 57

Table 12 Comparison of the parameters and computational time between different
backbones CNNs and RNN sizes ... 59

Table 13 Performance of different number of cycles in CycleAugment strategy 60

Table 14 Performance of scratch learning different data augmentation strategies 61

Table 15 Performance of transfer learning different data augmentation strategies 61

Table 16 Results of handwritten text recognition using different CRNN models 63

Table 17 Examples of short word recognition when resizing images into 64x496
pixels (second column) and adding white space to prevent image distortion (third
column) .. 65

LIST OF FIGURES

 Page

Figure 1 An Overview of handwritten text recognition. ... 3

Figure 2 CNN Architecture (LeCun, et al. in 1998). .. 5

Figure 3 CRNN Architecture for word recognition (Shi et al., 2017). 7

Figure 4 Examples of similar character groups (a) characters with different tail 11

Figure 5 Inception-ResNet-v2 architecture. (a) Core architecture and (b) detail of the
Stem block. .. 15

Figure 6 Architecture details of the Inception-ResNet. block (a) A, (b) B, and (c) C.
.. 16

Figure 7 The Reduction block (a) A and (b) B. .. 17

Figure 8 Example of 68 Thai handwritten characters. .. 17

Figure 9 Illustration of the DeblurGAN-CNN architecture. 25

Figure 10 Illustration of the DeblurGAN generator architecture. 26

Figure 11 Illustration of the DenseNet121 architecture, including (a) core block, (b)
dense block, (c) bottleneck layer, and (d) transition layer. .. 27

Figure 12 Examples of Thai handwritten character datasets: (a) THCC-67 and (b)
THI-C68. .. 30

Figure 13 Examples of noisy handwritten character datasets: (a) n-THI-C68 that
applied 1) low resolution, 2) AWGN, 3) low contrast, 4) motion blur, and 5) mixed
noise and (b) n-MNIST that applied 1) AWGN, 2) Motion blur, and 3) low contrast
and AWGN. ... 31

Figure 14 Illustration of the noisy images of (a) low resolution, (b) AWGN, (c) low
contrast, (d) motion blur, and (e) mixed noise, as shown in the first row and
reconstructed images using DeblurGAN architecture, as shown in the second row.
Note that the high PSNR value presents better performance accuracy, and the high
SSIM value presents the most similar character images between the reconstructed and
original images. .. 35

Figure 15 Illustration of misclassified characters on the test set of 38

Figure 16 Illustration of the misclassified characters on the THCC67 dataset using
DeblurGAN-DenseNet121 ... 39

 M

Figure 17 Illustration of the validation and training loss (a) DenseNet121-TL-nDA
(b) DeblurGAN-DenseNet121 and (c) comparison of improving in validation loss. .. 40

Figure 18 The effectiveness of different denoise architectures proposed to recognize
the noisy character images on the n-THI-C68 dataset. .. 41

Figure 19 Examples of historical Thai handwritten texts from (a) Thai archive, (b)
Phra Narai Medicine, and (c) King Rama V, Volume 1, Medicine Manuscripts 44

Figure 20 Overview framework of convolutional recurrent neural networks 48

Figure 21 Illustration of bidirectional recurrent neural network. 51

Figure 22 Illustration of the recurrent neural networks. (a) Long short-term memory
and (b) gated recurrent unit. ... 52

Figure 23 Illustrated of Thai archive manuscript dataset. Examples (a) of the Thai
archive manuscript and (b) word images and ground truths. 56

Figure 24 Illustration of the training loss and validation loss values of (a) original
data augmentation technique, (b) CycleAugment strategy, and (c) best loss value 62

Figure 25 Illustrated histograms of the image width resolution in pixels. (a) The Thai
archive manuscript and (b) test set of the Thai archive manuscript. 65

Chapter 1

Introduction

In ancient times, humans wrote a text or documents to keep their information,
knowledge, history, and imagination. The text was recorded in materials, such as
paper, books, palm leaves, wooden planks, or stones, etc. Nowadays, those historical
documents are transformed into digital files. Most of them are archived by scanning
as image files. However, it is difficult to retrieve information from images. Thus,
many archives need to make index or metadata convenient for users. Due to the
growing rate of historical collections, it is more challenging to prepare metadata by
humans, and some documents are old languages that need specialists or historians to
transcribe. For example, Thailand has some languages not usually used in recent
writing, such as Thai Noi in the Northeast and Lanna in the North. To help extract
those ancient documents, an automatic text understanding or recognition system is
vital for historical documents in archives to reduce man work and ease of use.

To overcome machine understanding in historical documents, the research in
this area is about document analysis and recognition, mainly focusing on automatic
information extraction such as layout analysis, word localization, text recognition,
text transcription, etc. As an illustration of application, Schomaker et al. (2009)
developed the Monk system to support researchers in machine learning. This system
consists of more than a thousand pages of digital images that are labeled index on
pages, lines, words, or characters. The datasets were provided for text recognition,
dating classification of manuscripts, and writer identification.

In modern applications, text recognition is important and was applied to
industrial automation, robot navigation, and instant translation. Optical character
recognition (OCR) is a fundamental machine learning problem in image recognition
research in the classical text recognition problem. It can be divided into two main
categories of dataset, including printed and handwritten text. Currently, the printed
text is solved by machine learning techniques. In contrast, handwritten text
recognition has been challenged by different personal styles, strokes, and cursive
writing of multiple persons or even a single person. For handwritten text recognition,
we have found various research in text documents such as scene text recognition or
video subtitles. In addition, handwritten text recognition is proposed to solve in many
languages in each of their counties, such as English, Chinese, Arabic, Indian, and
Amharic (Sujatha and Bhaskari 2019; Yan and Xu 2020; Abdurahman, Sisay, and
Fante 2021; Ameryan and Schomaker 2021; Butt et al. 2021; Singh, Sharma, and
Chauhan 2021), and historical documents were usually found as handwritten text.

Handwritten character recognition can achieve high performance if character
segmentation is robust. However, handwritten text recognition (HTR) methods mainly
focus on word recognition and have become a more prominent research domain.
Moreover, the another research fields are focused on the effects of handwritten text

2

recognition performance to be considered 1) the degradation of historical documents,
2) may be due to a lack of expert staff and the humidity from a storage location,
digital transformation, 3) the blur and noisy document images that appeared when
using low-quality equipment and taking the picture with a camera without adequate
lighting, and 4) the limitation of dataset is an insufficient and uncovered dataset of
handwritten character images in the training process. Those effects are still
challenging to solve in historical documents.

Due to the rapid development of artificial intelligence in computer vision,
deep learning techniques, including convolutional neural networks (CNNs), auto-
encoder, generative adversarial networks (GANs), recurrent neural networks (RNNs),
and vision transformers, are proposed to improve image recognition, image
restoration, natural style transfer, or object detections, etc. For handwritten text
recognition, LeCun, et al. (1998) proposed the first CNN to digital handwritten
character recognition on the well-known dataset, namly MNIST. After that, CNN is
dominant in general image classification. In sequence learning, RNNs are applied in
speech recognition and various applications in natural language processing (NLP).
Further, word image recognition has been solved by RNNs or a combined architecture
of RNN and CNN, called a convolutional recurrent neural network (CRNN). To
generate more sample images, GANs were proposed to synthesize handwritten text
styles that generate image text for an insufficient dataset to generate more sample
images. Moreover, GANs were applied in image restoration, such as deblurred
images, super-high resolution, denoising images, etc. Furthermore, deep learning is
still growing as a future in artificial intelligence and distribution to various areas such
as self-driving cars, medical diagnosis, agriculture precision, manufacturing, etc.

As successful development of AI-based on deep learning, many deep learning
architectures have been proposed to approach document analysis and recognition.
This dissertation aims to solve handwritten text recognition in historical documents
under the condition of various writing styles, cursive, and degraded documents,
including noisy and low-quality document images. The research presented deep
learning techniques for improving the effectiveness of recognition performances on
Thai handwritten character and word recognition. The handwritten text recognition
will be introduced as follows.

1.1 Handwritten Text Recognition in Historical Documents

Handwritten Text Recognition (HTR) using the deep learning method are a
successful method to achieve high performance. Indeed, deep learning can reduce
hand-crafted feature engineering with robust automatic features. However, the
challenges of historical documents are low-quality images, various writing styles, and
difficulty of character segmentation.

The following section describes in detail the text handwritten recognition
system and the approach of deep learning techniques.

3

1.1.1 Handwritten Text Recognition System

Our research includes different topics consisting of text image restoration and
generation. In general, HTR systems in Figure 1 consist of the processes of pre-
processing, text segmentation, and recognition. These approaches are explained in the
following sections.

1.1.1.1 Data Collection

This process involves transforming the original into a digital document. The
document has been scanned and stored as an image dataset which can be recognized
and performed in the following process.

Figure 1 An Overview of handwritten text recognition.

1.1.1.2 Pre-processing

This process aims to enhance the quality of input images to clean and prepare
text images to be easier recognized. There are operations includes:

1) Skew Correction obtains to correct the orientation of an image. It
may be aligned at any angle, and then skew Correction applies to
guarantee the image is forwarded to a subsequent process.

2) Binarization is applied for converting color images to binary
images using local maxima and minima methods, Otsu’s and

adaptive thresholding, etc.

4

3) Background Cleaning and Noise Removal, old document images
such as palm leaves can appear as noise background or, during a
scan process, can be caused a shadow on an image. This process
removes background and noise from various image sources to
make clean and uniform input.

1.1.1.3 Segmentation

After the text image preprocessing, segmentation is a technique of breaking
the image into subparts to further process. Document recognition can be divided into
three segmentation levels: blocks or lines, words, and characters. The standard
method is histogram projection which determines the number of foregrounds and
background pixels to segment the image.

1.1.1.4 Feature Extraction

This process extracts features from an input image to make more
discriminative with another images — traditional machine learning is mostly not
feature learning. Feature extraction methods such as histogram of orientation, scale-
invariant feature transform, and local binary pattern are proposed to increase the
quality of recognition performance. Deep learning techniques, including CNN, RNN,
and LSTM are used to extract features for recognition or query images

1.1.1.5 Recognition

The final process of the HTR system is the decision-making process. This
process inputs segment image or image features in the machine learning model to
produce the final output of the result text. Traditional machine learnings are support
vector machines (SVM), K-nearest neighbor (KNN), or multilayer perceptron (MLP).
Recently, deep learnings are CNN, RNN, LSTM, CRNN, and Transformer, which are
applied in handwritten character recognition (HCR) and word recognition.

1.1.2 Deep Learning Techniques

Early research was based on handcrafted feature extraction, in which the HTR
system needed to separate 2 processes of feature extraction and recognition by
machine learning algorithms. In the development of deep learning, it can
automatically feature learning, achieving high performance in a single model. There
are many deep learning techniques applied in real word applications such as
healthcare, automotive industry, smart city, social application, stock market analysis,
etc. In handwritten text recognition, deep learnings were applied as the following:

1.1.2.1 Convolutional Neural Network

Early CNN was introduced by LeCun, et al. in 1998 and is used in computer
vision, image recognition, segmentation, object detection, image restoration, etc. The
general structure of the model shown in the Figure 2 consists of various layers and
details as follows.

5

Figure 2 CNN Architecture (LeCun, et al. in 1998).

1) Convolution Layer is the main layer of CNN used to create a feature map
with convolution operator (∗) as shown in Equation 1, where 𝑥𝑛

𝑝 is input
with n channels and located at the layer p, filter kernel K with size m x n
channels. It has an output or a feature map 𝑥𝑚

𝑝+1 , and m is the number of
channels.

𝑥𝑚
𝑝+1 = 𝐾𝑚,𝑛 ∗ 𝑥𝑛

𝑝 (1)

The feature map output obtained from each layer is partially passed
either through a batch normalization (BN) layer (Ioffe & Szegedy, 2015) or a
rectified linear units (ReLU) activation function (Nair & Hinton, 2010), as
shown in Equation 2.

𝑅𝑢𝐿𝑈(𝑥) = max (0, 𝑥) (2)

2) Pooling Layer is a spatial computation to help reduce the number of
parameters in the network. This layer is used to find the maximum
partition. In addition, the global average pooling (GAP) found in the
network in network (NiN) research (Lin et al., 2014) reduced the number
of dimensions of width and length (W x H) to single one value. The
current CNN structure usually applied GAP instead of the pooling layer

3) Connected Layer (FC) connects all nodes from one layer to every node of
the next layer and the last layer of CNN is used to recognize. The number
of nodes equals the number of categories. The Softmax function was used
to calculate the output as shown in Equation 3, where 𝑥𝑖 is the
characteristic vector and 𝑖 is the order component of the vector 𝑥.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =
exp (𝑥𝑖)

∑ exp (𝑥𝑖)
𝑁
𝑖

 (3)

CNN has become highly influential in image recognition research since the
AlexNet model was introduced by Krizhevsky et al. (2012) to learn the ImageNet
dataset (Deng et al., 2009)(Deng et al. 2009). After that, other CNN structures have
been improved and developed, including VGG (Simonyan and Zisserman 2015),
which introduces convolution with a 3x3 kernel size only. The parameters used are

6

reduced. In contrast, GoogLeNet (Szegedy et al. 2015) proposes using various kernel
sizes. InceptionV2 and V3 (Ioffe and Szegedy 2015; Szegedy et al. 2016, 2017) used
Batch Normalization(Ioffe and Szegedy 2015), ResNet (He et al. 2016), and
Inception-ResNet (Szegedy et al. 2017). Residual Connection has been used to
increase the number of tiers to more than 100, and DenseNet (Huang, Liu, et al. 2017)
has proposed a dense blocks model that combines the characteristics of the previous
layer, giving that layer more information. Another approach to improvement is to
reduce the computational scale. SqueezeNet (Hu et al., 2018) and InceptionV2 - V4
adopted a matrix factorization to reduce a number of parameter weights, MoblieNet
(Howard et al. 2017) used depthwise separable convolution modules and
MobileNetV2 (Sandler et al. 2018) add the inverted residual and linear bottleneck in
place of the standard convolution model. Moreover, autonomous structuring by auto-
machine learning, NASNet, was found in the network architecture search (NAS)
research (Zoph and Le 2017). Reinforcement learning was used. (Reinforcement
learning) and RNN to propose a model of the optimal structure and the AmoebaNet
network, an evolutionary search algorithm. (Evolutionary Algorithm) and
EfficientNet (Tan and Le 2019) looks to scale CNNs across the width. Length and
solution size (Resolution) of the feature filter. NasNet has improved recognition
performance over custom structured models. But it takes longer to calculate. Due to
the number of structures searched, there are many possibilities.

1.1.2.2 Generative Adversarial Networks

GAN was proposed by Goodfellow et al. (2014) to be used for data generation
that can generate data similar to the real sample dataset x (real data). The generator
(𝐺(𝑧; 𝜃𝑔)) is responsible for generating comparative data distributed on probability
𝑝𝑔 (fake data distribution) from random inputs on the latent space 𝑝𝑧(𝑧) (random
distribution in latent space), and discriminator 𝐷(𝑥; 𝜃𝑑) is responsible for separating
the real and fake data sets. Through the training process of the network, the GAN
seeks to learn to achieve the maximum capacity of the separator that will recognize
the actual sample dataset x from the constructor's output. The constructor attempts to
create pseudo-data that can be deceived by the discriminator. As shown in Equation 4.

Many researchers have presented a structure that can improve the quality of
images to be more apparent. It consists of 3 GAN networks: CycleGAN, SRGAN, and
DeblurGAN. GAN has been used in image creation for various applications, including
natural style transfer, image restoration, deblurring, and face generator.

min
𝐺
max
𝐷
𝑉(𝐷,  𝐺) = 𝑬𝒙~𝒑𝒅𝒂𝒕𝒂(𝒙)[log𝐷(𝑥)] + 𝑬𝒛~𝒑𝒛(𝒛)[log(1 − 𝐷(𝐺(𝑧)))] (4)

7

Figure 3 CRNN Architecture for word recognition (Shi et al., 2017).

1.1.2.3 Convolutional Recurrent Neural Network

CRNN is a combination of CNN and RNN and has distinctive advantages over
conventional neural network models. It can be directly learned from sequence labels
(for instance, words), requiring no detailed annotations (for instance, characters). The
network architecture of CRNN is shown in Figure 3.

1.2 Research Aim

This research aimed to approach deep learning methods to improve the performance
of handwritten text recognition in a historical document.

1.3 Research Questions

The main research question that motivates this dissertation is: How can we
enhance the performance of handwritten text recognition in historical documents
using the deep learning method? This dissertation proposes to investigate and
approach deep learning techniques to deal with the problems of handwritten text
recognition as the following research questions:

RQ1: Character recognition is a fundamental problem in document analysis
and recognition. In historical document images, handwritten characters are usually
challenging to solve due to various personal writing and cursive styles. Previous
works aim to extract features from local descriptors as hand-crafted feature and

8

recognize them by machine learning techniques such as SVM, KNN, and MLP. In
contrast, we propose investigating CNN architectures that can automatically extract
and recognize features. Is it possible to improve the recognition performance of
handwritten characters? And which CNN architectures are suitable for this problem?

RQ2: Document degradations are caused by document aging effects and
image acquisition with light conditions or a moving camera. These problems, called
noisy character images, can decrease the recognition performance of handwritten
characters. How can we improve the recognition rate of noisy characters? Can we
assume that denoise GAN to clean noisy image provides better accuracy result of
CNN? Furthermore, can a single DeblurGAN-CNN network enhance performance
when recognizing different types of noisy characters?

RQ3: Thai historical documents are cursive writing style and difficult to
segment to each character. Indeed, we focus on word or line recognition by sequence
learning method suitable for handwritten documents. CRNN is a deep learning
technique that is applied to various text recognition problems such as sense text
recognition, video subtitle, and handwriting document. What is the best combination
of CNN and RNN to construct robust CRNN in word or line recognition?
Furthermore, the limitation of the dataset is insufficient handwritten text images for
training. We propose a novel data augmentation technique for training CRNN; Is it
possible to enhance the performance of Thai handwritten word recognition?

To answer all these research questions, Chapter 2 to Chapter 4 describe the
research that succeeded. We will present concrete solutions to these research
questions in Chapter 5.

1.4 Contributions

The contributions of the dissertation are approaching deep learning techniques
to recognition of text handwritten in historical documents. The work reported in this
dissertation involved experiments on handwritten character recognition with clear and
noisy character datasets and handwritten word recognition. The contributions of the
dissertation are as follows.

In chapter 2, we investigate the performance of CNNs on Thai handwritten
character recognition. The architecture of CNN in this research is composed of
VGGNet and Inception-ResNet, which do not need to extract features of special
image characteristics because convolutional layers in deep CNN can automatically
extract lower-level features. To evaluate the performance of CNNs, CNNs were
compared in both learning styles, including scratch learning and transfer learning. We
did not use data augmentation to increase training data for learning the deep CNN in
both architectures due to researcher wanted to compare the experimental results with
the siftD+SVM (Surinta et al. 2015) and HOGfoDRs methods (Inkeaw et al. 2019).
The experiment found that VGGNet architecture with transfer learning was more

9

effective in recognition than other methods. Therefore, this method is suitable for
solving the problem of character recognition in Thai handwritten. This chapter is
based on the following publication. -

Gonwirat, S., & Surinta, O. (2020). Improving Recognition of Thai
Handwritten Character with Deep Convolutional Neural Networks. The 3rd
International Conference on Information Science and Systems (ICISS), pages 82–87.
ACM.

Chapter 3 focuses on the effect of noisy character recognition. We contribute
main works as follows; Firstly, we proposed a new standard noisy Thai handwritten
character dataset, called the n-THI-C68 dataset, to challenge other researchers to
reconstruct the sharp handwritten character images. The new noisy handwritten
character images were synthesized by adding five noisy methods: low resolution, low
contrast, additive white Gaussian noise, motion blur, and mixed noise. Secondly, we
proposed the generative adversarial networks (GANs), namely DeblurGAN (Kupyn et
al. 2018), combined with the convolutional neural network (CNN) architectures,
called the DeblurGAN-CNN architecture, to reconstruct the quality handwritten
character images from the noisy handwritten character images and enhance the
accuracy of the handwritten character recognition.

Gonwirat, S., & Surinta, O. (2022). DeblurGAN-CNN: Effective Image
Denoising and Recognition for Noisy Handwritten Characters. IEEE Access, 10,
90133-90148.

Finally, Chapter 4 presents the new data augmentation strategy, namely
CycleAugment. The proposed data augmentation strategy mainly minimizes the
validation loss and avoids overfitting. We achieve our goal with a simplistic strategy
and implementation. Furthermore, we offer the CycleAugment strategy that provides
the ability to train the CRNN model with and without applying data augmentation
techniques simultaneously. Importantly, our CycleAugment strategy confirms that it
can handle every CRNN architecture. We evaluate the efficiency of the
CycleAugment strategy on several CRNN architectures for handwritten word
recognition on Thai archive manuscripts. The content of this chapter is based on the
following publication.-

Gonwirat, S., & Surinta, O. (2022). CycleAugment: Efficient Data
Augmentation Strategy for Handwritten Text Recognition in Historical Document
Images. Engineering and Applied Science Research, 49(4), pages 505-520.

10

Chapter 2

Improving Handwritten Character Recognition by

Convolutional Neural Network

For handwritten character recognition, a common problem is that each writer
has unique handwriting for each character (e.g. stroke, head, loop, and curl). The
similarities of handwritten characters in each language are also a problem. These
similarities have led to recognition mistakes. This chapter compared deep
convolutional neural networks (CNNs) which were used for handwriting recognition
in the Thai language. CNNs were tested with the THI-C68 dataset. This research also
compared two training methods, Train from scratch and Transfer learning, by using
VGGNet-19 and Inception-ResNet-v2 architectures. The results showed that
VGGNet-19 architecture with transfer learning can reduce learning time. Moreover, it
also increased recognition efficiency when tested with 10-fold cross-validation

2.1 Introduction

Character recognition is fundamental to research that can lead to document
analysis, text transcription, or development of automatic reading systems (Marinai
2008). The recognition method can be beneficial in many fields, e.g. historical
document recognition systems, text image retrieval, signature verification, and traffic-
sign recognition.

In general, the data used in recognition research about handwritten character
recognition (HCR) includes digit, vowel, consonant, and special characters which
depend on the writing style of each country (Kim and Xie 2015; LeCun, et al. 1998;
Surinta, Karaaba, et al. 2015). The widespread traditional method is the feature
extraction method, including histogram of oriented gradients (HOG), scale-invariant
feature transform (SIFT) (Surinta et al. 2015), and Local Binary Pattern (LBP)
(Joseph and Anantaprayoon 2018). Subsequently, the extracted data are made as an
input for various types of machine learning, including K-Nearest Neighbors (KNN)
(Surinta et al. 2015), Support Vector Machine (SVM) (Inkeaw et al. 2019; Surinta et
al. 2015), Multi-layer Perceptron (MLP) etc.

The CNN method [10], which is a deep learning algorithm for fixing the
problems in HCR (Kim and Xie 2015; LeCun, et al. 1998), has higher recognition
efficiency than traditional machine learning. The differences is that the convolution
process in CNN can calculate and find special features automatically which makes
CNN Architecture have more layers; for example, VGGNet (Simonyan and
Zisserman 2015) consists of 16 and 19 layers, ResNet (He et al. 2016) consists of 50,
101 and 152 layers. This directly affects the amount of parameter in calculation. Some
research has developed architecture for reducing the number of parameters, for

11

example the squeeze and excitation module (Hu et al. 2018) and global average
pooling (GAP) layer (Inkeaw et al. 2019; Surinta et al. 2015). The regularization can
also be used as an adjustment for weight (Wang and Klabjan 2017), dropout, and
batch normalization (Ioffe and Szegedy 2015) in order to increase the efficiency of
deep CNN architectures and decrease the data overfitting problem. Furthermore, the
data augmentation method is a method for increasing the amount of information used
in learning of network and transfer learning. The learning process uses weight values
from the model that have previously been learned, then the researcher improved the
weight values. The new weight values will be consistent with new information
resulting in reduction of learning time and increased network efficiency.

The challenge of handwriting character recognition is the writing style of each
person, e.g. emphasizing weight while writing, curve, head of alphabet, and
differences in tail-line drawing (stroke, head, loop, and curl). Some characters are
similar to other characters. The writing style of the same person at different times is
also unstable. Figure 1 shows some characters which share some similarities. In
Figure 4(a) the characters have some similar structure, but there are differences at the
head of the letter and traits of the tail lines. For Figure 4(b) there are zigzag at the
head of the letter. If the writer writes it quickly, the wavy line might not be clear.
Then, it will be considered as another character.

Feature extraction is a part that makes high accuracy rate for character
recognition. Studies of Thai handwritten character recognition (Inkeaw et al. 2019;
Surinta, Karaaba, et al. 2015), have used various methods to find unique
characteristics. Surinta et al. (Surinta et al. 2015) used two local descriptor methods;
SIFT Descriptor and HOG. The feature vectors from both descriptor methods were
sent to a classifier, including k-nearest neighbors (KNN) and support vector machine
(SVM) by using radial basis function (RBF) kernel. The experimental results show
that siftD with SVM was the most effective method at 94.34% accuracy.

(a) (b)

Figure 4 Examples of similar character groups (a) characters with different tail

 traces and (b) characters with different indentation at head positions.

12

Inkeaw et al. (Inkeaw et al. 2019) have developed a method for finding special
features called gradient features of discriminative regions (GFoDRs), which use HOG
to calculate the gradient values. This method was called HOGFoDRs. The special
features were sent to the SVM classifier for character classification. The HOGfoDRs
were designed for discrimination of similar characters. The accuracy rate of this
method was 98.76%.

Contribution: The objective of this chapter is to perform the efficiency of
deep CNN on character recognition of Thai handwritten character. The architecture of
CNN in this research is composed of VGGNet (Simonyan and Zisserman 2015) and
Inception-ResNet (Szegedy et al. 2017), which do not need to calculate special
characteristics because convolutional layers in deep CNN calculates lower-level
feature. The test compares both learning style, including scratch learning and transfer
learning in order to find the most suitable model for Thai handwritten analysis. We
did not use data augmentation to increase training data for learning the deep CNN in
both architectures due to compare the experimental results with the siftD+SVM
(Surinta et al. 2015) and HOGfoDRs methods (Inkeaw et al. 2019). The experiment
found VGGNet Architecture with transfer learning were the most effective in
recognition while compare to other methods. Therefore, this method is suitable for
solving the problem of character recognition in Thai handwritten.

2.2 Related Works

2.2.1 Convolutional Neural Network

The convolutional neural network (CNN) presented by LeCun, et al. (1998)
for English character recognition. CNN has become popular in image recognition
after Krizhevsky et al. (2012) presented AlexNet Architecture and won the ImageNet
Challenge in 2012. After that, the researchers developed various CNN architectures in
different series, e.g. VGGNet, GoogLeNet, ResNet, DenseNet (Huang et al. 2017),
and MobileNet (Sandler et al. 2018). Each CNN had different architecture and
different name, e.g. number of convolutional layers, inception module (Ioffe and
Szegedy 2015; Szegedy et al. 2017), shortcut connection module (He et al. 2016;
Sandler et al. 2017; Szegedy et al. 2018), and depthwise convolutional filters (Sandler
et al. 2018). The basic structure of CNN architecture describes as follows;

2.2.1.1 Convolutional Layer

The Convolutional Layer (Conv) is the main layer which is used for
calculating feature extraction. The convolution process is to find dots from the input
layer (Image) or output of previous convolutional layer as shown in Equation 5. The
input layer is required to have feature map (𝑥𝑝), while 𝑝 is the hierarchy of the layer
in CNN. The CNN has amount of parameters equal to 𝑤𝑝 × ℎ𝑝 × 𝑑𝑝, while 𝑤𝑝 is
length, ℎ𝑝 is width, 𝑑𝑝 is channel. From calculating convolution and filter kernel (𝐾),

13

the result is a feature map (𝑥𝑝+1) which has size equal to 𝑑𝑘 × 𝑑𝑘 × 𝑑𝑝 × 𝑑𝑝+1 while
𝑑𝑝 is the width and length of kernel (𝐾) in the hierarchy 𝑝.

𝑋𝑘,𝑙,𝑛
𝑝+1 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛 𝑥𝑘+𝑖−1,𝑙+𝑗−1,𝑚

𝑝
𝑖,𝑗,𝑚 (5)

Output or feature map from each layer was sent to the activation function in a
Rectified Linear Units (ReLU): as shown in Equation 2 (Nair and Hinton 2010).
Then, it was sent to batch normalization (BN) process (Ioffe and Szegedy 2015). BN
Layer normalizes the input data by scaling all data in order to provide data in the same
range. This speeds up the learning and reduces data overfitting. As a result, the
dropout configuration can be set to a low level, resulting in reduction of information
lost during the dropout.

2.2.1.2 Pooling Layer

A Pooling Layer is a spatial computation layer in the feature map layer which
helps reduction of parameter sizes in the architecture by finding of maximum,
minimum, and average values.

2.2.1.3 Fully Connected Layer

A Fully Connected Layer (FC) is a connection of every node from one layer to
every node of the next Layer. This is the same process as Multi-Layer Perceptron
(MLP) while the output layer of FC layer has the number of nodes equal to the
number of categories. Softmax function was used for output calculation (shown in
Equation 3).

2.2.2 Optimization Method

The processing of the CNN results in the most probability type of recognition,
but sometimes the answers do not match with the expectations. It is error value.
Therefore, the error value could be minimized by adjusting weight parameters. In this
research, the researcher uses Stochastic Gradient Descent (SGD) with momentum
(Ruder 2016) for weight parameters adjustment (shown in Equation 7).

𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1 (6)

 𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝛼∇𝑓(𝜃𝑡) (7)

where 𝜇 is momentum coefficient, 𝛼𝑡 is learning rate, and 𝛼∇𝑓(𝜃𝑡) is error gradient
for weight parameter 𝜃 adjustment. Learning rate will be reduced when epoch of the
learning increase, show in Equation 8.

𝛼t =
𝛼0

1+𝑑𝑡
 (8)

where 𝛼o is the initial learning rate, 𝑑 is learning rate decay.

14

2.2.3 CNN based Scratch and Transfer Learning

CNN learning method was divided into 2 processes; comprising learning from
scratch and transfer learning. Learning from scratch (Okafor et al. 2016) is a complex
process and takes a long time to learn due to the learning beginning with creation of a
random weight, by sending batches of images (batch) to learn. The sizes can be small
or large depending on the computer used in the learning. Weights are calculated and
adjusted in each round depending on the input data. Finally, this process produces a
model for prediction.

Transfer learning (Okafor et al. 2016; Sawada and Kozuka 2016) is applying
knowledge from previous domains that have been learned, to solve problems with the
same characteristics or maybe a new problem. It is assumed that the parameters from
the original model can be used as a starting point to learn new information. It is called
the Pre-trained model which directly results in faster training and higher effectiveness.
This is because of pre-trained model was created from the ImageNet data set, that
contains over a million images, in which sample data is organized in up to 1,000
categories. Therefore, if we want to use the Pre-trained Model for further processing
with another dataset, the output node of the FC layer must be adjusted until it match
the amount of that category.

2.3 CNN Architectures

Since 2012, researchers have developed high effective CNN Architectures with
structural adjustment methods, e.g. VGGNet (Simonyan and Zisserman 2015). In
addition, the layers were increased up to 16 and 19 layers. GoogLeNet architecture
(Ioffe and Szegedy 2015; Szegedy et al. 2017) designed Inception module. The
module was assigned to use multi-size convolution including, 1x1, 3x3, and 5x5
which is called a filter. The output of each Inception module is put through each filter
together (Filter Concatenation). ResNet architecture (He et al. 2016) was designed
Residual block which is a shortcut connection that makes training processes able to
skip more than one layer. ResNet was designed to have from 18, 34, 50 and 101, to
152 layers. The trend in CNN architectures development is to increase the number of
layers, but to decrease the amount of parameters, e.g. Inception-ResNet (Szegedy et
al. 2017) and DenseNet (Huang, Liu, et al. 2017). In this paper, two CNN
architectures were tested. These were VGGNet and Inception-ResNet.

2.3.1 VGGNet Architecture

In 2014, a research team sent VGGNet (Simonyan and Zisserman 2015) to
compete in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The
architecture has as many as 19 layers, tiled into stacks, connected with 3 layers of FC.
The first 2 layers have 4,096 nodes. The third layer has 1,000 output nodes. The
highlight of VGGNet is the use of a convolution filter that is very small, only 3x3
filter when using convolution processing. When we compare with the AlexNet
architecture, it can be seen that there are more layers, but it has higher efficiency.

15

Table 1 shows VGGNet architecture with 16 and 19 layers. VGG16 consists of
convolution layer (Conv) with 3x3 (Conv3), 13 filter layers, and 3 FC layers, total 16
layers. The amount of feature maps has increased to 64, 128, 256, 512, 512, and 512
layers consequently. Max Pooling Layers were added between convolutions in order
to reduce the dimension of width and length. The VGG19 also consists of 16
convolution layers and 3 FC layers.

VGG16 VGG19

Input Input
Conv3, c64x2 Conv3, c64x2
Max Pooling Max Pooling

Conv3, c128x2 Conv3, c128x2
Max Pooling Max Pooling

Conv3, c256x3 Conv3, c256x4
Max Pooling Max Pooling

Conv3, c512x3 Conv3, c512x4
Max Pooling Max Pooling

FC-4096 FC-4096
FC-4096 FC-4096

FC-1000, Softmax FC-1000, Softmax
Table 1 Configuration of the VGG16 and VGG19 architectures

2.3.2 Inception-ResNet-v2 architecture

Inception-ResNet-v2 (Szegedy et al. 2017) was developed using batch normalization
for improving the training speed. Only 7% of training steps can increase the
effectiveness of the architecture. It uses Factorization to reduce the filter size,
resulting in reduction of the overfitting problem, number of parameters were also
reduced. The increasing of Residual block between Inception module leads to large
number of Inception modules.

 (a) (b)

Figure 5 Inception-ResNet-v2 architecture. (a) Core architecture and (b) detail of the

Stem block.

16

The main structure of Inception-ResNet-v2 divides the work function as a
block, including Stem, Inception-ResNet, and Reduction blocks as shown in Figure
5(a).

2.3.2.1 Stem Block

The Stem block is the first layer of architecture. It is a layer before the
Inception module. The convolution filter in the Stem block is 3x3, stride values are 2
(s2), therefore the feature map would become smaller, which will directly decrease
the parameter values as shown in Figure 5(b)

2.3.2.2 Inception-ResNet Block

The advantage of Inception module is the combination of ResNet Architecture
and Inception layer. That is why it has been called Inception-ResNet block. The
Inception-ResNet has 3 blocks, which are called blocks A, B, and C as shown in
Figure 6. The gap between Inception-ResNet blocks are separated by Reduction
blocks due to parameter reduction.

(a)

 (b) (c)

Figure 6 Architecture details of the Inception-ResNet. block (a) A, (b) B, and (c) C.

17

(a) (b)

Figure 7 The Reduction block (a) A and (b) B.

2.3.2.3 Reduction Block

The purpose of the Reduction block at the gap between Inception-ResNet
blocks is to reduce the feature map size. Inception-ResNet architecture has 2
Reduction blocks. These are Reduction block A and B as shown in Figure 7.

2.4 Thai Handwritten Character Dataset

The Thai handwritten character dataset in this research is ALICE-THI dataset
(Surinta et al. 2015), which includes 78. types of Thai characters; consonants,
vowels, tones and digits. The dataset contains writing from 150 people, aged 20-23,
who were studying in a university. This research used only the THI-68 dataset which
eliminated the number. Therefore, the number of characters used in recognition was
68 Characters. The data size was 14,490 characters, including 44 consonants, 17
vowels, 4 tones, and 3 symbols as show in Figure 8.

Surinta et al. (2015) used special features siftD take it to learn by SVM
algorithm. The accuracy rate was 94.37%. Moreover, Inkeaw et al. (2019) used
special feature HOGFoDRs with SVM algorithm. The accuracy rate was 98.76%. Due
to the similarity of characters, this dataset is challenged for higher effective rate.

Figure 8 Example of 68 Thai handwritten characters.

18

2.5 Experimental Result

This research performed the handwritten character recognition of Thai
characters with ALICE-THI dataset by choosing a specific test on THI-C68 dataset
which has 14,490 characters in 68 classes. This research used deep CNNs, consists of
VGGNet (Simonyan and Zisserman 2015) and Inception-ResNet-v2 architectures to
compare the performance between both deep CNN architectures. The effectiveness of
the methods were compared with siftD-SVM (Surinta et al. 2015) and HOGFoDRs-
SVM (Inkeaw et al. 2019) on computer Intel(R) Core-i5, 7400 CPU @ 3.00GHz, 8GB
RA, GPU GeForce GTX 1080Ti, Memory 16GB, Linux Operating system. The
experiment divided the data into 2 sets. (Training and Test sets), including 5-fold, and
10-fold cross-validation. The 5-fold data and 10-fold data were set at the following
ratios; Train:Valid:Test, 7:1:2 and 8:1:1, respectively.

The CNNs experiment resized all images to 128x128 pixels, which is the
smallest input size of Inception-ResNet-v2. Training processes had 100 Epochs, used
SGD Learning Method, Learning Rate = 0.001, Decay Rate = 0.0001, and momentum
= 0.9. Learning processes were divided into 2 types which were training from scratch
and transfer learning. Weight Parameters in transfer learning were derived from
previous learning process by ImageNet Dataset (Deng et al. 2009). It was called Fine-
tuned.

To ensure comparison equality, data augmentation was not used in (Inkeaw et
al. 2019; Surinta, Karaaba, et al. 2015). This research also did not use data
augmentation due to several studies e.g. (Okafor et al. 2016), reporting that data
augmentation increases efficiency of CNN Architectures.

Table 2 is a comparison of the efficiency and accuracy of Thai handwriting
characters in 6 different methods. When we analyze only deep CNN architectures, it
shows that VGGNet-Transfer had the highest efficiency in both 5-fold and 10-fold
with 99.2% and 98.81% accuracy rate. It was found that VGGNet in the experiments
was VGG-19, which has 19 layers. Transfer learning increased the accuracy rate for
CNN architecture by 1-2% when compare to the training from scratch method. The
VGGNet-Scratch learning process compare to 10-fold cross-validation achieved an
accuracy rate of 97.93%, which is 3% higher than siftD-SVM. However, when the
researchers tested with 5-fold cross-validation, VGGNet-Transfer (98.81%) achieved
an insignificantly higher effective rate than HOGFoDRs-SVM (98.76%).

From these experiments, comparison of VGGNet-19 and Inception-ResNet-v2
found that VGGNet-19 learning by transfer learning has the highest recognition rate.
The size of this model is only 160.6 MB comparing with Inception-ResNet-v2 which
is 437.5MB. The number of parameters comparison, VGGNet-19 has only 20M
parameters which is almost 3 times less. Finally, when comparing the test speed,
VGGNet-19 speed was 0.0014 second per image, while Inception-ResNet-v2 speed
was 0.0043 second per image. We can conclude that VGGNet-19 speed was up to 3
times faster.

19

Methods
Accuracy Rate (%)

10-cv 5-cv

SiftD-SVM (Surinta et al. 2015) 94.34 -
HOGFoDRs-SVM (Inkeaw et al.
2019) - 98.76

VGGNet-Scratch 97.93 ± 0.55 96.93 ± 0.48
Inception-ResNet-Scratch 98.15 ± 0.24 97.79 ± 0.29

VGGNet-Transfer 99.20 ± 0.27 98.81 ± 0.25

Inception-ResNet-Transfer 98.88 ± 0.24 98.61 ± 0.14
Table 2 Performances of different models on THI-C68 dataset

Surprisingly, InceptionResNet-v2 architecture (Szegedy et al. 2017) tested
with ImageNet dataset achieved 5.7% higher efficiency than VGGNet-19. In contrast,
when it was tested with the THI-C68 dataset, which is Thai character, we found that
VGGNet with transfer learning achieved a higher accuracy rate. Therefore, in this
experiment VGGNet-19 is an appropriate model to solve the problems of “Thai

Handwritten Character Recognition” due to the smaller size model, a smaller number
of parameter, faster speed in the experiment, and highest accuracy rate. The most
important is the model that achieved the highest accuracy rate.

2.6 Conclusions

This research compares CNN Architectures that are effective in recognizing
Thai handwritten characters with a high rate of recognition. The two models are
VGGNet-19 and Inception-ResNet-v2 architectures. Both models were evaluated with
THI-C68 dataset. In this experiment, the learning method was determined in two
types, which are training from scratch and transfer learning. Transfer learning is a
way to reduce learning time and increase the efficiency of recognition. The research
has shown that VGGNet-19 architecture with transfer learning has an accuracy rate at
99.20%. In addition, it was higher than Inception-ResNet-v2 architecture. In this
regard, VGGNet-19 architecture is a deep learning that has only 19 layers. It has been
designed to be stacked together due to make it easier to learn from the network and
for increasing the recognition speed.

20

Chapter 3

Denoising and Recognition Deep Neural Network for

Noisy Handwritten Characters

Many problems can reduce handwritten character recognition performance,
such as image degradation, light conditions, low-resolution images, and even the
quality of the capture devices. However, in this research, we have focused on the
noise in the character images that could decrease the accuracy of handwritten
character recognition. Many types of noise penalties influence the recognition
performance, for example, low resolution, Gaussian noise, low contrast, and blur.
First, this research proposes a method that learns from the noisy handwritten character
images and synthesizes clean character images using the robust deblur generative
adversarial network (DeblurGAN). Second, we combine the DeblurGAN architecture
with a convolutional neural network (CNN), called DeblurGAN-CNN. Subsequently,
two state-of-the-art CNN architectures are combined with DeblurGAN, namely
DeblurGAN-DenseNet121 and DeblurGAN-MobileNetV2, to address many noise
problems and enhance the recognition performance of the handwritten character
images. Finally, the DeblurGAN-CNN could transform the noisy characters to the
new clean characters and recognize clean characters simultaneously. We have
evaluated and compared the experimental results of the proposed DeblurGAN-CNN
architectures with the existing methods on four handwritten character datasets: n-THI-
C68, n-MNIST, THI-C68, and THCC-67. For the n-THI-C68 dataset.

3.1 Introduction

Character recognition is a sub-process of text recognition systems used to
recognize handwritten and printed texts within document images, such as historical
documents, memoranda, and archival material. Therefore, when the main objective is
to focus on the effects of handwritten character recognition, the factors that affect are
as follows. 1) Writing styles; the distinctions of writing in each era, the diversity of
individual writing styles, and even writing types of equipment (Surinta et al. 2015;
Alom et al. 2018). 2) Degradation of historical documents; this maybe due to a lack of
expert staff and the humidity of a storage location. 3) Digital transformation; blurred
and noisy document images were created when using low-quality equipment and
taking the picture with a camera without adequate lighting. 4) Limitations of data; an
insufficient and uncovered dataset of handwritten character images in the training
process. These factors need to be considered when recognizing handwritten text
images.

The factors mentioned above directly affect machine learning, leading to
decreased recognition performance. In the case of noise when digitizing ancient
documents, Su el at. (2019) experimented with noise generation using the differential

21

evolution method to determine the optimal position for digitization. Adding one pixel
to the original image (called a one-pixel attack) logically is the trick that causes the
convolutional neural network (CNN) models to be misrecognized. Their experiments
showed that adding one pixel could harm the CNN model by increasing the
recognition errors. Mei et al. (2019) demonstrated that blurred images affect the
recognition rate. Subsequently, the DeepDeblur algorithm was invented to transform
blurred into sharp images before sending the sharp images for recognition. Also, the
sharp images caused the model to increase its recognition performance.

Recently, CNN has replaced traditional machine learning (LeCun, Bengio, and
Hinton 2015) and is widely used in handwritten character recognition. Since the CNN
method is an automatic algorithm that consists of feature extraction techniques and
image recognition, it is currently used in character recognition in many languages,
such as Latin, Arabic, Bangla, Korean, Chinese, and Thai (Surinta et al. 2015; Alom
et al. 2018; Gonwirat and Surinta 2020; Eltay et al. 2022), resulting in increased
character recognition efficiency. However, if the training images are low quality and
noisy, they will significantly reduce recognition efficiency (Mei et al. 2019; Su et al.
2019).

Furthermore, deep learning techniques, including CNN, auto-encoder, and
generative adversarial network (GAN), have also been proposed to improve image
restoration and denoising. Dong et al. (2016) proposed the image restoration
technique using the CNN technique. The objective of their study was to transform the
low-resolution images into high-resolution images. They proposed the super-
resolution CNN method, which is a lightweight deep learning architecture that quickly
restores and reconstructs quality images. Zhang et al. (2017) presented feed-forward
denoising CNNs, which integrate single residual learning into the CNN architecture
for denoising images and to manipulate blind Gaussian noise without unknown noise
levels. Further, Gondara et al. (2016) proposed a convolutional denoising autoencoder
to denoise the signal from the medical images and Souibgui et al. (2022) proposed an
encoder-decoder architecture based on vision transformers, called DocEnTr, to
enhance degraded document images.

The GAN architecture is widely used in many domains, especially for image
restoration and deblur (Goodfellow et al. 2014; Isola et al. 2017; Kupyn et al. 2018).
The GAN architecture is designed as a generator that is capable of learning from
many images and recreating a new image. The adversarial loss function in the GAN
architecture is used to create a robust model that aims to create high-quality images
during regeneration. DeblurGAN (Kupyn et al. 2018) was first employed by using
the learning process of the WGAN-GP (Gulrajani et al. 2017) and used perceptual
loss (Johnson, Alahi, and Fei-Fei 2016), allowing the model to deblur images in the
form of blind motion blur that can be caused by camera movement during a
photograph. Consequently, GAN is designed to solve the problems of document
images, such as cleaning noisy backgrounds, deblurring text in the documents, and

22

regeneration of damaged characters into the complete characters (Sharma et al. 2018;
Bhunia et al. 2019; Khamekhem Jemni et al. 2022; Souibgui and Kessentini 2022).

Contributions: This research presents the DeblurGAN-CNN architecture that
aims to solve the recognition problems of noisy handwritten character images. The
proposed DeblurGAN-CNN architecture improved the image quality and resulted in
higher performance of handwritten character recognition on various handwritten
character and noisy character datasets. The contributions of our research are the
following.

1) This paper proposes a new standard noisy Thai handwritten character
dataset, called the n-THI-C68 dataset, to challenge other researchers to reconstruct
sharp and clean handwritten characters. The noisy handwritten character images were
synthesized by adding five noisy methods: low resolution, low contrast, additive
white Gaussian noise, motion blur, and mixed noise. The n-THI-C68 dataset includes
68 classes and contains 11,592 character images in the training set and 14,290
character images in the test set.

2) We propose the deblur generative adversarial networks (GANs) combined
with the convolutional neural network (CNN) architectures, called the DeblurGAN-
CNN architecture, to reconstruct high-quality handwritten characters from noisy
handwritten characters and simultaneously enhance the accuracy of the handwritten
character recognition systems. In the DeblurGAN-CNN architecture, DeblurGAN is
proposed to learn from the noisy images and regenerate the new sharp and clean
handwritten character images. Hence, the reconstructed handwritten character images
are assigned to the CNN architecture for recognition.

3.2 Related Work

3.2.1 Generative Adversarial Network

The generative adversarial network (GAN) was first presented by Goodfellow et
al. (Goodfellow et al. 2014). GAN is an unsupervised learning model that
automatically learns from the regularities of input images and is then capable of
creating a new image that is similar to the original image. Therefore, GAN has been
applied in a wide range of applications, such as natural transfer style, image super-
resolution, face generation, image restoration, and even image deblurring (Kupyn et
al. 2018; Wang et al. 2018; Karnewar and Wang 2020; Wang el at. 2021).

Since GANs have generative ability and style transformation, they were applied
in the data augmentation technique to improve recognition performance for document
images. Fogel et al. (2020) proposed ScrabbleGAN, which is semi-supervised
learning by using unlabeled and labeled samples during the training process, to
synthesize different Latin and French handwritten text styles. In addition, Eltay et al.
(2022) proposed adaptive data augmentation based on the ScrabbleGAN architecture

23

to recognize Arabic handwritten text. The adaptive method generated more balanced
characters in training samples.

Moreover, many issues in documents, such as blurred image, noisy background,
salt-and-pepper, and faded text, lead to the document being unreadable to humans,
significantly decreasing the recognition performance of the text algorithms (Sharma
el at. 2018; Bhunia et al. 2019; Khamekhem et al. 2022; Souibgui and Kessentini
2022).. To solve these problems, Bhunia et al. (Bhunia et al. 2019) proposed two
networks, including texture augmentation and binarization networks, to binarize the
degraded document images. First, the texture augmentation network was designed to
create multiple textual contents with diverse noisy textures to increase the size of the
document binarization dataset. Second, the binarization network generated new
images, which are the clean binary document images. Sharma et al. (2018) used
CycleGAN to remove the noise from the documents resulting in cleaned documents.
The CycleGAN model was employed to map noise to clean documents and clean to
noisy documents using the cycle consistency loss function. Their experiment showed
that the CycleGAN provided acceptable results. In terms of document enhancement,
Souibgui and Kessentini (2022) applied conditional GAN, which is a single GAN
network, to restore various problems of mixed document degradations, including tasks
of document clean up, binarization, deblurring, and watermark removal.

Furthermore, Wu et al. (2020) applied Wasserstein loss to the CycleGAN that
improved the CycleGAN algorithm to deblur text images into clear text images. Also,
Zhao et al. (2020) used the GAN model to optimize the distortion of input images
before feeding the rectified images to the text recognizer.

Since the first GAN architecture was presented in 2014 [12] to regenerate a new
image similar to the original image, many GAN architectures have been proposed to
solve the problems, for example, noisy images, degraded documents, and blur text, in
the domain of document images. We then have the concept of using the GAN
architecture to denoise the handwritten character images before recognizing them
using the CNN architecture.

3.2.2 Convolutional Neural Network

CNN architectures achieved high efficiency on image classification problems,
Su et al. (2019) demonstrated an image generation technique that only added one
pixel into the target image based on the differential evolution technique. With only
one attack pixel, the accuracy performance significantly decreased. For handwritten
character recognition, many noisy methods were applied to the character images, such
as motion blur, low contrast, and additive Gaussian white noise (AGWN) (Basu et al.
2015), to demonstrate that the noise images could significantly reduce the recognition
performance. Consequently, to increase the recognition efficiency, a synthesized
image technique was introduced to remove noise before sending images to
recognition.

24

CNN architectures have been proposed for image classification purposes. The
CNN architectures combine two main tasks (feature extraction and machine learning)
into one architecture to specifically reduce the complex feature extraction processes.
Many state-of-the-art CNN architectures have been proposed and have become
successful in many domains. For example, AlexNet, GoogLeNet, VGGNets,
MobileNets, ResNet, DenseNet, NASNet, and EfficientNet. However, the latest CNN
architectures operate with more deep layers, convolution operations (i.e., 1D, 2D, 3D
convolution (Ji et al. 2013; Khan et al. 2020), and depthwise separable convolution),
and extra layers (i.e., global average pooling, inception module, reduction cell) (Zoph
et al. 2018) to compute the robust spatial features from the image. Therefore, the
researcher could propose new CNN architecture, invent new operations, and combine
them with the existing CNN architectures.

From related work above, we found that the GAN architecture could be used to
solve the problems of noisy images, while various CNN architectures could propose
to recognize the noisy handwritten character images. The proposed denoising and
recognition framework is described in-depth in the following section.

3.3 Denoising and Recognition Framework

Due to the performance of the handwritten character recognition is always
affected by noise. We then proposed the DeblurGAN-CNN architecture to address the
noisy problems. Although, many robust CNN architectures achieved high accuracy in
every domain, even on handwritten character images. However, the accuracy
unexpectedly decreases when affected by many types of noise, such as blur, low
resolution, and low contrast. In this research, we first studied the effect of the noisy
character images that harm the performance of handwritten character recognition.
Second, the data augmentation techniques were applied while training the CNN model
to increase new patterns of the handwritten character images. The data augmentation
methods could generalize the CNN model when the noise is not adequately high.
Hence, the performance decreased after adding a high noise level. Third, we
discovered that the DeblurGAN could transform the noise into new clean handwritten
characters. Finally, DeblurGAN architecture and the robust CNN architecture are
combined to enhance the recognition performance of the handwritten character
images, called DeblurGAN-CNN.

There are several methods for improving image quality, for example, super-
resolution, image restoration, and deblurring images. However, some noise appears in
the handwritten character images while transforming the document papers into digital
format. Consequently, we considered two GAN architectures (DeblurGAN and
CycleGAN) to address our problems because these two GAN architectures are
designed for deblurring images. However, the CycleGAN is mainly used for a style
transfer that transforms from one style to another style. In comparison, many noises
occur in the handwritten character images, which means CycleGAN is not appropriate
for these problems. Furthermore, we used the DeblurGAN architecture that could deal
with many-to-one style transfer.

25

In this paper, we proposed the DeblurGAN-CNN framework that combines two
state-of-the-art deep learning architectures to denoise and recognizes the noisy
handwritten characters into one architecture. The proposed framework contains a
generator of generative adversarial network (GAN) and convolutional neural network
(CNN) architectures, as shown in Figure 9.

In the following subsections, the details of the DeblurGAN-CNN framework are
described. 1) DeblurGAN is employed as a denoising network. 2) DenseNet121 is the
convolutional neural network architecture performed as a recognition network. 3) We
describe the DeblurGAN-CNN architecture and training strategy that is used for
training the proposed framework.

Figure 9 Illustration of the DeblurGAN-CNN architecture.

3.3.1 DeblurGAN

Kupyn et al. (2018) proposed the GAN architecture to automatically deblur
blurred images from any unknown blur function, called DeblurGAN, which can
synthesize sharp images (𝐼𝑆) from blurred images (𝐼𝐵). The DeblurGAN uses the
generator (𝐺𝜃𝐺) and the discriminator (𝐷𝜃𝐷) to distinguish between real and generated
images.

The generator architecture of the DeblurGAN is shown in Figure 10. The
beginning part of the network consists of three convolutional blocks that are designed
to downsample the feature maps. The middle of the network is a sequence of nine
residual blocks. In the last part of the network, the transposed convolution blocks are
constructed to upsample feature maps to the original size as an input image.
Moreover, the global skip connection is also proposed for this architecture by adding
input to the output image. The global skip connection makes the network converge
faster and yields better output results.

In the DeblurGAN, the PatchGAN architecture (Isola et al. 2017) is used as the
discriminator. The PatchGAN architecture has downscale convolutional layers

26

followed by instance normalization and leaky rectified linear unit (LeakyReLU) with
α=0.2.

Consequently, as shown in Equation 9, the loss function is presented in the
DeblurGAN that includes adversarial (ℒ𝐺𝐴𝑁) and content loss (ℒ𝑋) that is weighted by
λ, where λ is a parameter that controls the relative of two objectives: adversarial and

content loss. The WGAN-GP (Gulrajani et al. 2017), which is the critic function to
determine the completeness of the generator result, is used as the adversarial loss, as
shown in Equation 10. Also, the content loss is the perceptual loss (Johnson el at.
2016) to compare the style-transfer, called reconstructed image, with the original
image using the L2 loss function.

ℒ =
ℒ𝐺𝐴𝑁⏟

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑙𝑜𝑠𝑠

+ 𝜆ℒ𝑋⏟
 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑙𝑜𝑠𝑠⏟

𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠

 (9)

ℒ =
𝐺𝐴𝑁

∑ −𝐷𝜃𝐷
𝑁
𝑛=1 (𝐺𝜃𝐺(𝐼

𝐵)) (10)

Figure 10 Illustration of the DeblurGAN generator architecture.

3.3.2 DenseNet

In the early architecture, a residual connection using element-wise input (x)
with an output building block (F(x)) (He et al. 2016) was proposed, called ResNet.
The benefit of the ResNet architecture was that the network could construct with deep
convolutional layers and still obtain better results in terms of speed and performance.
However, the DenseNet architecture (Huang et al. 2017) was designed to include the
maximum information flow by concatenating all feature maps (𝑥𝑛

𝑝) from the previous

27

convolutional layers, called a dense block. DenseNet was proposed to deal with the
reuse of the features, reduce the architecture parameters, and eliminate gradient
problems. The equation of the DenseNet is shown in Equation 11.

𝑥𝑛
𝑝 = 𝐻𝑝([𝑥𝑛

0, 𝑥𝑛
1 , 𝑥𝑛

2, … , 𝑥𝑛
𝑝−1]), (11)

where 𝑯𝒑(∙) is the composite function of a layer (𝑝), including batch normalization
(BN), rectified linear unit (ReLU), and convolutional (Conv) layer. The function
parameter [𝑥𝑛0, 𝑥𝑛1 , 𝑥𝑛2, … , 𝑥𝑛

𝑝−1] is a concatenation of previous layers from the first
layer (𝑥𝑛0) to last layer (𝑥𝑛

𝑝−1).

An overview of the DenseNet is shown in Figure 11(a). The DenseNet
architecture consists of three main parts.: 1) A convolutional layer with a kernel size
of 7×7. The convolutional block includes BN, ReLU, and Conv layers, with a stride
of 2 and followed by a 3×3 max pooling layer with a stride of 2. 2) Four dense blocks
and transition layers. 3) The global average pooling (GAP) and classification layers
with a softmax function.

Details of the DenseNet architecture, are as shown in Figure 11(b). The dense
block is concatenated with the output of bottleneck layers, which is expanded N
times, proposed to decrease the parameters of the architecture. Each bottleneck layer
consists of 1×1 Conv and 3×3 Conv layers, as shown in Figure 11(c). The transition
layer (see Figure 3(d)) is proposed to reduce the feature map width and height by 2 ×2
average pooling with a stride of 2 and θ parameter applies to compress the network

where a range of a parameter is 0<θ≤1.

In this chapter, we proposed to use DenseNet121 since it is the smallest size
appropriate for handwritten character recognition.

Figure 11 Illustration of the DenseNet121 architecture, including (a) core block, (b)

dense block, (c) bottleneck layer, and (d) transition layer.

28

3.3.3 DeblurGAN-CNN Setting and Training

In this section, we provide the construction and training strategy of the proposed
framework, as shown in Algorithm 1. Also, the details of the setting and training
strategy of the DeblurGAN-CNN framework are described in the following.

Algorithm 1. Construction and training of the DeblurGAN-CNN framework

Input:

Training set including pair of sharp and noisy character images (𝑥𝑖
𝑠ℎ𝑎𝑟𝑝

, 𝑥𝑖
𝑛𝑜𝑖𝑠𝑦) and label

𝑦𝑖 , where 𝑖 = 1,2, … , 𝑛,
training epochs of DeblurGAN: 𝑀,

training epochs of CNN: 𝑃.

Define:

(𝑋𝐷, 𝑌𝐷) is training set of data augmentation technique
 {(𝑥𝑖

𝑠ℎ𝑎𝑟𝑝
, y𝑖)} ∪ {(𝑥𝑖

𝑛𝑜𝑖𝑠𝑦
, y𝑖)}.

Step 1) Create DeblurGAN network including generator network 𝐺(𝑥) and

discriminator 𝐷(𝑥).

Step 2) Train DeblurGAN using 𝑀 epochs with dataset of pair set
{(𝑥𝑖

𝑠ℎ𝑎𝑟𝑝
, 𝑥𝑖
𝑛𝑜𝑖𝑠𝑦)} and save the best model based on the loss function in Equation (1).

 Step 3) Create CNN of pretrained weight from the ImageNet dataset.

Step 4) Train CNN using 𝑃 epochs with the dataset (𝑋𝐷, 𝑌𝐷)
and save the best model based on the loss function in
Equation (4).

Step 5) Construct a DeblurGAN-CNN network as the following:
- Load the 𝐺(𝑥) network in the step 2).
- Load the CNN network in the step 4).
- Combine 𝐺(𝑥) and CNN with the intermediate layer.

Step 6) Fine tune the DeblurGAN-CNN network training using 𝑃 epochs with the
dataset (𝑋𝐷 , 𝑌𝐷) and the loss function in Equation (4). The training steps consist of
two steps as the following:

- Freeze the part of 𝐺(𝑥) in the network and train using 𝑃/2 epochs.
- Unfreeze and train all layers in the network using 𝑃/2 epochs.

Output

:
The DeblurGAN-CNN network

3.3.3.1 DeblurGAN Training

DeblurGAN was designed for deblurring images. However, in our problems,
DeblurGAN was applied to reconstruct the sharp handwritten character images from
the various noisy styles, such as low contrast, motion blur, and white Gaussian noise.

29

To train the DeblurGAN architecture, the dataset then includes the pairs of noisy and
sharp handwritten character images, (𝑥𝑖

𝑛𝑜𝑖𝑠𝑦
, 𝑥𝑖
𝑠ℎ𝑎𝑟𝑝), where 𝑖 = 1,2, … , 𝑛. In the

DeblurGAN training process, the generator network receives a noisy image (𝑥𝑖
𝑛𝑜𝑖𝑠𝑦)

as input and adjusts the weights to reconstruct the output as a sharp image (𝑥𝑖
𝑠ℎ𝑎𝑟𝑝).

We evaluate the quality of the reconstructed handwritten character images using the
discriminator and the loss function as shown in Equation 9.

3.3.3.2 CNN Training

We employed the CNN architectures to train on a handwritten character
dataset that consisted of the pairs (𝑥𝑖, 𝑦𝑖), where 𝑖 = 1,2, … , 𝑛, 𝑥𝑖 is handwritten
character of character 𝑖 and 𝑦𝑖 is label of character 𝑖. To improve the efficiency
performance, we proposed the transfer learning method (Gonwirat and Surinta 2020)
with convolutional kernels of prior knowledge for faster convergence in a few epochs.
The pre-trained CNN model was modified in the classification layer and then fine-
tuned in the network. Furthermore, we trained the CNN models with the data
augmentation techniques with noisy handwritten character images (𝑥𝑖

𝑛𝑜𝑖𝑠𝑦), which is
synthesized from the original sharp images (𝑥𝑖

𝑠ℎ𝑎𝑟𝑝), where 𝑥𝑖
𝑛𝑜𝑖𝑠𝑦

= 𝑓𝑛𝑜𝑖𝑠𝑦(𝑥𝑖
𝑠ℎ𝑎𝑟𝑝)

and 𝑓𝑛𝑜𝑖𝑠𝑦(𝑥) is the generator function of a synthesized noisy image. We trained the
CNN model to classify images using categorical cross-entropy loss function as shown
in Equation 12.

ℒ =−
1

𝑁
∑ 𝑙𝑜𝑔 (𝑝𝐶𝑁𝑁
𝑁
𝑖=1 (𝑥𝑖; 𝜃)), (12)

where 𝑁 is the number of training images and 𝒑𝑪𝑵𝑵(𝑥𝑖; 𝜃) is the probability
distribution of CNN output, where 𝑥𝑖 is an input image and 𝜃 is weight parameters.

3.3.3.3 DeblurGAN-CNN Construction

The DeblurGAN-CNN network connects the DeblurGAN generator and CNN,
as shown in Figure 1. This proposed network benefits from the generator producing a
sharp output image from various noisy images before recognizing it by the CNN
model. The output of the generator (𝐺(𝑥)) is called the intermediate output (�̂�𝑖),
where �̂�𝑖 = 𝐺(𝑥𝑖) is computed using the tanh function. Hence, the output image
values are in the range of -1 and 1. Subsequently, we add the intermediate layer to
convert the value to the range of 0 and 1, the same as the input of the CNN which the
adjusting function is 𝑓(𝑥) = (𝑥 + 1)/2 where 𝑥 is intermediate output.

3.3.3.4 DebulrGAN-CNN Fine-Truning

The DeblurGAN-CNN network is still an incomplete merge network since a
part of CNN has inexperienced generator output. Thus, fine-tuning the DeblurGAN-
CNN network is an approach to improvement. In the first step, we only trained the
CNN by freezing the DeblurGAN generator for stable network training and retraining
the output as sharp images. In the second step, we trained the DeblurGAN-CNN

30

network with unfrozen whole layers. The proposed DeblurGAN-CNN network was
trained with a few training epochs. We trained only ten epochs in each frozen step and
each unfrozen step.

3.4 Handwritten Character Datasets

In this section, we briefly describe the handwritten character datasets used in
the experiments, including two Thai handwritten character datasets: THCC-67 (Sae-
Tang and Methasate 2004) and THI-C68 (Surinta et al. 2015), and two noisy
handwritten character datasets: n-MNIST (Basu et al. 2015) and n-THI-C68. An
overview of the handwritten character datasets is shown in Table 3.

Datasets TYPES AND
LANGUAGES

NUMBER OF
CLASSES

TRAINING SETS Test Sets

THCC-67 (Sae-Tang and
Methasate 2004) Char, Thai 67 - 9,012

THI-68 (Surinta et al.
2015) Char, Thai 68 11,592 2,898

n-THI-68 Char, Thai 68 11,592 14,290

n-NMINST (Basu et al.
2015) Digit, Arabic 10 180,000 30,000

Table 3 Overview of the handwritten character datasets.

(a) (b)

Figure 12 Examples of Thai handwritten character datasets: (a) THCC-67 and (b)

THI-C68.

31

3.4.1 The NECTEC Thai Handwritten Character Corpus(THCC-67)

The National Electronic and Computer Technology Center (NECTEC)
presented a Thai handwritten character corpus (THCC) of consonants, vowels, and
tones that contains 67 classes, called THCC-67. The THCC-67 dataset has 9,012
characters that were rescaled to 32×32 pixels. In this research, we used it as an
independent test. The THCC-67 dataset is shown in Figure 12(a).

3.4.2 The ALICE Offline Thai Handwritten Character Dataset (THI-68)

The THI-C68 dataset containing 28 classes was proposed by Surinta et al.
(2015). The THI-C68 dataset was collected from 150 university students aged 20-23
years old. Students wrote the Thai characters on a form with a white background that
was scanned with a resolution of 200 dpi. Image transformation was used to rescale
the aspect ratio to avoid distortion and images were stored in grayscale format. The
THI-C68 dataset has 14,490 character images containing consonants, vowels, and
tones. An example of the THI-C68 is shown in Figure 12(b).

3.4.3 Noisy THI-C68 (N-THI-68)

In this research, we propose a new noisy Thai handwritten character dataset,
called noisy THI-C68 (n-THI-C68). We synthesized new noisy character images
using five different noisy techniques: low resolution, additive white Gaussian noise
(AWGN), low contrast, motion blur, and mixed noise.

(a) (b)

Figure 13 Examples of noisy handwritten character datasets: (a) n-THI-C68 that

applied 1) low resolution, 2) AWGN, 3) low contrast, 4) motion blur, and 5) mixed

noise and (b) n-MNIST that applied 1) AWGN, 2) Motion blur, and 3) low contrast

and AWGN.

32

We randomly selected one noisy technique to synthesize each character image
according to the THI-C68 dataset with 11,592 training images and 2,898 test images.
We obtained 11,592 noisy character images for the training set that were randomly
applied with noisy techniques with various adjustment values. For the test set, we
increased the size from 2,898 character images up to 14,290 noisy character images
by randomly applying five noisy techniques to the original character images.

As shown in Figure 13(a), noisy Thai handwritten character images were
synthesized as follows. 1) Low resolution with a low level at 8-12 pixels. 2) AWGN
with increasing noise with a peak signal to noise ratio (PSNR) of 9.5. 3) Low contrast
with reduced color gradient in range of 0.15-0.5 based on the original images. 4)
Motion blur with two blur methods: directional motion blur (Basu et al. 2015; Karki
et al. 2018) and random motion blur (Boracchi and Foi 2011). 5) Mixed noise
between four noisy methods.

3.4.4 Noisy MNIST (n-MNIST)

Karki et al. (2018) proposed the noisy MNIST (n-MNIST), which is the
extended version of the MNIST dataset (LeCun, et al. 1998) that applied three noisy
methods: AWGN, motion blur, and combinations between reduced contrast and
AWGN. The n-MNIST dataset contains 10 classes (0-9) and has 180,000 training
samples and 30,000 test samples due to applying three noisy techniques to the original
images.

Figure 13(b) shows noisy digits were applied as follows. 1) AWGN using
increase noise with RSNR of 9.5. 2) Motion blur using linear motion filter with a size
of 5 pixels and rotation with 15 degrees, and a combination between reduced contrast
and AWGN with a PSNR of 12.

3.5 Experiment Results

In this section, we evaluated the performance of the proposed DeblurGAN-
CNN architecture on the handwritten character datasets and noisy handwritten
character datasets. We then investigated the effective recognition of CNNs and the
quality of image restoration by the generative adversarial networks (GAN). In this
study, we trained the CNN and GAN models on Linux operating systems with Nvidia
GeForce GTX1080ti 8G GPU, Intel(R) Core i5-7400 Processor 3.00GHz CPU, 32GB
DDR4 RAM.

3.5.1 Evaluation of The CNN Architectures on THI-C68 Dataset

3.5.1.1 COMPARISON of state-of-the-art CNNs

We evaluated four CNN architectures: VGG19, InceptionResNet,
MobileNetV2, and DenseNet121 on the Thai handwritten character dataset to find the
best CNN architecture. We divided the THI-C68 dataset into a training set and test set
with 80% and 20% ratios, with 13,041 training images and 1,449 test images. Hence,

33

the training set was evaluated using 5-fold cross-validation. The test set was an
independent holdout set for final evaluation.

Furthermore, we focused on three training methods: 1) scratch learning (SL), 2)
transfer learning (TL), and transfer learning with noisy data augmentation techniques
(TL-nDA).

We proposed four noisy data augmentations: low resolution, AWGN, motion
blur, and mixed noise, which were generated as a training set of the n-THI-C68
dataset.

The hyperparameters in CNN models were defined as follows: training epochs
= 100 epochs, batch size = 32, stochastic gradient descent (SGD) optimizer, learning
rate = 0.001, decay rate = 0.0001, momentum = 0.9, and image size = 128×128 pixels
which is the smallest input of the InceptionResNet architecture. In transfer learning,
we also used the pre-trained CNN model that learned on the ImageNet Dataset (Deng
et al. 2009).

The accuracy results of CNN architectures are shown in Table 4. The accuracy
performance of the CNNs was above 97% accuracy. The VGG19 architecture
achieved the lowest performance on the THI-C68 dataset with an accuracy of 96.93%
when training from scratch. On the other hand, the DenseNet121 architecture
achieved the best performance in all learning methods with an accuracy of 99.48%
when using transfer learning.

Furthermore, we demonstrate that noisy data can decrease the recognition
performance of the CNN architectures. This experiment then applied four noisy data
augmentation techniques while training the CNN model using the transfer learning
method. It clearly showed that the accuracy of DenseNet121 was slightly decreased
from 99.48% to 99.28% when training with noisy images. Subsequently, we proposed
the DeblurGAN-CNN architecture to address the problems of noisy images. The
result of the DeblurGANs is shown in the Section 3.5.2.

CNN Models
Learning Methods

SL TL TL-nDA
5-cv Test 5-cv Test 5-cv Test

VGG19 96.51±0.76 96.93 99.34±0.23 98.81 92.72±7.39 98.45
InceptionResNet 98.63±0.31 98.15 99.05±0.19 98.61 92.79±7.40 98.38

MobileNetV2 97.10±0.78 97.10 99.13±0.21 98.96 93.97±6.51 98.93
DenseNet121 98.61±0.32 98.41 99.27±0.11 99.48 95.41±5.06 99.28

Table 4 Recognition performances (mean validation accuracy: 5-cv, standard

deviation, and test accuracy) of four CNN models: VGG19, InceptionResNet,

MobileNetV2, and DenseNet121, using different learning methods (SL, TL, and TL-

nDA) on the THI-C68 dataset.

34

3.5.1.2 COMPARISON of the CNNs and other Studies

According to previous experiments, we selected two CNN architectures,
DenseNet121 and MobileNetV2. In this study, two CNN architectures were used and
hand-crafted feature extraction combined with machine learning, namely SiftD-SVM
(Surinta, Karaaba, et al. 2015) and HOGFoDRs-SVM (Inkeaw et al. 2019), were
evaluated and compared on the THI-C68 dataset.

To consider a fair comparison between CNN architectures and previous
studies, we provided two shuffled random subsets of the THI-C68 dataset according
to the experiments of Surinta et al. (Surinta, Karaaba, et al. 2015) and Inkeaw et al.
(Inkeaw et al. 2019). The first subset (Set-I) had 11,592 training samples and 2,898
test samples. The second subset (Set-II) had 13,041 training samples and 1,449 test
samples. Note that, Set-I and Set-II were compared with the HOGFoDRS-SVM and
the SiftD-SVM methods.

The results reported in Table 5 show that the DenseNet121 architecture with
transfer learning (DenseNet121-TL) outperformed every CNN architecture on both
sets with 5-fold cross-validation. Consequently, DenseNet121-TL outperformed the
HOGFoDRs-SVM method by 0.51% on Set-I and outperformed the SiftD-SVM
method by 0.37%. Also, MobileNetV2 with transfer learning (MobileNetV2-TL)
achieved the highest performance on the independent test set of Set-II with 99.31%
accuracy. MobileNetV2-TL significantly outperformed the SiftD-SVM method by
4.97%.

Methods
Set-I Set-II

5-cv Test 10-cv Test
SiftD-SVM (Surinta et al. 2015) - - 98.93 ± 0.03 94.34
HOGFoDRs-SVM (Inkeaw et al. 2019) 98.76 - - -
MobileNetV2-TL 99.13 ± 0.21 98.96 99.16 ± 0.31 99.31
DenseNet-TL 99.27 ± 0.11 99.48 99.30 ± 0.36 99.03
MobileNetV2-TL-nDA 93.97 ± 6.51 98.93 94.69 ± 7.62 99.10
DenseNet-TL-nDA 95.41 ± 5.06 99.28 95.44 ± 6.88 99.17
Table 5 The performance (mean validation accuracy: 5-cv, standard deviation, and

test accuracy) comparison of the CNN models using different learning methods with

other studies on the THI-C68 dataset.

Table 5 The performance (mean validation accuracy: 5-cv, standard deviation,
and test accuracy) comparison of the CNN models using different learning methods
with other studies on the THI-C68 dataset

From the results above, the CNN architectures with transfer learning impact
improving the performance of handwritten character recognition. Consequently, the

35

CNN models achieved better accuracy than the hand-crafted features (Inkeaw et al.
2019; Surinta et al. 2015) on the THI-C68 dataset.

3.5.2 Denoising Performance of DeblurGAN on The n-THI-C68 Dataset

In this experiment, the input images were the noisy images of the n-THI-C68
dataset with 128×128 pixels. We first reconstructed the denoise character images with
128×128 pixels using Wasserstein and content loss functions. The hyperparameters of
DeblurGAN were applied as follows: the optimization algorithm is Adam, learning
rate = 0.0001, momentum = 0.9 and 0.999, training epochs = 200, and batch size = 32.

To study the reconstruction quality of the denoise images, we evaluated the
DeblurGAN architecture with two well-known image quality metrics called the peak
signal to noise ratio (PSNR) and the structural similarity index (SSIM) on the n-THI-
C68 dataset. The noise images with different noise methods and reconstructed images
are shown in Figure 14. We reported the PSNR and SSIM values obtained when
evaluating the different noise methods. High PSNR and SSIM values represent better
accuracy and reconstruction of the image, respectively. We achieved the best PSNR
and SSIM when using DeblurGAN to reconstruct the character images from noisy
images of the low contrast, low resolution, and AWGN, respectively. However,
motion blur and mixed noise were the most difficult to reconstruct.

Figure 14 Illustration of the noisy images of (a) low resolution, (b) AWGN, (c) low

contrast, (d) motion blur, and (e) mixed noise, as shown in the first row and

reconstructed images using DeblurGAN architecture, as shown in the second row.

Note that the high PSNR value presents better performance accuracy, and the high

SSIM value presents the most similar character images between the reconstructed and

original images.

The DeblurGAN architecture adds the residual blocks and global skip
connection in the generator, making the DeblurGAN only learn a residual correction
to transform the noisy images. The DeblurGAN could be more generalized in
reconstructing the denoise images generated by multiple generations or from the

36

unknown kernel. Importantly, the DeblurGAN (Kupyn et al. 2018) uses the WGAN-
GP and perceptual loss when reconstructing denoise images, while the traditional
neural networks use L1 and L2 optimization algorithms when reconstructing denoise
images.

3.5.3 Denoising Performance of DeblurGAN on the n-THI-C68 Dataset

This section presents the DeblurGAN-CNN architectures to perform on the n-
THI-C68 dataset. In response to the experimental results, as shown in Section A, we
selected two CNN architectures, DenseNet121 and MobileNetV2, as the CNN
models. Hence, we connected DeblurGAN with CNN architecture, called
DeblurGAN-DenseNet121 and DeblurGAN-MobileNetV2. Consequently, we
compared the DeblurGAN-CNN architectures with the traditional CNN architectures
to recognize the noisy character images, as shown in Table IV.

Noise
Methods

CNN Architectures DeblurGAN-CNN
Architectures

MobileNetV2-
TL

DenseNet121
-TL

MobileNetV2-
TL-nDA

DenseNet121
-TL-nDA

DeblurGAN-
MobileNetV2

DeblurGAN-
DenseNet121

Low Resolution 77.24 49.90 93.02 93.96 98.48 98.52
AWGN 27.92 16.63 96.72 98.21 98.72 99.03
Low Contrast 13.80 31.30 95.62 93.51 99.28 99.41
Motion Blur 45.89 49.59 91.75 93.06 97.96 97.69
Mixed Noise 30.78 25.02 93.93 92.89 97.90 98.00
Overall 39.13 34.49 94.21 94.33 98.47 98.53
Table 6 The performance of the CNN architectures and DeblurGAN-CNN

architectures on the n-THI-C68 dataset.

Methods Memory
(MB)

Parameters
(M)

Train Times
(hour:min)

Test Times
(sec/image)

Accuracy
(% diff)

VGG19 544 142.2 2:15 0.0034 -4.39
InceptionResNet 210 54.4 2:04 0.0043 -4.42
MobileNetV2 19.2 2.35 0:46 0.0006 -4.32
DenseNet121 57.8 7.02 1:17 0.0023 -4.20
DeblurGAN-MobileNetV2 62.9 13.35 1:27 0.0021 -0.06
DeblurGAN-DenseNet121 101.5 18.51 2:04 0.0032 0.00

DeblurGAN (standalone) 43.7 11.34 0:32 0.0016 -
Table 7 The configuration detail, computation times and differential accuracy of

different CNNs and DeblurGAN-CNNs

Table 6 shows that the CNN architecture achieved low accuracy when using
MobileNetV2-TL. It attained 77.24% accuracy when recognizing the noisy images
with low resolution. The worst performance of only 13.80% accuracy was achieved
when recognizing low-contrast images. However, we found that when training the

37

CNN model using transfer learning with noisy data augmentation techniques (TL-
nDA), the accuracy increased from only 13.80% to 95.62% when using
MobileNetV2-TL-nDA. The overall performance accuracy of MobileNetV2-TL-nDA
and DenseNet121-TL-nDA was 94.21% and 94.33% respectively.

The results show that the DeblurGAN-CNN architectures could address the
problems of noisy character images by achieving higher performance above 97%
accuracy on all noise methods. Subsequently, the DeblurGAN-DenseNet121 achieved
98.53% accuracy and slightly outperformed the DeblurGAN-MobileNetV2 that
achieved an accuracy of 98.47%. Moreover, the DeblurGAN-CNN architectures
significantly outperformed the DenseNet121-TL-nDA and MobileNetV2-TL-nDA
(The result was significant at p < .05). The misclassified characters are shown in
Figure 15.

We concluded that only training the CNN models using the transfer learning
with noisy data augmentation techniques could achieve accuracy above 90% on the n-
THI-C68 dataset, although, very high accuracy is required in the handwritten
character tasks to reduce the error while using the output data. Importantly, we
recommend using the DeblurGAN-CNN architectures as this study yielded promising
and outstanding results. The results show that the DeblurGAN-CNN architectures
could address the problems of the noisy character images by achieving higher
performance above 97% accuracy on all noise methods. Subsequently, the
DeblurGAN-DenseNet121 achieved 98.53% accuracy and slightly outperformed the
DeblurGAN-MobileNetV2 that achieved an accuracy of 98.47%. Moreover, the
DeblurGAN-CNN architectures significantly outperformed the DenseNet121-TL-
nDA and MobileNetV2-TL-nDA (The result was significant at p < .05). The
misclassified characters are shown in Figure 15.

The proposed model was evaluated on a noisy dataset compared to the four
CNN architectures and has achieved better recognition performance with an
approximately 4% increase in accuracy. Moreover, Table 7 summarizes different
compared models, including memory sizes, number of parameters, training and
testing times, and the difference in accuracy from our best model, DeblurGAN-
DenseNet121. In terms of time, DeblurGAN- DenseNet121 had slightly more training
time than VGG19 and about the same amount of time as InceptionResNetV2.
However, it requires 2.7 and 1.6 times more than MobileNetV2 and DenseNet121,
respectively, which are lightweight CNN architectures.

Another proposed model, the DeblurGAN-MobileNetV2, was better speed
training and was 1.9 and 1.1 times faster than MobileNetV2 and DenseNet121,
respectively, However, it is still efficient in recognition performance by over 4%. In
addition, Our proposed methods increase the number of parameters, since
DeblurGAN has 11.34M and was training time to learn denoise images about 32 min.

38

Figure 15 Illustration of misclassified characters on the test set of

the n-THI-C68 dataset using DeblurGAN-CNN.

3.5.4 Comparison of the DeblurGAN-CNN Architecture and Other

Approaches

We selected two DeblurGAN-CNN architectures: DeblurGAN-MobileNetV2
and DeblurGAN-DenseNet121, to evaluate generalization ability on the other noisy
datasets n-MNIST and THCC-67. Comparisons of results on the n-MNIST and
THCC-67 datasets with the GAN-CNNs and other approaches are presented in Table
8 and Table 9.

Table 8 compares the results between the proposed DeblurGAN-CNN
architectures and other approaches on the n-MNIST dataset. As a result, the accuracy
of the DeblurGAN-MobileNetV2 slightly outperformed the DeblurGAN-
DenseNet121. The DeblurGAN-MobileNetV2 achieved the best accuracy on the n-
MNIST dataset using AWGN and AWGN+Contrast noise methods.

The experimental results on the n-MNIST dataset showed that the optimal
CNN-Hopfield network achieved an accuracy of 99.18%, 99.74%, and 97.53% when
the AWGN, motion blur, and AWGN+Contrast noises were applied, respectively.

On the other hand, the DeblurGAN-MobileNetV2 achieved 98.93%, 99.36%,
and 97.59% accuracies when applying the AWGN, motion blur, and
AWGN+Contrast noises, respectively. Further, the DeblurGAN-MobileNetV2
architecture outperformed the optimal CNN–Hopfield network on the n-MNIST
dataset when applying AWGN+Contrast noise.

39

Methods Noise Methods

 AWGN Motion Blur
AWGN+

Contrast

PQ-DBN (Basu et al. 2015) 90.07 97.40 92.16
Dropconnect DBN (Karki et al. 2018) 97.57 97.20 96.93

PixelCNN PQ-DBN (Karki et al. 2018) 97.62 97.20 95.04
PCGAN-CHAR (Liu et al. 2019) 98.43 99.20 97.25

Optimal CNN-Hopfield Network (Keddous and
Nakib 2022) 99.18 99.74 97.53

DeblurGAN-MobileNetV2 (Proposed method) 98.93 99.36 97.59

DeblurGAN-DenseNet (Proposed method) 98.89 99.40 97.51
Table 8 The performance comparison of DeblurGAN-CNN architectures with other

approaches on the n-MNIST dataset.

Methods Accuracy

HOGFoDRs-SVM (Inkeaw et al. 2019) 70.74
DeblurGAN-MobileNetV2 (Proposed method) 80.63
DeblurGAN- DenseNet121 (Proposed method) 80.68

Table 9 The performance comparison of DeblurGAN-CNN architectures with the

HOGFoDRs-SVM method on the THCC-67 dataset.

Figure 16 Illustration of the misclassified characters on the THCC67 dataset using

DeblurGAN-DenseNet121

3.6 Discussion

We observed the training loss between the DenseNet121-TL-nDA and
DeblurGAN-DenseNet121, as shown in Figures 17(a) and 17(b). The improvement of
validation loss is shown in Figure 17(c). It can be seen that the training loss of the
DeblurGAN-DenseNet121 is relatively low in the early epochs due to the transferring

40

of pre-trained weights. The training loss of the DeblurGAN-DenseNet121 is always
lower than the DenseNet121-TL-nDA.

(a) (b)

(c)

Figure 17 Illustration of the validation and training loss (a) DenseNet121-TL-nDA

(b) DeblurGAN-DenseNet121 and (c) comparison of improving in validation loss.

As shown in Figure 18, we found that the DenseNet121 model with TL
(DenseNet121-TL) achieved unsatisfactory performance when evaluated on the noisy
images. The accuracy of DenseNet121-TL quickly dropped when the PSNR value
was increased. The result shows that DenseNet121-TL-nDA obtained much better
performance than DenseNet121-TL. However, the accuracy of DenseNet121-TL-nDA
was quickly decreased when the PSNR value was higher than 20. Furthermore, the
DeblurGAN-DenseNet121, when training using TL-nDA methods, achieved high
accuracy even when the PSNR value was increased more to than 26, with an accuracy
above 90%.

41

We also discussed in-depth the proposed DeblurGAN-CNN architecture and
the optimal CNN-Hopfield network on the n-MNIST dataset in terms of accuracy.
Therefore, the optimal CNN-Hopfield network (Keddous and Nakib 2022)
outperformed our proposed architecture because the optimal CNN-Hopfield network
is an ensemble method that combines many CNN outputs to achieve better
recognition. The ensemble method has been reported to guarantees better accuracy in
much published research (Gonwirat and Surinta 2021; Guo et al. 2019; Noppitak and
Surinta 2022). On the other hand, the DeblurGAN-CNN architecture is a deep
learning architecture that combines GAN and CNN architectures. So, only one output
is recognized from the proposed architecture. Consequently, the optimal CNN-
Hopfield network achieved an accuracy of 62%, 92%, and 97.52% when recognized
using one, two, and three CNN models. In comparison, our proposed method achieved
an accuracy of 98.93% using only one model and given an accuracy higher than 6%
compared to the optimal CNN-Hopfield network that uses three CNN models.

Furthermore, finding texts that appear in natural scene images are challenging.
To solve the challenge, object and scene text detection in the wild should be first
applied to obtain the region of interest, which is the area of texts. Second, we could
employ the DeblurGAN-CNN method to denoise and recognize the text in the natural
scene images. This solution could be enhanced the recognition performance. We will
concentrate on finding and recognizing text that appears in natural scene images for
future work.

Figure 18 The effectiveness of different denoise architectures proposed to recognize

the noisy character images on the n-THI-C68 dataset.

42

3.7 Conclusion

The performance of the handwritten character recognition systems decreases
in consequence of many problems, such as handwriting styles, degradation of the
documents, and noise appearance while transforming documents into a digital format.
This research mainly focused on the denoise and recognition of noisy handwritten
character images. Consequently, the robust generative adversarial network (GAN)
combined with the convolutional neural network (CNN) architecture, called
DeblurGAN-CNN, was proposed to synthesize new clean handwritten characters from
noisy handwritten characters and recognition with improved handwritten character
performance. For the CNN architecture, we combined two state-of-the-art CNNs:
MobileNetV2 and DenseNet121, with the DeblurGAN, called
DeblurGANMobileNetV2 and DeblurGAN-DenseNet121. The DeblurGAN-CNN
architectures were trained using the transfer learning technique and applying the noisy
data augmentation techniques to create a robust model. The most beneficial aspect of
the DeblurGAN-CNN models was that they could learn and generalize from many
noisy methods, including low resolution, additive white Gaussian noise (AWGN), low
contrast, motion blur, and mixed noise. To evaluate the denoise model, the
DeblurGAN produced significant output that achieved a high peak signal to noise
ratio (PSNR) and structural similarity index (SSIM) values. As a result, the
DeblurGAN architecture could remove various noises from the noisy handwritten
character images. For the accuracy performance, the results show that the
DeblurGANCNN architectures generated strong handwritten character images and
achieved the highest performance on the n-MNIST and n-THI-C68 datasets when
compared with other existing methods. Also, both DeblurGAN-DenseNet121 and
DeblurGAN-MobileNetV2 presented significant performance and outperformed the
HOGFoDRs-SVM on the THI-C68 and THCC-67 datasets. The DeblurGAN-CNN
architectures achieved an accuracy above 98%, 97.59%, and 80.68% on the n-THI-
C68, n-MNIST, and THCC-67 datasets. Subsequently, the DeblurGAN-CNN
architectures, which used the DenseNet121 and MobileNetV2 as the CNN
architectures, achieved high handwritten character recognition performance with and
without noisy handwritten characters.

43

Chapter 4

Efficient Data Augmentation Strategy on CRNN for

Handwritten Text Recognition

Predicting the sequence pattern of the handwritten text images is a challenging
problem due to the various writing style, insufficient training data, and even
background and noise appearing in the text images. The architecture of the
combination between convolutional neural network (CNN) and recurrent neural
network (RNN), called CRNN architecture, is the most successful sequence learning
method for handwritten text recognition systems. For handwritten text recognition in
historical Thai document images, in this paper, we first trained nine different CRNN
architectures with both training from scratch and transfer learning techniques to find
out the most powerful technique. We discovered that the transfer learning technique
does not significantly outperform scratch learning. Second, we examined training the
CRNN model by applying the basic transformation data augmentation techniques:
shifting, rotation, and shearing. Indeed, the data augmentation techniques provided
more accurate performance than without applying data augmentation techniques.
However, it did not show significant results. The original training strategy aims to
find the global minima value and not always solve the overfitting problems. Third, we
proposed a cyclical data augmentation strategy, called CycleAugment, to discover
many local minima values and prevent overfitting. In each cycle, it rapidly decreased
the training loss to reach the local minima. The CycleAugment strategy allowed the
CRNN model to learn the input images with and without applying data augmentation
techniques to learn from many input patterns. Hence, the CycleAugment strategy
consistently achieves the best performance when compared with other strategies.
Finally, we prevented image distortion by applying a simple technique to the short
word images and achieved better performance on the historical Thai document image
dataset.

4.1 Introduction

The offline text recognition system is a vision-based application that
automates extracting information from handwritten and printed manuscripts and
transforms images into digitally readable text that could be editable and comfortable
to store and retrieve. Earlier, various research focused on character recognition which
recognized isolated characters (Surinta et al. 2015; Inkeaw et al. 2019; Kavitha and
Srimathi 2019; Wang et al. 2019). However, a few research concentrates on the
recognition of handwritten text. This is because it takes more effort to segment
handwritten text into individual characters (Lue et al. 2010; Choudhary et al. 2013;
Inkeaw et al. 2018). Due to messy handwriting, various writing styles, and cursive
texts, as shown in Figure 19, it is difficult to solve by segmenting characters and then

44

recognizing them by traditional optical character recognition (OCR). Character
sequence learning is more suitable for word recognition (Giménez and Juan 2009;
Bluche et al. 2013). Hence, an effective feature-based sliding window and sequence
learning methods are applied to recognize each character and then transcript to words
(Wang et al. 2011; Lee et al. 2014; Mishra et al. 2016). However, handwritten text
recognition (HTR) methods mainly focus on word recognition and have become a
more famous research domain nowadays.

(a)

(b) (c)

Figure 19 Examples of historical Thai handwritten texts from (a) Thai archive, (b)

Phra Narai Medicine, and (c) King Rama V, Volume 1, Medicine Manuscripts

Deep learning methods have become the principal method in various computer
vision applications, such as object detection, object recognition, speech recognition,
and natural language processing. Further, convolutional neural networks (CNN)
architectures, one of the deep learning methods, are widely proposed for feature
extraction and image classification. The CNN also proposed to address the challenge
of word recognition (Ameryan and Schomaker 2021; Chen et al. 2021; Singh et al.
2021). In addition, CNN and recurrent neural networks (RNNs), which are the famous
sequence learner architectures, were proposed to recognize the printed and
handwritten words (Ameryan and Schomaker 2021; Chen et al. 2021) and achieved a
high accuracy performance. Consequently, state-of-the-art in handwritten character
recognition is a combination of CNN and RNN, called convolutional recurrent
network (CRNN). The CRNN also proposed solving problems in many text
recognition fields such as scene text and video subtitle recognition.

Moreover, handwritten text recognition has been applied in many languages,
such as English, Chinese, Arabic, Indian, and Amharic (Sujatha and Bhaskari 2019;
Yan and Xu 2020; Abdurahman et al. 2021; Ameryan and Schomaker 2021; Butt et
al. 2021; Singh et al. 2021). Particularly, historical manuscripts are faced with cursive
writing, noisy background, and differing word spelling from ancient and insufficient
lexicon for transcription. The challenge of Thai handwritten character recognition is
that the Thai language does not have an exact rule to split the sentences and no space
between words. For explicit prediction, it is demanding to segment sentences into
tokenized words. Further, a few research studies and a comprehensive investigation
on Thai word recognition.

45

The main contribution of this paper is to present the new data augmentation
strategy, namely CycleAugment. The proposed data augmentation strategy mainly
focuses on minimizing the validation loss and avoiding overfitting. We achieve our
goal with a simplistic strategy and implementation. Our research is motivated by
Huang et al. (Huang et al. 2017), who proposed the cyclic cosine annealing method
that calculated the learning rate in every epoch and then started the new learning rate
at the beginning of a new cycle.

Furthermore, training the CRNN model usually allows choosing only to train
the CRNN model with or without applying data augmentation techniques. We offer
the CycleAugment strategy that provides to train the CRNN model with and without
applying data augmentation techniques simultaneously. Importantly, our
CycleAugment strategy confirms that it can handle every CRNN architecture.

We evaluate the efficiency of the CycleAugment strategy on several CRNN
architectures for handwritten word recognition on Thai archive manuscripts. To show
the importance of the CycleAugment strategy, we have compared them to the original
data augmentation strategy. The results show that the CycleAugment strategy
significantly decreases the character error rate (CER). The CycleAugment strategy
achieves the CER value of 5.43 and the original data augmentation strategy obtains
the CER value of 7.31 on the Thai archive manuscript.

The remainder of this paper is organized as follows. The related work is
briefly described in Section 2. Section 3 deeply explains the proposed CRNN
architecture and proposed CycleAugment strategy. Section 4, present the Thai
historical document dataset, training strategy, and experimental evaluation. The
discussion is presented in Section 5. Finally, the last section gives the conclusion and
future direction

4.2 Related work

In this section, we survey the HTR task based on deep learning techniques.
We also study the transfer learning and data augmentation techniques that improve the
performance of deep learning.

4.2.1 Handwritten text recognition

This Researchers have been proposing text recognition systems for several
applications, such as scene text recognition (Shi et al. 2017; Shi et al. 2018; Luo et al.
2019; Chen et al. 2021), video subtitle recognition (Xu et al. 2018; Yan and Xu 2020),
and handwritten text recognition in many languages (Abdurahman et al. 2021;
Ameryan and Schomaker 2021; Butt et al. 2021). Currently, most of the proposed
HTR methods are based on the CNNs and RNNs architectures.

For HTR, (Abdurahman et al. (2021) proposed a convolutional recurrent
neural network architecture, called AHWR-Net, to recognize Amharic words. The

46

AHWR-Net architecture was divided into feature extraction, sequence modeling, and
classification. First, they created a CNN model and compared their proposed CNN
model with state-of-the-art CNN models: DenseNet-121, ResNet-50, and VGG-19.
These CNN models were also proposed to extract the feature from the Amharic word
images. Second, the RNN architecture was proposed as the sequence model to train
spatial features extracted from the previous step. Finally, the probability distributions,
which was the output of the RNN method, were classified using a connectionist
temporal classification algorithm (CTC). In addition, Butt et al. (2021) built a robust
Arabic text recognition system using the CNN-RNN attention model from natural
scene images. Their Arabic text recognition system addressed the challenge with the
texts in different sizes, fonts, colors, orientation, and brightness.

Furthermore, Ameryan and Schomaker (2021) proposed a high-performance
word classification using homogeneous CNN and long short-term memory (LSTM)
networks. First, for the CNN model, they created five CNN layers. Each CNN layer
contained a convolutional layer, normalization method, nonlinear rectified linear unit
(ReLU), and max-pooling layer. Second, for the LSTM, the bidirectional-LSTMs with
three layers were used. Third, the CTC decoding was attached as the output of their
network. Finally, the invented ensemble system was proposed, which included five
networks. The outputs of each network were sent to vote using the plurality vote
method.

4.2.2 Thai handwritten text recognition

There is a small amount of research that focuses on Thai handwritten text
recognition. In 2019, Chamchong et al. proposed hybrid deep neural networks that
combined three convolutional layers and two bidirectional gated recurrent unit
(BiGRU) layers, namely 3CNN+BiGRU. The 3CNN+BiGRU was followed by
softmax and CTC loss functions. For a computational time, both bidirectional LSTM
(BiLSTM) and BiGRU were compared. The result of the computational time showed
that the BiGRU is faster than BiLSTM. Therefore, the 3CNN+BiGRU showed the
best character error rate (CER) of 12.1% on the Thai archive dataset when time step
and RNN size were set as 32 and 128.

In 2020, Srinilta and Chatpoch proposed a deep learning method for multi-task
learning on three scripts: Thai, Devanagari, and Latin. The deep learning method was
divided into three main layers: CNN, RNN, and CTC. First, the CNN layer was
trained based on ResNet50 architecture for multi-task learning, followed by the
BiGRU layer. Second, the output of the BiGRU layer in the first step was trained
using different BiGRU layers and then followed by the CTC layer. For example, the
BiGRU-Thai layer was aimed to train and recognize only Thai scripts.

In 2021, Chamchong et al. created four CNN layers: convolutional, ReLU
activation, max-pooling, and dropout layers. Then, two BiGRU and dropout layers
were added to the last CNN layer. In their method, the dropout layers were set as 0.2.
Furthermore, to decrease the training loss value, they compared based on two

47

optimization algorithms: SGD and RMSprop. The experimental results showed that
the RMSprop optimization outperformed the SGD optimization algorithm on the
standard Thai handwritten dataset.

4.2.3 Improve the deep learning performance with transfer learning and data

augmentation techniques

In deep learning, achieving high performance is generally accompanied by
various convolutional layers and training images (Wu et al. 2017) The very deep
convolutional layers and limited training samples often attend to the overfitting
problem (Thanapol et al. 2020). It directly affects the deep learning model that makes
it hard to generalize new samples. Transfer learning, data augmentation, dropout, and
reducing the complexity of the deep learning architecture are suggested to address the
overfitting problem (Pawara et al. 2017; Enkvetchakul and Surinta 2021; Gonwirat
and Surinta 2020).

Gonwirat & Surinta (Chapter 2) trained the CNN models (including Inception-
ResNetV2 and VGG19 architectures) based on two training methods: scratch learning
and transfer learning. The comparison results showed that the transfer achieved high
accuracy when evaluated using 5-fold cross-validation (5-cv) and 10-cv methods. As
a result, the VGG19 architecture, which included 19 layers and was designed as a
stacked network, outperformed Inception-ResNetV2 when training with transfer
learning on the THI-C68 dataset. It was also improving the recognition speed.

Pawara et al. (2017) applied six data augmentation techniques: rotation, blur,
scaling, contrast, illumination, and projective to the original image. In their method,
first, the training examples increased 10 to 25 times larger than the original data.
Second, they trained the CNN models with original and augmentation images, called
offline training strategy. Moreover, Enkvetchakul and Surinta (2021) trained the CNN
models using three training strategies: offline, online, and mixed training. Six data
augmentation techniques were applied with an online training strategy: width and
height shift, rotation, zoom, brightness, cutout, and mixup while training the CNN
model. The online training strategy was much faster than training with offline
strategy. Because it did not increase the number of training examples, however, it
transformed the original image using augmentation techniques while training. Hence,
the CNN models could learn from the new images in each epoch.

4.3. The convolutional recurrent neural network

In this section, we present the convolutional recurrent neural network (CRNN)
framework for Thai handwritten text recognition of historical document images with a
new data augmentation strategy. Firstly, convolutional neural networks (CNNs) are
described. Secondly, two recurrent neural networks (RNNs) (long short-term memory
and gated recurrent unit) are briefly detailed. Thirdly, detail of the connectionist
temporal classification (CTC) decoding is presented for the evaluation metric. Finally,

48

the proposed cyclical data augmentation strategy, namely CycleAugment, is
presented. The proposed framework is explained as follows.

4.3.1 Overview of the CRNN architecture

The CRNN network is illustrated in Figure 20. The CRNN has only one input.
Our framework also supports both images of a group of words and short words as for
the input. In the CNN architecture, we propose eight different CNN architectures to
find the best base CNN model. For the RNN network, we propose two layers of
bidirectional RNN networks and connect them to the CNN architecture. Hence, the
outputs of the bidirectional RNN network are then classified using the softmax
function. The output of the CRNN is a matrix containing character probabilities for
each time step. Further, the CTC decoding is attached at the last layer to decode the
probability of characters to make the final text output. Our framework can predict a
maximum of 94 members in total, including characters, numbers, and blank (space).
The configurations of all CRNN architectures are shown in Table 10.

Figure 20 Overview framework of convolutional recurrent neural networks

CCNet mCCNet-64 mCCNet-512 mVGG16 mVGG19 mResNet50 mDenseNet-121 mMobileNet-V2 mEfficientNet-B1

6 weighted
layers

7 weighted
layers

7 weighted
layers

14 weighted
layers

16 weighted
layers

26 weighted
layers

43 weighted
layers

23 weighted layers 29 weighted layers

Input image (64, 504, 1) Input image (64, 504, 3)
Conv3-16

Maxpool2-s2
Conv3-16

Maxpool2-s2
Conv3-16

Maxpool2-s2
Conv3-16
Conv3-16

Maxpool2-s2

Conv3-64
Conv3-64

Maxpool2-s2

Conv7-64
Maxpool3-s2

Conv7-64
Maxpool3-s2

Conv3-32-s2
DwConv3-32

Conv3-32-s2
DwConv3-32

Conv3-32
Maxpool2-s2

Conv3-32
Maxpool2-s2

Conv3-32
Maxpool2-s2

Conv3-128
Conv3-128

Maxpool2-s2

Conv3-128
Conv3-128

Maxpool2-s2
[
Conv1 − 64
Conv3 − 64
Conv1 − 256

]

x3

[
Conv1 − 128
Conv3 − 32

]
x6

Conv1-128
Avgpool2-s2

Conv1-16
Conv1-96

DwConv3-96

Conv1-16
Conv1-96

DwConv3-96
SE

Conv3-32
Maxpool2-s2

Conv3-32
Maxpool2-s2

Conv3-32
Maxpool2-s2

Conv3-256
Conv3-256
Conv3-256

Maxpool2-s2

Conv3-256
Conv3-256
Conv3-256
Conv3-256

Maxpool2-s2

[
Conv1 − 128
Conv3 − 128
Conv1 − 512

]

x4

[
Conv1 − 128
Conv3 − 32

]
x12

Conv1-512

[
 Conv1 − 24
 Conv1 − 144
DwConv3 − 144

]

x2

[

 Conv1 − 24
 Conv1 − 144
DwConv3 − 144

SE

]

x2

- - - Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

- -
[
 Conv1 − 32
 Conv1 − 192
DwConv3 − 192

]

x3

[

 Conv1 − 40
 Conv1 − 240
DwConv5 − 240

SE

]

x2
- Conv1-64 Conv1-512 Conv1x1-512

Global average pooling
Bidirectional RNN-(N)
Bidirectional RNN-(N)

FC, Softmax (94)
CTC decoding

49

Table 10 Configuration details of CRNN architectures

Furthermore, we propose the cyclical data augmentation strategy
(CycleAugment). The CycleAugment strategy provides the CRNN model to train
handwritten text images concurrently with and without applying data augmentation
techniques. The CycleAugment is a powerful strategy for obtaining various local
optimal loss values in each cycle until they reach a minimum value at the end of
training.

4.3.2 Convolutional neural network

In recent years, many CNN architectures have been proposed to enhance the
performance of image classification. This section describes the configuration of the
different CNN architectures evaluated in this paper to solve handwritten text
recognition. We first explained the CNN architecture proposed by Chamchong et al.
(2019), especially for handwritten text recognition, called CCNet. Second, we
modified CCNet (mCCNet) by adding a 1x1 convolutional layer (Conv1) that mainly
reduced the parameters of model CC. Finally, we modified state-of-the-art CNN
architectures, including VGG16 and VGG19, ResNet50, DenseNet121, MobileNetV2,
and EfficientNetB1.

4.3.2.1 CCNet

Chamchong et al. (2019) proposed simple CNN that includes three blocks of
convolutional and max-pooling layers. Each block contained a convolutional layer
with 3x3 kernel sizes (Conv3), a max-pooling layer using 2x2 kernel sizes
(Maxpool2), and a stride of 2 (s2), in order. The convolutional layers in the first,
second, and third blocks were 16, 32, and 32 feature maps. As well as the ReLU
activation function and batch normalization (BN) were added to the last block.

4.3.2.2 Modified CCNets

We modified CCNet (mCCNet) by attaching Conv1x1 to reduce the CNN
parameters and introduce new nonlinearity into the network. For the mCCNet-64 and
mCCNet-512 models, we implemented the Conv1 layer with feature map sizes of 64
and 512, respectively.

4.3.2.3 Modified VGGs

The modified VGG16 (mVGG16) and VGG19 (mVGG19) were built based
on the VGG16 and VGG19 (Simonyan and Zisserman 2015), respectively. These
networks comprised a convolutional layer with 3x3 kernel sizes and followed by a
max-pooling layer using 2x2 kernel sizes. However, the mVGG16 and mVGG19
were cut at the end of the fourth block and we also replaced them with Conv1 of 512
feature maps.

50

4.3.2.4 Modified ResNet50

He et al. (2016) proposed deep residual learning to construct a deeper network
without facing the gradient vanishing problem, called ResNet. The ResNet50 included
five convolutional blocks that the output of each convolutional block decreased half
size when compared to the input. For the modified ResNet50 (mResNet50), we
removed convolutional blocks 4 and 5 out from the network. Also, we added Conv1
with 512 feature maps at the end of convolutional block 3.

4.3.2.5 Modified DenseNet121

The DenseNet architecture (Huang et al. 2017) was proposed to collect
knowledge from all previous layers and pass them to the next layer using the densely
connected operation. Also, it required high computational time. The DenseNet121
contained two major layers: dense block and transition layer. The main network
consisted of a convolutional layer, max-pooling layer, dense block, three times
transition layer and dense block, and classification layer. The output of each layer
decreased by half size, the same as the ResNet. For the modified DenseNet121
(mDenseNet121), however, we removed layers from the second transition layer.
Hence, we attached Conv1x1 with 512 feature maps.

4.3.2.6 Modified MobileNetV2

The MobileNetV2 was proposed by Sandler et al. (2018) to reduce weighted
parameters of a lightweight network using depthwise separable convolutional
(DwConv) layers and inverted residuals of the bottleneck block. The main network
comprised two block types: residual block with a stride of 1 and block with a stride of
2 to reduce the dimensionality of the feature map. The activation function used in the
MobileNetV2 was the ReLU with the maximum value of 6 (ReLU6). The
MobileNetV2 network consisted of DwConv, convolutional layers, seven bottleneck
blocks with different repeated times, 1x1 convolutional layer, and global average
pooling (GAP) layer. Since the output of layers is decreased by half size. For
modified MobileNetV2 (mMobileNetV2), we removed the fourth bottleneck block
and replaced them with Conv1 with 512 feature maps.

4.3.2.7 Modified EfficientNetB1

 Tan and Le (2019) designed EfficientNets to search hyperparameters of the
CNN architectures, including width scaling, depth scaling, resolution scaling, and
compound scaling. In addition, the squeeze-and-excitation (SE) optimization was
attached to the bottleneck block of EfficientNet to construct an informative channel
feature by summation with GAP. Then find correlation features by reducing to small
dimensions and transforming them to the original dimension. The EfficientNet was
created based on the MobileNetV2, but it varies with resolutions, channels, and
repeated times. For modified EfficientNetB1 (mEfficientNetB1), it is similar to
mMobileNetV2, which removed the fourth bottleneck block and replaced Conv1 with
512 feature maps.

51

4.3.3 Recurrent neural network

Recurrent neural network (RNN) was a successful architecture that proposed
to create a robust model from sequential data, such as speech (Alex el at. 2014), video
(Donahue et al. 2017), and brain signals (Alhagry et al. 2017). RNN was designed by
combining feedback loop connections that allow the output from the previous states to
be applied as inputs of the current state. The feedback loop was performed in the
hidden layers. However, RNN also had the limitation that constructs the output from
only the previous context. The RNN is computed according to the following
Equations.

𝑦𝑡 = 𝑓(𝑉ℎ𝑡 + 𝑏𝑦) (13)

ℎ𝑡 = 𝜎(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏ℎ) (14)

where 𝑦𝑡 is the output of the RNN, ℎ𝑡 is the hidden state of the recurrent cell at time
step (𝑡) which is calculated by current input (𝑥𝑡) and the previous hidden state (ℎ𝑡−1).
To calculate the ℎ𝑡, RNN can be able to learn by adjusting the weighted parameters,
including weighted matrices (𝑊,𝑈 and 𝑉) and bias (𝑏ℎ and 𝑏𝑦). Additionally, the
output function 𝑓(𝑥) is an activation function and the sigmoid function 𝜎(𝑥) is
applied for hidden states.

4.3.3.1 Bidirectional recurrent neural network

Bidirectional recurrent neural network (BiRNN) was proposed to understand
sequence data better than RNN architecture. It contained the backward (ℎ⃐𝑡) and
forward (ℎ⃑𝑡) states connected to the same output layer that helped the network
effectively increase the information context. The BiRNN architecture is shown in
Figure 21 and is calculated as follows.

ℎ⃗ 𝑡 = 𝜎(�⃗⃗⃗� 𝑥𝑡 + �⃗⃗� ℎ⃗ 𝑡−1 + �⃗� ℎ) (15)

ℎ⃐
𝑡
= 𝜎(𝑊⃐𝑥𝑡 + 𝑈 ℎ⃐

𝑡−1
+ 𝑏 ℎ) (16)

𝑦𝑡 = 𝑓(𝑉⃐ℎ⃐
𝑡
+ �⃗� ℎ⃗ 𝑡 + 𝑏𝑦) (17)

Figure 21 Illustration of bidirectional recurrent neural network.

52

(a)

(b)

Figure 22 Illustration of the recurrent neural networks. (a) Long short-term memory

and (b) gated recurrent unit.

4.3.3.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) was invented by Hochreiter and
Schmidhuber (1997). It proposed to address the limitation of the RNN architecture
that could not learn a long sequence and solve the vanishing and exploding gradient
problems. The gates were designedto increase the memory capacity of the cell,
including the forget gate, input gate, and output gate, as shown in Figure 22(a). The
output 𝑜𝑡 of the LSTM is computed using Equation 18 which has three input vectors,
including input state 𝑥𝑡, previous hidden state ℎ𝑡−1, and adding new cell state 𝑐𝑡. The
output of the hidden state is calculated by the element-wise product (⨀) between the

53

current output of LSTM and the hyperbolic tangent function 𝜙(x) of the cell state (𝑐𝑡)
by Equation 19. The LSTM is computed from the following Equation

𝑜𝑡 = 𝜎(𝑊𝑜𝑥
𝑡 + 𝑈𝑜ℎ

𝑡−1 + 𝑉𝑜𝑐
𝑡 + 𝑏𝑜) (18)

ℎ𝑡 = 𝑜𝑡⨀ 𝜙(𝑐𝑡) (19)

where 𝑐𝑡 is the cell state at time step (𝑡) computed by Equation (8) which is designed
to update new cell state by filtering of previous cell state (𝑐𝑡−1) and cell candidate �̂�𝑡.
The filtering operation is the sum of two element-wise products of forget gate and
previous cell state, and input gate and cell candidate.

𝑐𝑡 = 𝑓𝑡⨀ 𝑐𝑡−1 + 𝑖𝑡⨀ �̂�𝑡 (20)

where forget gate (𝑓𝑡), input gate (𝑖𝑡) and cell candidate (�̂�𝑡) are computed from the
following Equation.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥
𝑡 +𝑈𝑓ℎ

𝑡−1 + 𝑉𝑓𝑐
𝑡−1 + 𝑏𝑓) (21)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥
𝑡 + 𝑈𝑖ℎ

𝑡−1 + 𝑉𝑖𝑐
𝑡−1 + 𝑏𝑖) (22)

�̂�𝑡 = 𝜙(𝑊𝑐𝑥
𝑡 + 𝑈𝑐ℎ

𝑡−1 + 𝑉 𝑐𝑐
𝑡−1 + 𝑏𝑐) (23)

In the LSTM, 𝑊𝑜, 𝑊𝑓 ,𝑊𝑖,𝑊𝑐, 𝑈𝑜, 𝑈𝑓 , 𝑈𝑖, 𝑈𝑐, 𝑉𝑦, 𝑉𝑓 , 𝑉𝑖, and 𝑉𝑐 are weight
matrices and 𝑏𝑜 , 𝑏𝑓 , 𝑏𝑖, and 𝑏𝑐 are bias parameters which are required to adjust during
training.

4.3.3.3 Gate Recurrent Unit

The Gate Recurrent Unit (GRU) was proposed by Cho et al. (2014) and
designed to reduce the complexity of the LSTM architecture. The GRU architecture is
shown in Figure 22(b). In the GRU, the input and forget gates were replaced with
reset gate. The GRU introduces the reset gate 𝑟𝑡 computed from the following
Equation.

𝑟𝑡 = 𝜎(𝑊𝑟𝑥
𝑡 + 𝑈𝑟ℎ

𝑡−1 + 𝑏𝑟) (24)

where the hidden state ℎ𝑡 is computed using (13).

ℎ𝑡 = (1 − 𝑧𝑡)⨀ ℎ𝑡−1 + 𝑧𝑡⨀ ℎ̂𝑡 (25)

where the update gate (𝑧𝑡) and the candidate of hidden state (ℎ̂𝑡) are computed from
the following Equation.

𝑧𝑡 = 𝜎(𝑊𝑧𝑥
𝑡 + 𝑈𝑧ℎ

𝑡−1 + 𝑏𝑧) (26)

ℎ̂𝑡 = 𝜙(𝑊ℎ𝑥
𝑡 + 𝑈ℎ(𝑟

𝑡⨀ ℎ𝑡−1) + 𝑏ℎ) (27)

where 𝑊𝑟, 𝑊𝑧 , 𝑊ℎ, 𝑈𝑟 , 𝑈𝑧 , and 𝑈ℎ are weight matrices and 𝑏𝑟 , 𝑏𝑧 , and 𝑏ℎ are bias
parameters which are required to adjust during training.

54

BiRNN with high-capacity memory is shown to be more efficient to learn a
sequence of context information than a single RNN layer. The BiRNN was also
proposed to understand better sequence data that link the content from the backward
state and link to the forward state.

In our proposed CRNN networks, the two bidirectional RNN layers were
stacked on state-of-the-art CNN architectures. Two specials bidirectional RNNs,
including BiLSTM and BiGRU, with diverse hidden unit sizes, were investigated.

4.3.4 Connectionist temporal classification

Connectionist Temporal Classification (CTC) is a conditional probability
proposed to support RNN architecture that tackles various sequence problems (Alex
Graves et al. 2006), such as speed recognition and handwritten text recognition. The
output of the CTC algorithm is the sequence probabilities that are decoded from the
RNN output at each time step. The condition probability 𝑝(𝑙|𝑥) is calculated by the
sum of probabilities of all possible paths, as described in Equation 28.

𝑝(𝑙|𝑥) = ∑ 𝑝(𝜋|𝑥)𝜋∈𝐺−1(𝑙) (28)

where 𝑝(𝜋|𝑥) is probability of possible path (𝜋), when 𝑥 is sequence input that is
predicted to sequence label (𝑙), 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑇, 𝑇 is the length of the sequence, is
member of 𝐿. In the handwritten text recognition problem, 𝐿 is defined as 94
alphabets as shown in Table 11, and 𝐺 is mapping function for transforming to 𝑙. For
example, 𝐺(“ − − H H − e l l − l − o o − −”) = “Hello” or 𝐺(“ − − ส ส − ว ัส ส −

ด ดี −”) = “สวสัดี” (in Thai). The 𝑝(𝜋|𝑥) is computed as follows Equation.

𝑝(𝜋|𝑥) = ∏ 𝑥𝜋
𝑡𝑇

𝑡=1 (29)

where 𝑥𝜋𝑡 is probability of having label 𝜋𝑡 of time (𝑡). CTC loss function is applied for
training set (𝐷) of pair input image and sequence label (𝑥𝑖,, 𝑙𝑖) ∈ 𝐷. The CTC loss
function is defined as follows Equation.

𝐶𝑇𝐶 𝑙𝑜𝑠𝑠 = −∑ 𝑙𝑜𝑔 (𝑝(𝑙𝑖|𝑥𝑖))(𝑥𝑖,,𝑙𝑖)∈𝐷
 (30)

4.3.5 The proposed cyclical data augmentation strategy

In this section, we proposed a cyclical learning method, a novel data
augmentation strategy called CycleAugment, that cooperates between training the
CRNN model with applying data augmentation technique and without applying data
augmentation technique. The transformation data augmentation technique and the
CycleAugment strategy are described as follows.

4.3.5.1 Transformation data augmentation technique

We applied the basic transformation data augmentation techniques that include
random shifting, rotation, and shearing, called 𝐷𝐴(𝑤, ℎ, 𝑟, 𝑠), where 𝑤 and ℎ are
parameters of the maximum random percent of width and height shifting,
respectively, 𝑟 is an orientation rotation in the range of 0 to 360 degrees, and 𝑠 is

55

orientation shearing in the range of 0 to 360 degrees. In our experiments, the default
parameters of the 𝐷𝐴() were defined as 𝑤𝑚𝑎𝑥 = 0.15, ℎ𝑚𝑎𝑥=0.2 , 𝑟𝑚𝑎𝑥=5, and
𝑠𝑚𝑎𝑥=5.

In addition, we computed the scaling factor (α) to the DA(). The scaling factor

affected the image directly by increasing and decreasing the image transformation.

4.3.5.2 CycleAugment strategy

Data augmentation is a fundamental process that can reduce overfitting but
optimizing the data augmentation parameters is necessary to minimize the loss during
training effectively. Therefore, we proposed the new cyclical data augmentation
strategy, called the CycleAugment, effectively to minimize the validation loss and
handle the overfitting problem. It was motivated by Huang et al. (Huang, Li, et al.
2017). In their method, the cyclic learning rate, which is the cycle of the adaptive
learning rate, starts at the maximum number in each cycle and then decreases until the
minimum number. Instead of adjusting the learning rate, our proposed method
presented another approach to improve the performance of the data augmentation
technique. It can achieve higher efficiency by taking the form of a cycle of adaptive
data augmentation.

Algorithm 2. CycleAugment strategy for training CRNN

1: Input: model (𝑚), number of max epochs (𝑇), number of cycles (𝑁)

2: 𝑀 = ⌊
𝑇

𝑁
⌋ is the number of epochs per cycle.

3: for epoch 𝑡 = 1 to 𝑇 do:

4: if 𝑚𝑜𝑑(𝑡,𝑀) > 𝑀
2
 : // determine the half of the cycle.

5: Training model 𝑚 without data augmentation

6: else:

7: 𝛼𝑡 = 𝑎(𝑡) // calculate a scaling factor (𝛼) using Equation
(19)

8: Adjust the scaling factor (𝛼𝑡) of 𝑤, ℎ, 𝑟, and 𝑠

9: Training model 𝑚 with data augmentation 𝐷𝐴(𝑤, ℎ, 𝑟, 𝑠)

10: end for

11: Output: trained model 𝑚

In the CycleAugment strategy, we first train the CRNN model by applying the
data augmentation techniques in the first half of the cycle. Hence, the training and
validation losses become high at the beginning and climb down to the local minima

56

value in each cycle. Second, we performed training without applying the data
augmentation technique in the second haft of the cycle to minimize the loss in the
local space with low data variants. As cyclic learning rate, a high learning rate at the
start of the new cycle makes a high gradient for climbing out from the current local
minima. As a result, the training and validation losses move up again and are ready to
find new local minima. For our work, we focused on applying the data augmentation
technique to increase the loss and the chance to escape the local minima. Finally, we
repeat this step many times until the last cycle. We used the scaling factor as the
linear decrement that starts from the maximum and decreases to the minimum values
in each cycle. The equation and algorithm of the CycleAugment strategy are
described in Equation 31 and Algorithm 2.

𝑎(𝑡) = 2 ∗ (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)(
𝑇−𝑡

𝑇
) (31)

where 𝛼 is the scaling factor, 𝑡 is the epoch, 𝑇 is the maximum epoch.

4.4 Experimental results

4.4.1 Thai archive manuscript dataset

The handwritten text manuscripts used in our experiments are Thai archive
manuscripts (Chamchong el at. 2019) collected from Thailand's national library. It
was written approximately in 1902 AD using 94 Thai alphabets and contained 140
manuscripts. The 94 alphabets are shown in Table 11. A sample of the Thai archive
manuscripts is shown in Fig 23. In this dataset, the handwritten text images were
extracted from 140 manuscripts and contained 3,446-word images.

Ground Truth: ท่ี ๑๔/๔๔

Ground Truth: พระท่ีนัง่วิมานเมฆ

Ground Truth: วนัท่ี ๕

Ground Truth: เมษายน

Ground truth: รัตนโกสินทรศก๓๕๑๒๑

 (a) (b)

Figure 23 Illustrated of Thai archive manuscript dataset. Examples (a) of the Thai

archive manuscript and (b) word images and ground truths.

57

Table 11 The categories of Thai characters and other symbols.

4.4.2 Training strategy

4.4.2.1 Optimization algorithms

In the deep learning algorithms, various optimization algorithms were
proposed to calculate the gradients of the error function while the network back-
propagation. We evaluate three optimization algorithms, including stochastic gradient
descent (SGD), Adam, and RMSprop, to converge the deep learning model and
reduce the loss value while training with the same learning rate of 0.001, suitable for
handwritten text recognition problems. For other parameters, here, we use the
parameters momentum = 0.9 and decay rate = 0.001 as for SGD optimizer,
discounting factor (𝛾) = 0.9 as for RMSprop optimizer, and the first estimate (𝛽1) =
0.9, the second estimate (𝛽2) and epsilon (𝜀) = 1e-07, for Adam optimizer.

58

In the experiments, we found that the Adam optimizer outperformed other optimizers.
Further, all the experimental results shown in the following section evaluate based on
the Adam optimizer.

4.4.2.2 Transfer Learning

Training the CNN model usually starts with random parameters, called scratch
learning, and adjusts the weighted parameters by error gradient. Hence, the weighted
parameters can extract high discriminative features from input images. Furthermore,
transfer learning is derived from weighted parameters that learn from a large image
dataset, called a pre-trained model. The pre-trained model contains prior knowledge
of convolution filters. We can remove some top layers in the pre-trained model and
attach a few new layers to the last layer of the pre-trained model.

For the transfer learning, we could train six CNN architectures: VGG16,
VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB1, using the pre-
trained models, except only CCNet, because they did not provide the pre-trained
model. In the RNN architectures, however, the random weighted parameters consist
of Conv1x1 of 512 feature maps, global average pooling layer, BiRNN, and dense
layer.

4.4.3 Quantitative evaluation

In this section, we evaluate CRNN architectures on the Thai archive
manuscript dataset using character-level error rate (CER) as the evaluation metric. We
also compare nine state-of-the-art CRNN models regarding the number of parameters
and training time. Moreover, we evaluate the new data augmentation strategy
(CycleAugment) and compare our CycleAugment strategy with the original data
augmentation strategy. Both strategies apply data augmentation techniques based on
transformation techniques, including random shifting, rotation, and shearing. In
addition, we evaluate the CRNN models that train from scratch and use the transfer
learning technique to understand wherewith the transfer learning technique affects the
CRNN models.

The performance of the handwritten text recognition is evaluated based on the
CER. CER is calculated as the minimal Levenshtein distance, which is the number of
single-character modifications that change the predictive text from the ground truth
transcription of the word (Théodore Bluche 2015). There are three operations of the
CER metric, including insertion, deletion, and substitution. The CER is calculated by
the following Equation:

𝐶𝐸𝑅 =
𝐼+𝑆+𝐷

𝑁
 (32)

where I is the number of character insertions, S is the number of character
substitutions, D is the number of character deletions, and N is the total number of
characters in the target text.

59

4.4.4 Performance of different combination of CRNNs

To evaluate the performance of CRNN architectures, we resized all images to
64x496 pixels and used them as the input to the CRNN architectures. We trained all
the CRNN models using the Keras framework with TensorFlow backend and trained
on Google cloud with NVIDIA Tesla P100 GPU with 16GB of RAM.

For the training process, we divided the Thai archive manuscript dataset with
the ratio of 70:10:20 for training, validation, and test, respectively. The nine CRNN
networks (see Table 10) combined with two types of BiRNNs: BiLSTM and BiGRU.
The number of RNN sizes with 128, 256, and 512 neurons were evaluated.

The CRNN networks were trained with the following parameters: 200 epochs,
batch size of 32, Adam optimizer, the learning rate of 0.001, the first- and second-
moment estimate values of 0.9 and 0.999, and epsilon of 1e-07.

Models

No. of Parameters Training Time (hh:mm) Character Error Rate (%)

 RNN Sizes

128 256 128 128 256 128 128 256 128
CCNet-BiGRU
(Chamchong, Gao, and
McDonnell 2019)

0.49M 1.75M 6.62M 00:26 00:27 00:30 13.32 14.54 14.43

CCNet-BiLSTM
(Chamchong, Gao, and
McDonnell 2019)

0.64M 2.30M 8.78M 00:26 00:27 00:34 14.54 14.81 15.29

mCCNet-64-BiGRU 0.50M 1.75M 6.62M 00:26 00:27 00:33 15.19 16.23 16.48
mCCNet-64-BiLSTM 0.64M 2.31M 8.78M 00:26 00:27 00:30 16.09 16.64 14.36
mCCNet-512-BiGRU 0.87M 2.47M 8.03M 00:26 00:27 00:30 14.48 16.15 15.70
mCCNet-512-BiLSTM 1.13M 3.26M 10.65M 00:26 00:26 00:33 14.26 12.69 11.35
mVGG16-BiGRU 8.72M 10.32M 15.87M 00:50 00:54 01:00 11.41 11.37 14.05
mVGG16-BiLSTM 8.98M 11.10M 18.49M 00:50 00:54 01:00 9.04 12.03 14.01
mVGG19-BiGRU 11.67M 13.27M 18.82M 00:54 00:57 01:00 13.32 20.01 19.56
mVGG19-BiLSTM 11.97M 14.05M 21.44M 00:57 01:00 01:07 12.30 15.01 15.10
mResNet50-BiGRU 2.54M 4.14M 9.70M 00:37 00:40 00:43 8.40 8.22 10.77
mResNet50-BiLSTM 2.80M 4.92M 12.31M 00:37 00:40 00:47 11.16 7.29 8.21
mDenseNet121-BiGRU 2.39M 3.99M 9.55M 00:40 00:43 00:50 10.08 8.07 7.44

mDenseNet121-BiLSTM 2.65M 4.78M 12.17M 00:40 00:43 00:50 7.72 7.13 7.65
mMobileNetV2-BiGRU 0.98M 2.58M 8.14M 00:40 00:43 00:50 13.95 15.08 13.04
mMobileNetV2-BiLSTM 1.24M 3.36M 10.76M 00:40 00:43 00:50 10.91 9.13 9.73
mEfficientNetB1-BiGRU 1.06M 2.66M 8.22M 01:04 01:07 01:14 47.41 45.94 41.17
mEfficientNetB1-BiLSTM 1.32M 3.45M 10.84M 01:04 01:07 01:14 27.61 54.30 20.47

Table 12 Comparison of the parameters and computational time between different

backbones CNNs and RNN sizes

Table 12 shows the comparison of the number of parameters and computation
time between different CRNN backbones. The results showed that the CCNet-BiGRU
proposed by Chamchong et al. (2019) provides 0.49M with the fewest parameters. It
also spent less computation with only 26 minutes. Because CCNetBiGRU had only
six weighted layers. In comparison, other CRNN architectures had more than 20
weighted layers, except only mVGG16 and mVGG16 had 14 and 16 weighted layers.

60

When comparing the number of parameters and time spent while training the CRNN
model between BiGRU and BiLSTM, we found that the BiGRU always provides
fewer parameters than the BiLSTM. Therefore, the time spent while training the
CRNN model between BiGRU and BiLSTM showed the same approximate time.

In terms of the handwritten text recognition, Table 12 presents the CER value
(%) in different RNN sizes (128, 256, and 512). The lowest CER value represents the
best performance. In our experiments, the mDenseNet121-BiLSTM with the RNN
size of 256 showed the fewest CER value of 7.13%. On the other hand, the
mEfficientNetB1-BiGRU and -BiLSTM performed the worst with a CER value above
40% with BiGRU.

In the following experiments, we will continue experiments based on the best
performance in each CNN architecture.

4.4.5 Performance of CRNN with CycleAugment strategy

In this experiment, we tested our CycleAugment strategy with all CRNN
architectures to show that the proposed CycleAugment strategy obtains robust
performance when training with every CRNN architecture. To discover the best
CycleAugment strategy, we trained all CRNN models with 200 epochs in total and
with 200 epochs, a network training five cycles (number of epochs per cycle M
=200/5). A network training using transformation data augmentation technique in 20
epochs (M/2) and then switching to train the model without using data augmentation
techniques in the following 20 epochs. Hence, continue the loop until the last epochs.

Table 13 presents the performance of the CycleAugment strategy. We
achieved worthwhile performance when using CycleAugment with N=5. As a result,
the CER value of the mEfficientNetB1-BiLSTM enormously decreased from 27.6%
to only 7.74%. Consequently, the mResNet50-BiLSTM was the best CRNN model
that achieved a 5.47% CER value using the CycleAugment strategy.

Models (RNN size)

Character Error Rate (%)
Number of Cycles (N)

N=1 N=2 N=3 N=4 N=5 N=6
CCNet-BiGRU (128)
(Chamchong, Gao, and
McDonnell 2019)

11.40 10.12 10.89 10.14 9.46 10.26

mCCNet-64-BiLSTM (512) 10.47 13.07 13.03 12.57 13.55 12.41
mCCNet-512-BiLSTM (512) 12.97 11.17 9.74 9.21 9.66 9.14
mVGG16-BiLSTM (128) 9.50 5.70 6.20 6.59 6.29 6.03
mVGG19-BiGRU (128) 9.87 9.26 9.52 7.84 7.51 7.18
mResNet50-BiLSTM (256) 5.79 5.97 5.64 5.54 5.47 5.71

mDenseNet121-BiLSTM (256) 6.02 5.97 6.46 6.29 5.64 6.29
mMobileNetV2-BiLSTM (256) 7.75 9.35 7.95 7.73 7.64 8.36
mEfficientNetB1-BiLSTM (128) 31.46 19.83 18.52 8.17 7.74 7.30
Table 13 Performance of different number of cycles in CycleAugment strategy

Models (RNN size)

61

Model (RNN size)

Character Error Rate (%)

No Augmentation Data Augmentation CycleAugment

5-cv Test 5-cv Test 5-cv Test

CCNet-BiGRU (128)
(Chamchong el at. 2019) 13.79 ± 0.58 13.32 13.99 ± 0.97 12.29

10.33 ±
0.67 9.46

mCCNet-64-BiLSTM (512) 18.26 ± 1.36 14.36 17.70 ± 1.71 13.78
13.34 ±
1.07 13.55

mCCNet-512-BiLSTM (512) 11.93 ± 0.76 11.35 11.55 ± 0.72 11.18 9.73 ± 0.64 9.66

mVGG16-BiLSTM (128) 8.94 ± 0.78 9.04 10.37 ± 0.74 11.71 6.77 ± 0.40 6.29

mVGG19-BiGRU (128) 13.34 ± 2.15 10.25 12.74 ± 0.56 10.10 7.62 ± 0.27 7.51

mResNet50-BiLSTM (256) 9.54 ± 1.39 7.29 7.89 ± 0.43 7.85 6.65 ± 0.40 5.47

mDenseNet121-BiLSTM (256) 7.15 ± 0.57 7.13 7.57 ± 0.60 7.44 6.55 ± 0.75 5.64

mMobileNetV2-BiLSTM (256) 10.83 ± 0.87 9.13 11.64 ± 0.88 10.47 7.93 ± 0.52 7.64

mEfficientNetB1-BiLSTM
(128) 29.75 ± 2.17 27.61 29.01 ± 2.28 26.19

12.19 ±
0.78

7.74

Table 14 Performance of scratch learning different data augmentation strategies

Model (RNN size)

Character Error Rate (%)

No Augmentation Data Augmentation CycleAugment

5-cv Test 5-cv Test 5-cv Test

mVGG16-BiLSTM (128) 9.00 ± 0.83 7.63 10.24 ± 0.60 7.31 6.88 ± 0.32 5.43

mVGG19-BiGRU (128) 13.61 ± 2.39 15.05 14.60 ± 1.45 14.89 7.64 ± 0.52 7.37

mResNet50-BiLSTM (256) 8.19 ± 0.73 7.15 7.67 ± 0.51 7.54 6.17 ± 0.53 5.69

mDenseNet121-BiLSTM (256) 7.04 ± 0.40 7.18 7.62 ± 0.40 7.48 5.82 ± 0.40 5.69

mMobileNetV2-BiLSTM (256) 10.72 ± 0.85 9.62 11.12 ± 1.17 10.18 7.88 ± 0.58 7.44

mEfficientNetB1-BiLSTM (128) 24.34 ± 3.25 27.68 24.38 ± 2.67 28.29 10.77 ± 1.12 7.60

Table 15 Performance of transfer learning different data augmentation strategies

Furthermore, to demonstrate that our CycleAugment strategy outperforms the
original data augmentation strategy, we train CRNN architecture with two different
data augmentation strategies using a 5-fold cross-validation technique (5-cv). We also
trained the CRNN model using the learning from scratch and transfer learning
techniques. All the experimental results are shown in the following section.

We compare scratch learning and transfer learning, as shown in Table 14 and
Table 15, with different training strategies, including training without applying data

62

augmentation, training with applying transformation data augmentation techniques
with scaling factor α = 1, and training with applying CycleAugment strategy with the
number of cycles N= 5, α_min = 0.5, and α_max= 2.5.

As a result, the CycleAugment strategy outperformed other data augmentation
strategies on both scratch learning and transfer learning. For scratch learning, the
CycleAugment achieved the best CER value of 5.47% on the test set when training
with mResNet50-BiLSTM (256). For transfer learning, we found that the mVGG16-
BiLSTM (128) outperformed all the CRNN architectures with the CER value of
5.43% on the test set.

.

(a) (b)

(c)

Figure 24 Illustration of the training loss and validation loss values of (a) original

data augmentation technique, (b) CycleAugment strategy, and (c) best loss value

Consequently, we evaluated the CRNN architectures using the 5-fold cross-
validation (5-cv). We found that both scratch and transfer learning provided nearly

63

similar CER values because we could transfer a few parameters of the CNN pre-
trained models. For example, only 1 million parameters could transfer from the pre-
trained ResNet50 model, while the total parameters of the mResNet50-BiLSTM (256)
are 4 million.

Input Image

Ground truth ให้เธอช่วยแนะน า อ าเภอเมืองรามนัขึนอีกอ าเภอหน่ึงเรียก

N
o

da
ta

 a
ug

m
en

ta
tio

n mVGG16-BiLSTM (128) ให้เธอช่วยแนะน า อ าเภอเมืองรามนัจินอีกอ ำเภอหน่งเรียก

mVGG19-BiGRU (128) ให้เธอช่วยแนะหน าก อ าเกภอเมืองรามนัจินอีกอ าเภาอหนี่ยงรียก

mResNet50-BiLSTM (256) ให้เธอช่วยแนะน า อ าเภอเมืองรามนัจ้นอีกอ าเภอหน่ึงเรียก

mDenseNet121-BiLSTM (256) ให้เธอช่วยแนะน า อ าเภอเมืองรามนัจ์ินอีกอ าเภอหน่ึงเรียก

D
at

a
au

gm
en

ta
tio

n

mVGG16-BiLSTM (128) ให้เธอช่วยแนะน า อ าเถอเมืองรามนัขนิอีกอ าเภอหน่ึงเรียก

mVGG19-BiGRU (128) ให้เธอช้วยแนนน า อ าเภอเมืองรามนัินจีดซ าเราจหน่ึงมียกด

mResNet50-BiLSTM (256) ให้เธอช่วยแนะน า อ าเภอเมืองถามนัขึนอีกอ าเรภอหน่ึงเรียก

mDenseNet121-BiLSTM (256) ให้เธอช่วยแนะน า อ าเถอเมืองรามนัจีนอีกอ าเภอหน่ึงเรียก

C
yc

le
A

ug
m

en
t

mVGG16-BiLSTM (128) ให้เธอช่วยแนะน า อ าเภอเมืองรามนัขนึอีกอ าเภอหน่ึงเรียก

mVGG19-BiGRU (128) โ้้เอช่อยแนะน า อ าเภวเมืองทมนัจึนอีกต าเภอหน่ึงเ ้อยก

mResNet50-BiLSTM (256) ให้เธอช่วยแนะน า อ าเภอเมืองรามนัขนึอีกอ าเภอหน่ึงเรียก

mDenseNet121-BiLSTM (256) ให้เธอช่วยแนะน า อ าเภอเมืองทามนัขึ่นอีกอ าเภอหน่ึงเรียก

*Note that green text represents the correct text recognition without error (CER value = 0%), blue characters with an
underline represent error characters, and black characters are the correct character recognition.
Table 16 Results of handwritten text recognition using different CRNN models

Input Image

In Figure 24, we illustrate the loss values of two data augmentation strategies.
The training and validation loss of the original data augmentation strategy was
presented in Figure 24(a). The training loss values reduced smoothly and closed to
zero, but the validation loss was not performing below 10. If we train the model more
than 200 epochs, the validation loss may be increased. On the other hand, loss values
of the CycleAugment strategy, as shown in Figure 24(b), were rapidly decreased in

64

the first cycle and then grew up at the beginning of the next cycle. Because, firstly,
the CRNN model learns from without applying the data augmentation technique, so
the CRNN model tries to converge that particular pattern. Secondly, the CRNN
attempts to fit the model with the new input data when applying the data
augmentation techniques. Since the model never trained with the new data, that is
why the loss value grew up and quickly decreased again. We then showed the
performance of the CycleAugment strategy compared to the original data
augmentation strategy, as shown in Figure 24(c). Furthermore, when we train more
epochs, the loss value still could slowly decrease, while the loss value of the original
data augmentation strategy stopped decreasing from around epoch 40. It demonstrates
that the CycleAugment strategy could benefit from learning with different patterns
and avoiding overfitting problems.

Examples of handwritten text recognition using CRNN models. When the green
text means the CRNN model recognizes and obtains correct output with the whole
words. The blue characters with underlining are misclassified characters, as shown in
Table 16.

4.4.6 Performance on short word recognition

In previous experiments, we focused on the performance of the handwritten
text dataset consisting of various distributions of word length. Figure 25 presents the
histogram of image width resolution in pixels on (a) whole dataset and (b) only test
set. The image width is distributed in the range of 36 to 1,075 pixels. Due to various
ranges of the image width, we are curious whether the short word images (image
width between 36 to 186 pixels) affect the recognition performance.

We evaluated the performance of the short word by selecting the short word
images from the test set. First, we resized the short word into 64x496 pixels and then
recognized the short word images. Second, we resized the short word images into
64x346 pixels and then added white space on the left (75 pixels) and right (75 pixels)
sides to prevent the distortion of the texts in the image. Hence, the input image is
equal to 64x496 pixels.

We examined the short word performance using mResNet50-BiLSTM (256)
model. Firstly, we evaluated the performance of the short word images (see Table 17
in the second column) and achieved the CER value of 8.07%. Secondly, the short
word images were adjusted by adding the white space (see Table 17 in the third
column). The experimental results showed that adding the white space before sending
to predict by the CRNN model presented better performance than resizing the image.
It achieved a CER value of 7.04%. Consequently, we found that image distortion
could harm the handwritten text recognition system. It is necessary to rescale the short
word images and combine a space into the images before recognizing them.

65

(a) (b)

Figure 25 Illustrated histograms of the image width resolution in pixels. (a) The Thai

archive manuscript and (b) test set of the Thai archive manuscript.

Original Image

Resolution

Testing Image Resolution Adjusting Image

Resolution

Ground truth = ด ู Prediction = ดา Prediction = ด

Ground truth = ๓ Prediction = กา Prediction = ๓

Ground truth = อะไร Prediction = อธโร Prediction = อ๐ไร

Ground truth = เมื่อ Prediction = เมือ Prediction = เมื่อ

All short word test
images CER = 8.07% CER = 7.04%

*Note that green text represents the correct text recognition without error (CER value = 0%), blue
characters with an underline represent error characters, and black characters are the correct character
recognition.

Table 17 Examples of short word recognition when resizing images into 64x496

pixels (second column) and adding white space to prevent image distortion (third

column)

66

4.5 Discussion

4.5.1 CycleAugment strategy

As it is known, deep learning requires data augmentation techniques to
improve performance and avoid overfitting problems. To create the robust CRNN
model, we then applied the data augmentation technique. The experimental results
showed that the data augmentation techniques did not always confirm the best
performance. Consequently, the CRNN model will find only the global minima value
when training the CRNN with the original data augmentation strategy. The training
loss never more increases, as shown in Figure 24(a). Indeed, it increases the chance of
encountering overfitting problems.

We then proposed the new cyclical learning method, namely the
CycleAugment strategy. The proposed strategy can effectively improve the
performance of handwritten text recognition by escaping the trapping in global
minima and overfitting problems. The CycleAugment strategy increases the chances
of discovering local minima in each cycle by switching between two training states
with and without applying data augmentation while training the CRNN model, as
shown in Figure 24(b). The CRNN model adapted to the local minima because the
weight of the CRNN architecture is adjusted using a high error gradient value
obtained from variation of the input images.

Moreover, the geometric transformation data augmentation process requires an
appropriate scaling factor to adjust the effect of rotation, shift, scaling, and shear. If
the scaling factor is large, it will affect the convergence time of training (training
losses decrease slowly or never), but using a minimal value, the result will still be
overfitting. Our CycleAugment proposes this adaptive scaling factor by cyclic
scheduling to reset and reduce the scaling factor. It can disturb the weight of deep
learning, as shown in Figure 24(b). The increase in the loss that CycleAugment offers
to avoid overfitting better than traditional data augmentation methods. Additionally,
each reset cycle causes the network to find a new local minima and offers an
opportunity to optimize the model in the subsequent cycles.

In terms of computational times, the training time in each epoch of
CycleAugment is not increased compared to traditional data augmentation. Our
experiments in this research set an equal training number to 200 epochs for all
methods. Therefore, there is no incremental time difference between the
CycleAugment method and the traditional data augmentation method. However,
considering Figure 24(a), the number of traditional data augmentation epochs and the
validation loss started to converge around 50 epochs. If it applies an early stop for
training, the number of epochs might stop training at about 75 epochs. Thus, it can
reduce training time by 2.67 times compared to CycleAugment. However, the
accuracy performance is still less than the proposed methods by about 2%.

67

4.5.2 Effective of transfer learning technique

We have learned from much research that the transfer learning technique
consistently performed better than scratch learning (Pawara et al. 2017; Gonwirat and
Surinta 2020; Enkvetchakul and Surinta 2021). Therefore, we evaluated the
performance of the scratch and transfer learning, as shown in Table 14 and 15. The
experimental results were quite surprised that the transfer learning performance did
not significantly outperform the scratch learning. However, in the CRNN architecture,
we discovered that the transfer learning did not show outstanding results because the
number of transfer parameters from the pre-trained CNN model is more limited than
the parameters in the RNN architecture. We have to train the RNN model with huge
parameters that did not transfer from the pre-trained model. The parameters of the
RNN architecture are larger, approximately four times more than the CNN
architecture.

4.5.3 Improvement of short word recognition

We also observed that short word images directly decrease the performance of
the handwritten text recognition system, as shown in Table 17. We found that the
short word images are always distorted when resizing to the fixed input of the CRNN
architecture. Hence, we employed the most straightforward technique that avoids
distortion of text information in short word images. The simple technique is to adjust
the short word images by adding white space on both sides of the image. The
performance was presented when applying our proposed method.

4.6. Conclusion

In recent years, a few research aimed to address the challenge of the Thai
handwritten text recognition system. This study discovered a robust CRNN
architecture, a sequence learning approach that achieves high accuracy on the Thai
handwritten text recognition system. For training the CRNN model, the original data
augmentation strategy is proposed. The CRNN model was trained by applying the
transformation data augmentation techniques from the first training epoch until the
last epoch. With this training strategy, the CRNN model slowly obtained the global
minima value. The model can face overfitting problems because the training loss
decreases to the lowest value. However, the validation loss sometimes does not
converge to the lowest value. However, we invented a cyclical data augmentation
strategy called CycleAugment, to avoid finding the global minima and control
overfitting problems. In our strategy, the whole training epochs are divided into
cycles. In each cycle, we assign the CRNN model to discover the local minimal value.
Hence, it repeatedly starts at high loss value by learning new patterns from the
training images when beginning a new cycle. As a result, the weight model is adapted
by a high gradient value. The benefit of our proposed CycleAugment strategy is that
the CRNN model can learn from both with and without applying data augmentation
techniques.

68

In the experiments, we evaluated nine CRNN architectures to recognize
handwritten text on the Thai archive manuscript dataset. The result showed that the
mDenseNet121-BiLSTM(256) outperformed all the CRNN architectures. First, we
performed the CRNN architectures using scratch and transfer learning. It is quite
surprising that transfer learning does not show a significant performance when
compared with scratch learning. Second, we trained the CRNN models with three
different data augmentation strategies: without data augmentation, with data
augmentation, and CycleAugment. The proposed CycleAugment strategy achieved
the best performance when combined with all CRNN models. Finally, we are
concerned about the performance of the CRNN model when predicting the short word
images. The text information inside the short word images is regularly distorted when
transformed into the input of the CRNN model with the same size as the long word
images. We proposed the simple technique is of adding white space on both sides of
the short word images. We achieved a better result with the simple technique.

69

Chapter 5

Discussion

The objective of this thesis is to propose deep learning approaches to address
the problems of handwritten text recognition in historical documents. Firstly, we
proposed to investigate different CNN architectures to improve the accuracy rate of
character handwritten. Secondly, we enhance the quality of degraded images to
increase the performance of handwritten character recognition. Thirdly, character
segmentation is a difficult problem since Thai historical document has connected and
cursive writing text. To overcome this problem, we approach CRNN to learn the
sequence characters of words without segmenting them into a single character.

We will briefly describe and discuss the challenges of Thai handwritten text
recognition in modern and historical documents using a deep learning approach.

Chapter 2 showed that, due to the challenges of Thai handwritten character
recognition, each person's writing style emphasizes weight while writing the alphabet
(e.g., curve, head, loop, and curl), and some characters are like other characters. We
proposed approaching the CNN models, including VGG19 and Inception-ResNet, to
solve these challenges. With comparison methods, the feature extractions consist of
siftD and HOGfoDRs methods are recognized by SVM. In addition, we transferred
pertained weight parameters of CNNs to overcome better training time of network
convergence in the short epochs and have archived better performance comparison
with scratch learning.

In the experiment, the dataset was Thai handwritten characters, namely THI-
C68, which has 14,490 characters in 68 classes, and we divided the dataset into a
training set and test set with 80% and 20% ratios, with 13,041 training images and
1,449 test images. The experimental results showed that the VGG19 architecture with
transfer learning improved accuracy by approximately 1-2% compared to the training
from the scratch method. The VGGNet with a scratch learning process compared to
10-fold cross-validation achieved an accuracy rate of 97.93%, which is 3% higher
than siftD-SVM and VGGNet-Transfer (98.81%) and achieved an insignificantly
higher effective rate than HOGFoDRs-SVM (98.76%).

In Chapter 3, we mainly concentrated on robust the performance of
handwritten character recognition in degradation documents or noisy characters.
Firstly, we proposed to use GAN, namely DeblurGAN, to reconstruct the noisy
characters. Secondly, we proposed the DeblurGAN-CNN for denoising and
recognition in a single network. To construct the network, we propose the setting and
training scheme including pretraining DeblurGAN and CNN, connecting them, and
fine-tuning the network. To find the best combination of the network, we investigate
four state-of-the-art CNN architectures, consisting of VGG19, Inception-ResNet,
MobileNetV2, and DenseNet121. We use data augmentation by generating noisy

70

characters and transfer learning to improve the quality of training. Furthermore, we
presented a new noisy Thai handwritten character dataset, called noisy THI-C68. The
dataset was generated by synthesizing noisy character images using five different
noisy techniques: low resolution, AWGN, low contrast, motion blur, and mixed noise.

To evaluate the novel architecture, firstly, we experimented to find which
CNN architectures are suitable for handwritten characters without or with noisy
effects. Secondly, we evaluate DeblurGAN to clean noisy character images. Finally,
we evaluated our proposed, DeblurGAN-CNN, on the performance of handwritten
character recognition on two noisy handwritten datasets: n-THI-C68 and n-MNIST,
and two handwritten character datasets: THI-C68 and THCC-67. We found that
MobileNetV2 and DenseNet121 are competitive in achieving high accuracy.

In Chapter 4, we have attempted to address the challenge of the Thai
handwritten text recognition system in terms of word or line recognition. This study
discovered a robust CRNN architecture, a sequence learning approach that achieves
high accuracy on the Thai handwritten text recognition system. For training the
CRNN model, the original data augmentation strategy is proposed. The CRNN model
was trained by applying the transformation data augmentation technique from the first
training epoch until the last. The CRNN model slowly obtained the global minima
value with this training strategy. The model can face overfitting problems because the
training loss decreases to the lowest value. However, the validation loss sometimes
does not converge to the lowest value.

Nonetheless, we invented a cyclical data augmentation strategy called
CycleAugment, to avoid finding the global minima and control overfitting problems.
In our strategy, all training epochs are divided into cycles. We assign the CRNN
model in each cycle to discover the local minima. Hence, it repeatedly starts at a high
loss value by learning new patterns from the training images when beginning a new
cycle. As a result, the weight model is adapted by a high gradient value. The benefit
of our proposed CycleAugment strategy is that the CRNN model can learn from both
with and without applying data augmentation techniques.

In experiments, we evaluate the CRNN with Thai handwritten text recognition
on the dataset about the Thai archive manuscript consisting of 3,446 word images.
Firstly, we investigate the best combination of backbone CNNs and BiRNNs. Finally,
we are concerned about the performance of the CRNN model when predicting the
short word images. The text information inside the short word images is regularly
distorted when transformed into the input of the CRNN model with the same size as
the long word images. We proposed the simple technique of adding white space on
both sides of the short word images. We achieved a better result with the simple
technique.

In this dissertation, three robust approaches to improve the performance of
handwritten text and character recognition are proposed, including the VGG with

71

transfer learning, the DeburGAN-CNN network for problems handwritten character
recognition, and CRNN architectures to archive word handwritten recognition.

5.1 Answers to The Research Questions

According to the research questions (RQ) in Chapter 1, we explain the
improvement of handwritten text recognition in historical documents with three
solutions. In this section, we briefly answer each research question.

RQ1: Character recognition is a fundamental problem in document analysis
and recognition. In historical document images, handwritten characters are usually
found and challenging to solve due to various personal writing and cursive style.
Previous works aim to extract features from local descriptors as a hand-crafted feature
and recognize them by machine learning techniques such as support vector machines
(SVM), K-nearest neighbor (KNN), or multilayer perceptron (MLP). In contrast, we
propose to investigate CNN architectures that can automatically extract features and
recognize them. Is it possible to improve the recognition performance of handwritten
characters? And which CNN architectures are suitable for this problem?

We focus on state-of-the-art CNN models consisting of VGGNet (Simonyan
and Zisserman 2015) and Inception- ResNet-v2 architectures to compare the
performance between deep CNN architectures and proposed two learning methods,
including scratch and transfer learning. In addition, we compare CNNs with siftD-
SVM (Surinta, Karaaba, et al. 2015) and HOGFoDRs-SVM (Inkeaw et al. 2019) to
evaluate effectiveness.

To answer RQ1, we experimented with handwritten character recognition of
Thai characters with the ALICE-THI dataset by choosing a specific test on the THI-
C68 dataset and investigating our proposed two CNN architectures with scratch and
transfer learning. It found that the proposed two CNNs are better results than previous
works of the local descriptors and are recognized by machine learning techniques.
Transfer learning significantly increased the accuracy rate for CNN architecture by 1-
2% compared to the training from the scratch method. Transfer learning is a way to
reduce learning time and increase recognition efficiency. The research has shown that
VGGNet-19 architecture with transfer learning is suitable and has been designed to be
stacked together to make it easier to learn from the network and increase the
recognition speed.

Consequently, we can improve the performance of Thai handwritten
characters with the highest accuracy rate.

RQ2: Document degradations are caused by document aging effects and
image acquisition with light conditions or a moving camera. These problems, called
noisy character images, can decrease the recognition performance of handwritten
characters. How can we improve the recognition rate of noisy characters? Can we
assume that denoise GAN to clean noisy image provides better accuracy result of

72

CNN? Furthermore, can a single DeblurGAN-CNN network enhance performance
when recognizing different types of noisy characters?

We propose to the robust generative adversarial network (GAN) combined
with the convolutional neural network (CNN) architecture, called DeblurGAN-CNN,
was proposed to synthesize new clean handwritten characters from noisy handwritten
characters and recognition with increased performance. The DeblurGAN-CNN
architectures were trained by applying the noisy data augmentation techniques and
transfer learning to create a robust model.

To answer RQ2, we first evaluated the DeblurGAN architecture with two
well-known image quality metrics, the peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) on the n-THI-C68 dataset. We found that the PSNR
and SSIM values were obtained when evaluating the different noise methods. The
high PSNR and SSIM values represent better accuracy and reconstruction image,
respectively.

To improve recognition performance, we presented the DeblurGAN-CNN
models on two noisy handwritten datasets: n-THI-C68 and n-MNIST, and two
handwritten character datasets: THI-C68 and THCC-67. The results showed that the
DeblurGAN-CNN architectures generated strong handwritten character images and
achieved the highest performance on the n-MNIST and n-THI-C68 datasets compared
with other existing methods.

RQ3: Thai historical documents are cursive writing style and difficult to
segment to each character. Indeed, we focus on a word or line recognition by
sequence learning method suitable for handwritten documents. The CRNN is a deep
learning technique applied to various text recognition problems such as sense text
recognition, video subtitle, and handwriting document. What is the best combination
of CNN and RNN to construct robust CRNN in word or line recognition?
Furthermore, the limitation of the dataset is insufficient handwritten text images for
training. We propose a novel data augmentation technique for training CRNN; Is it
possible to enhance the performance of Thai handwritten word recognition?

To answer the last question in RQ3, we evaluated nine CRNN architectures to
recognize handwritten text on the Thai archive manuscript dataset. The result showed
that the mDenseNet121-BiLSTM(256) outperformed all the CRNN architectures.
First, we performed the CRNN architectures using scratch and transfer learning. It is
quite surprising that transfer learning did not show a significant performance
compared to scratch learning. Second, we trained the CRNN models with three
different data augmentation strategies: no data augmentation, data augmentation, and
CycleAugment. The proposed CycleAugment strategy achieved the best performance
when approached with all CRNN models.

73

5.2 Future Work

This dissertation presents recent deep learning techniques in handwritten text
recognition, including CNN for character recognition, DeblurGAN to reconstruct the
handwritten character of various noisy types, and CRNN in historical word
recognition.

Due to insufficient handwritten text images for training the CRNN model, the
model might not give generalizations. We might need to synthesize the handwritten
text images and use them as the training set. The generative adversarial network
(GAN)) (Fogel et al. 2020) is the best choice to study and synthesize the training set.
In sequential learning, we must investigate an attention-based model (Shi et al. 2018;
Luo et al. 2019; Atienza 2021) and word beam search (Ameryan and Schomaker
2021) to better predict handwritten text images.

Since the CycleAugment sets a fixed number of cycles, the number of epochs
per cycle follows to fix. The inappropriate number of cycles can affect the network's
losses. For example, if the number of cycles is quite frequent (the number of epochs
per cycle is tiny), the network might be unable to train for convergence or be slower.
In the first cycle in Figure 24(b), the validation loss is still not entirely decreasing to
the bottom, which might affect the convergence of the network, called the immaturity
state. Therefore, in further research, instead of using a fixed number of epochs per
cycle, which might cause an early reset. We need to investigate that allows the
network to reach a maturity state. The adaptive methods adjust an appropriate number
of epochs which will expect the network to be better perform.

Moreover, each reset of the cycle results grows up to a high validation loss. It
indicates that it has a high effect and possibly slows convergence. Instead of cyclical,
simulated annealing can be proposed to disturb a slight change of network losses and
control the effect not to be the high difference during all training epochs. It is another
way to escape from local minima, which might reduce the convergence time and
make it more efficient.

To enhance deep learning performance, we plan to work on the ensemble
CNNs technique and combine the DeblurGAN-CNN architecture as a part of the
ensemble CNNs technique (Guo et al. 2019; Gonwirat and Surinta 2021) to achieve
much higher accuracy. Another direction for future work is creating new DeblurGAN-
CNN architecture by searching for efficient architecture with a lightweight model.
Finally, we will embed DeblurGAN-CNN with the recurrent neural networks (RNNs)
(Ameryan and Schomaker 2021) or vision transformers (Dosovitskiy et al. 2021;
Souibgui et al. 2022) to recognize word and sentence images.

Finally, researchers will design deep architectures that reduce the number of
parameters and learning time. However, the quality must still be equivalent to or
better performance than with the previous architecture and it will be tested with
handwritten characters in other languages similar to Thai, such as Thai Noi in
Northeastern, Lanna in North of Thailand, or Khmer.

REFE REN CES

REFERENCES

Abdurahman, Fetulhak, Eyob Sisay, and Kinde Anlay Fante. 2021. “AHWR-Net: Offline
Handwritten Amharic Word Recognition Using Convolutional Recurrent Neural
Network.” SN Applied Sciences 3(8): 1–11. https://doi.org/10.1007/s42452-021-04742-
x.

Alhagry, Salma, Aly Aly Fahmy, and Reda A El-Khoribi. 2017. “Emotion Recognition Based

on EEG Using LSTM Recurrent Neural Network.” International Journal of Advanced

Computer Science and Applications 8(10): 355–58.
http://dx.doi.org/10.14569/IJACSA.2017.081046.

Alom, Md Zahangir et al. 2018. “Handwritten Bangla Character Recognition Using the State-
of-the-Art Deep Convolutional Neural Networks.” Computational Intelligence and

Neuroscience 2018: 1–13.

Ameryan, Mahya, and Lambert Schomaker. 2021. “A Limited-Size Ensemble of
Homogeneous CNN/LSTMs for High-Performance Word Classification.” Neural

Computing and Applications 33(14): 8615–34. https://doi.org/10.1007/s00521-020-
05612-0.

Atienza, Rowel. 2021. “Vision Transformer for Fast and Efficient Scene Text Recognition.”

In International Conference on Document Analysis and Recognition (ICDAR), , 319–34.

Basu, Saikat et al. 2015. “Learning Sparse Feature Representations Using Probabilistic

Quadtrees and Deep Belief Nets.” Neural Processing Letters 45(3): 855–67.

Bhunia, Ayan Kumar, Ankan Kumar Bhunia, Aneeshan Sain, and Partha Pratim Roy. 2019.
“Improving Document Binarization via Adversarial Noise-Texture Augmentation.” In

International Conference on Image Processing (ICIP), , 2721–25.

Bluche, T, H Ney, and C Kermorvant. 2013. “Feature Extraction with Convolutional Neural

Networks for Handwritten Word Recognition.” In International Conference on

Document Analysis and Recognition (ICDAR), , 285–89.

Bluche, Théodore. 2015. “Deep Neural Networks for Large Vocabulary Handwritten Text
Recognition.” Universite´ Paris Sud-Paris XI, France. https://tel.archives-ouvertes.fr/tel-
01249405.

Boracchi, Giacomo, and Alessandro Foi. 2011. “Uniform Motion Blur in Poissonian Noise :

Blur / Noise Tradeoff.” IEEE Transactions on Image Processing 20(2): 592–98.

Butt, Hanan et al. 2021. “Attention-Based CNN-RNN Arabic Text Recognition from Natural
Scene Images.” Forecasting 3(3): 520–40.

Chamchong, Rapeeporn, Wei Gao, and Mark D. McDonnell. 2019. “Thai Handwritten

Recognition on Text Block-Based from Thai Archive Manuscripts.” In International

Conference on Document Analysis and Recognition (ICDAR), , 1346–51.

76

Chamchong, Rapeeporn, Umaporn Saisangchan, and Pornntiwa Pawara. 2021. “Thai

Handwritten Recognition on BEST2019 Datasets Using Deep Learning.” In

International Conference on Multi-Disciplinary Trends in Artificial Intelligence

(MIWAI), , 152–63.

Chen, Xiaoxue et al. 2021. “Text Recognition in the Wild: A Survey.” ACM Computing

Surveys 54(2): 1–35.

Chen, Ye et al. 2021. “Transformer Text Recognition with Deep Learning Algorithm.”

Computer Communications 178: 153–60.
https://www.sciencedirect.com/science/article/pii/S0140366421001754.

Cho, Kyunghyun et al. 2014. “Learning Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation.” In Conference on Empirical Methods in Natural

Language Processing, , 1724–34.

Choudhary, Amit, Rahul Rishi, and Savita Ahlawat. 2013. “A New Character Segmentation

Approach for Off-Line Cursive Handwritten Words.” In Procedia Computer Science, ,
88–95. https://www.sciencedirect.com/science/article/pii/S1877050913001464.

Deng, Jia et al. 2009. “ImageNet: A Large-Scale Hierarchical Image Database.” In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), , 248–55.
https://www.researchgate.net/publication/221361415 (September 14, 2019).

Donahue, Jeffrey et al. 2017. “Long-Term Recurrent Convolutional Networks for Visual
Recognition and Description.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 39(4): 677–91.

Dong, Chao, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2016. “Image Super-
Resolution Using Deep Convolutional Networks.” IEEE Transactions on Pattern

Analysis and Machine Intelligence 38(2): 295–307.

Dosovitskiy, Alexey et al. 2021. “An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” In International Conference on Learning Representations

(ICLR), https://arxiv.org/abs/2010.11929.

Eltay, Mohamed, Abdelmalek Zidouri, Irfan Ahmad, and Yousef Elarian. 2022. “Generative

Adversarial Network Based Adaptive Data Augmentation for Handwritten Arabic Text
Recognition.” PeerJ Computer Science 8: 1–22.

Enkvetchakul, Prem, and Olarik Surinta. 2021. “Effective Data Augmentation and Training

Techniques for Improving Deep Learning in Plant Leaf Disease Recognition.” Applied

Science and Engineering Progress 15(3): 1–12.

Fogel, Sharon et al. 2020. “ScrabbleGAN: Semi-Supervised Varying Length Handwritten
Text Generation.” In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), , 1–12.

Giménez, Adrià, and Alfons Juan. 2009. “Embedded Bernoulli Mixture HMMs for

Handwritten Word Recognition.” In International Conference on Document Analysis

77

and Recognition (ICDAR), , 896–900.

Gondara, Lovedeep. 2016. “Medical Image Denoising Using Convolutional Denoising

Autoencoders.” In IEEE International Conference on Data Mining Workshops

(ICDMW), , 241–46.

Gonwirat, Sarayut, and Olarik Surinta. 2020. “Improving Recognition of Thai Handwritten
Character with Deep Convolutional Neural Networks.” In International Conference on

Information Science and Systems (ICISS), , 82–87.

———. 2021. “Optimal Weighted Parameters of Ensemble Convolutional Neural Networks

Based on a Differential Evolution Algorithm for Enhancing Pornographic Image
Classification.” Engineering and Applied Science Research 48(5): 560–69.

Goodfellow, Ian J. et al. 2014. “Generative Adversarial Networks.” In International

Conference on Neural Information Processing System (NIPS), , 2672–80.
http://arxiv.org/abs/1406.2661.

Graves, Alex;, and Navdeep Jaitly. 2014. “Towards End-To-End Speech Recognition with
Recurrent Neural Networks.” In International Conference on Machine Learning

(ICML), , 1764–72.

Graves, Alex, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 2006.
“Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with

Recurrent Neural Networks.” In International Conference on Machine Learning

(ICML), ICML ’06, New York, NY, USA: Association for Computing Machinery, 369–

376. https://doi.org/10.1145/1143844.1143891.

Gulrajani, Ishaan et al. 2017. “Improved Training of Wasserstein GANs.” In International

Conference on Neural Information Processing System (NIPS), , 1–20.
http://arxiv.org/abs/1704.00028.

Guo, Leida et al. 2019. “A Multi-Model Ensemble Method Using CNN and Maximum
Correntropy Criterion for Basal Cell Carcinoma and Seborrheic Keratoses
Classification.” In International Joint Conference on Neural Networks (IJCNN), , 1–6.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual Learning

for Image Recognition.” In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), , 770–78.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural

Computation 9(8): 1735–80.

Howard, Andrew G. et al. 2017. “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications.” ArXiv abs/1704.0. http://arxiv.org/abs/1704.04861.

Hu, Jie, Li Shen, and Gang Sun. 2018. “Squeeze-and-Excitation Networks.” In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society, 7132–41.

78

Huang, Gao, Yixuan Li, et al. 2017. “Snapshot Ensembles: Train 1, Get M for Free.” In

International Conference on Learning Representations (ICLR), , 1–14.

Huang, Gao, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2017.
“Densely Connected Convolutional Networks.” In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), , 2261–69.

Inkeaw, Papangkorn et al. 2018. “Recognition-Based Character Segmentation for Multi-Level
Writing Style.” International Journal on Document Analysis and Recognition (IJDAR)
21(1): 21–39. https://doi.org/10.1007/s10032-018-0302-5.

———. 2019. “Recognition of Similar Characters Using Gradient Features of Discriminative
Regions.” Expert Systems with Applications 134: 120–37.

Ioffe, Sergey, and Christian Szegedy. 2015. “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift.” In Proceedings of the

International Conference on International Conference on Machine Learning, Lille,
France, 448–56. http://arxiv.org/abs/1502.03167 (September 14, 2019).

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. “Image-to-Image
Translation with Conditional Adversarial Networks.” In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), , 11125–34.

Ji, Shuiwang, Wei Xu, Ming Yang, and Kai Yu. 2013. “3D Convolutional Neural Networks

for Human Action Recognition.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 35(1): 221–31.

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. 2016. “Perceptual Losses for Real-Time
Style Transfer and Super-Resolution.” In European Conference on Computer Vision

(ECCV), , 1–18. https://arxiv.org/abs/1603.08155.

Joseph, Ferdin Joe John, and Panatchakorn Anantaprayoon. 2018. “Offline Handwritten Thai

Character Recognition Using Single Tier Classifier and Local Features.” In Proceeding

of the 3rd International Conference on Information Technology (InCIT), Institute of
Electrical and Electronics Engineers Inc., 8–11.

Karki, Manohar et al. 2018. “Pixel-Level Reconstruction and Classification for Noisy
Handwritten Bangla Characters.” In International Conference on Frontiers in

Handwriting Recognition (ICFHR), , 511–16.

Karnewar, Animesh, and Oliver Wang. 2020. “MSG-GAN: Multi-Scale Gradients for
Generative Adversarial Networks.” In Conference on Computer Vision and Pattern

Recognition (CVPR), , 7796–7805.

Kavitha, B R, and C Srimathi. 2019. “Benchmarking on Offline Handwritten Tamil Character
Recognition Using Convolutional Neural Networks.” Journal of King Saud University -

Computer and Information Sciences: 1–8.
https://www.sciencedirect.com/science/article/pii/S1319157819303295.

Keddous, Fekhr Eddine, and Amir Nakib. 2022. “Optimal CNN–Hopfield Network for

79

Pattern Recognition Based on a Genetic Algorithm.” Algorithms 15(1).

Khamekhem Jemni, Sana, Mohamed Ali Souibgui, Yousri Kessentini, and Alicia Fornés.
2022. “Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten
Document Image Enhancement.” Pattern Recognition 123: 108370.
https://www.sciencedirect.com/science/article/pii/S0031320321005501.

Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. 2020. “A Survey

of the Recent Architectures of Deep Convolutional Neural Networks.” Artificial

Intelligence Review 53: 5455–5516. https://doi.org/10.1007/s10462-020-09825-6.

Kim, In-Jung, and Xiaohui Xie. 2015. “Handwritten Hangul Recognition Using Deep

Convolutional Neural Networks.” International Journal on Document Analysis and

Recognition 18(1): 1–13.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. “ImageNet Classification
with Deep Convolutional Neural Networks.” In Advances in Neural Information

Processing Systems 25, Curran Associates, Inc., 1090–1098.
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf (September 14, 2019).

Kupyn, Orest; et al. 2018. “DeblurGAN: Blind Motion Deblurring Using Conditional

Adversarial Networks.” In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), , 8183–92.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. “Gradient-Based
Learning Applied to Document Recognition.” Proceedings of the IEEE 86(11): 2278–

2324. http://ieeexplore.ieee.org/document/726791/ (September 13, 2019).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature
521(7553): 436–44.

Lee, C et al. 2014. “Region-Based Discriminative Feature Pooling for Scene Text
Recognition.” In Conference on Computer Vision and Pattern Recognition (CVPR), ,
4050–57.

Liu, Qun, Edward Collier, and Supratik Mukhopadhyay. 2019. “PCGAN-CHAR:
Progressively Trained Classifier Generative Adversarial Networks for Classification of
Noisy Handwritten Bangla Characters.” In International Conference on Asian Digital

Libraries (ICADL), , 3–15.

Lue, Hsin-Te et al. 2010. “A Novel Character Segmentation Method for Text Images
Captured by Cameras.” Etri Journal 32: 729–39.

Luo, Canjie, Lianwen Jin, and Zenghui Sun. 2019. “MORAN: A Multi-Object Rectified
Attention Network for Scene Text Recognition.” Pattern Recognition 90: 109–18.
https://www.sciencedirect.com/science/article/pii/S0031320319300263.

Marinai, Simone. 2008. “Introduction to Document Analysis and Recognition.” In Studies in

Computational Intelligence, Berlin, Heidelberg: Springer Verlag, 1–20.

80

Mei, Jianhan et al. 2019. “DeepDeblur: Text Image Recovery from Blur to Sharp.”

Multimedia Tools and Applications 78(13): 18869–85.

Mishra, Anand, Karteek Alahari, and C V Jawahar. 2016. “Enhancing Energy Minimization

Framework for Scene Text Recognition with Top-down Cues.” Computer Vision and

Image Understanding 145: 30–42. https://doi.org/10.1016/j.cviu.2016.01.002.

Nair, Vinod, and Geoffrey E. Hinton. 2010. “Rectified Linear Units Improve Restricted

Boltzmann Machines Vinod Nair.” In Proceedings of the 27th International Conference

on Machine Learning, , 807–14.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.6419 (September 14,
2019).

Noppitak, Sangdaow, and Olarik Surinta. 2022. “DropCyclic: Snapshot Ensemble

Convolutional Neural Network Based on a New Learning Rate Schedule for Land Use
Classification.” IEEE Access 10: 60725–37.

Okafor, Emmanuel et al. 2016. “Comparative Study between Deep Learning and Bag of

Visual Words for Wild-Animal Recognition.” In IEEE Symposium Series on

Computational Intelligence (SSCI), Institute of Electrical and Electronics Engineers Inc.,
1–8.

Pawara, Pornntiwa, Emmanuel Okafor, Olarik Surinta, et al. 2017. “Comparing Local

Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for
Plant Recognition.” In International Conference on Pattern Recognition Applications

and Methods (ICPRAM), , 1–8.

Pawara, Pornntiwa, Emmanuel Okafor, Lambert Schomaker, and Marco A Wiering. 2017.
“Data Augmentation for Plant Classification.” In Advanced Concepts for Intelligent

Vision Systems (ACIVS), , 1–12.

Ruder, Sebastian. 2016. “An Overview of Gradient Descent Optimization Algorithms.” In ,

1–14. http://arxiv.org/abs/1609.04747 (September 14, 2019).

Sae-Tang, Sutat, and L Methasate. 2004. “Thai Handwritten Character Corpus.” In IEEE

International Symposium on Communications and Information Technology (ISCIT), ,
486–91.

Sandler, Mark et al. 2018. “MobileNetV2: Inverted Residuals and Linear Bottlenecks.” In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), , 4510–20.

Sawada, Yoshihide;, and Kazuki Kozuka. 2016. “Whole Layers Transfer Learning of Deep

Neural Networks for a Small Scale Dataset.” International Journal of Machine Learning

and Computing 6(1): 27–31.

Schomaker, Lambert et al. 2009. “Monk System for Word Search in Handwritten Manuscript
Collections.” https://www.ai.rug.nl/~lambert/Monk-collections-english.html (January 7,
2020).

Sharma, Monika, Abhishek Verma, and Lovekesh Vig. 2018. “Learning to Clean: A GAN

81

Perspective.” In 14th Asian Conference on Computer Vision (ACCV), , 174–85.

Shi, Baoguang et al. 2018. “ASTER: An Attentional Scene Text Recognizer with Flexible

Rectification.” IEEE Transactions on Pattern Analysis and Machine Intelligence 41(9):
2035–48.

Shi, Baoguang, Xiang Bai, and Cong Yao. 2017. “An End-to-End Trainable Neural Network
for Image-Based Sequence Recognition and Its Application to Scene Text Recognition.”

IEEE Transactions on Pattern Analysis and Machine Intelligence 39(11): 2298–2304.

Simonyan, Karen, and Andrew Zisserman. 2015. “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” In International Conference on Learning

Representations (ICLR), , 1–14. https://arxiv.org/abs/1409.1556.

Singh, Sukhdeep, Anuj Sharma, and Vinod Kumar Chauhan. 2021. “Online Handwritten

Gurmukhi Word Recognition Using Fine-Tuned Deep Convolutional Neural Network
on Offline Features.” Machine Learning with Applications 5: 100037.
https://www.sciencedirect.com/science/article/pii/S2666827021000189.

Souibgui, M A, and Y Kessentini. 2022. “DE-GAN: A Conditional Generative Adversarial
Network for Document Enhancement.” IEEE Transactions on Pattern Analysis and

Machine Intelligence 44(3): 1180–91.

Souibgui, Mohamed Ali et al. 2022. “DocEnTr: An End-to-End Document Image
Enhancement Transformer.” ArXiv abs/1704.0: 1–7. http://arxiv.org/abs/2201.10252.

Srinilta, C, and S Chatpoch. 2020. “Multi-Task Learning and Thai Handwritten Text
Recognition.” In 6th International Conference on Engineering, Applied Sciences and

Technology (ICEAST), , 1–4.

Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. “One Pixel Attack for

Fooling Deep Neural Networks.” IEEE Transactions on Evolutionary Computation
23(5): 828–41.

Sujatha, P., and D. Lalitha Bhaskari. 2019. “A Survey on Offline Handwritten Text

Recognition of Popular Indian Scripts.” International Journal of Computer Sciences and

Engineering 7(7): 138–49.

Surinta, Olarik, Mahir F. Karaaba, et al. 2015. “Recognizing Handwritten Characters with

Local Descriptors and Bags of Visual Words.” In International Conference on

Engineering Applications of Neural Networks (EANN), , 255–64.

Surinta, Olarik, Mahir F. Karaaba, Lambert R.B. Schomaker, and Marco A. Wiering. 2015.
“Recognition of Handwritten Characters Using Local Gradient Feature Descriptors.”

Engineering Applications of Artificial Intelligence 45: 405–14.

Szegedy, Christian et al. 2015. “Going Deeper with Convolutions.” In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), , 2322–30.

———. 2016. “Rethinking the Inception Architecture for Computer Vision.” Proceedings of

82

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-
Decem: 2818–26.

Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. 2017. “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning.” In The Thirty-

First AAAI Conference on Artificial Intelligence (AAAI-17), , 4278–84.
http://arxiv.org/abs/1602.07261 (September 14, 2019).

Tan, Mingxing, and Quoc V. Le. 2019. “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks.” In International Conference on Machine Learning

(ICML), , 6105–14.

Thanapol, P et al. 2020. “Reducing Overfitting and Improving Generalization in Training

Convolutional Neural Network (CNN) under Limited Sample Sizes in Image
Recognition.” In 5th International Conference on Information Technology (InCIT), ,
300–305.

Wang, Baiyang, and Diego Klabjan. 2017. “Regularization for Unsupervised Deep Neural

Nets.” In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, ,
2681–87. http://arxiv.org/abs/1608.04426 (September 14, 2019).

Wang, Kai, B Babenko, and S Belongie. 2011. “End-to-End Scene Text Recognition.” In

International Conference on Computer Vision (ICCV), , 1457–64.

Wang, Tianwei et al. 2019. “Radical Aggregation Network for Few-Shot Offline Handwritten
Chinese Character Recognition.” Pattern Recognition Letters 125: 821–27.
https://www.sciencedirect.com/science/article/pii/S0167865519302181.

Wang, Xintao et al. 2018. “ESRGAN : Enhanced Super-Resolution Generative Adversarial
Networks.” In European Conference on Computer Vision (ECCV), , 1–16.

Wang, Zhengwei, Qi She, and Tomas E. Ward. 2021. “Generative Adversarial Networks in

Computer Vision: A Survey and Taxonomy.” ACM Computing Surveys 54(2): 1–38.

Wu, Bingzhe et al. 2017. “Reducing Overfitting in Deep Convolutional Neural Networks

Using Redundancy Regularizer.” In 26th International Conference on Artificial Neural

Networks (ICANN), , 49–55.

Wu, Chunxue, Haiyan Du, Qunhui Wu, and Sheng Zhang. 2020. “Image Text Deblurring
Method Based on Generative Adversarial Network.” Electronics 9(2): 1–14.

Xu, Yan et al. 2018. “End-to-End Subtitle Detection and Recognition for Videos in East
Asian Languages via CNN Ensemble.” Signal Processing: Image Communication 60:
131–43. https://www.sciencedirect.com/science/article/pii/S092359651730173X.

Yan, Hongyu, and Xin Xu. 2020. “End-to-End Video Subtitle Recognition via a Deep
Residual Neural Network.” Pattern Recognition Letters 131: 368–75.
https://doi.org/10.1016/j.patrec.2020.01.019.

Zhang, Kai, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. 2017. “Learning Deep CNN

83

Denoiser Prior for Image Restoration.” In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), , 2808–17.

Zhao, Jinyuan et al. 2020. “Adversarial Learning Based Attentional Scene Text Recognizer.”

Pattern Recognition Letters 138: 217–22. https://doi.org/10.1016/j.patrec.2020.07.027.

Zoph, Barret, and Quoc Le. 2017. “Neural Architecture Search with Reinforcement

Learning.” In International Conference on Learning Representations (ICLR), , 1–16.
http://arxiv.org/abs/1611.01578 (September 16, 2019).

Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. “Learning

Transferable Architectures for Scalable Image Recognition.” In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), , 8697–8710.

BIOGRA PHY

BIOGRAPHY

NAME Sarayut Gonwirat

DATE OF BIRTH 9 November 1984

PLACE OF BIRTH Phu Wiang, Khon Kean, Thailand

ADDRESS 153 Moo 5
Thambon Chumporn
Amphoe Moei Wadi
Roi Et
Thailand

POSITION Lecturer

PLACE OF WORK Kalasin University

EDUCATION 2007 Bachelor of Engineering (B.Eng.) Computer
Engineering, King Mongkut's Institute of Technology
Ladkrabang.
2010 Master of Engineering (M.Eng.) Computer
Engineering, King Mongkut's Institute of Technology
Ladkrabang.
2022 Doctor of Philosophy (Ph.D.) Information
Thechnology, Mahasarakham University.

Research output Gonwirat, S., & Surinta, O. (2020). Improving
Recognition of Thai Handwritten Character with Deep
Convolutional Neural Networks. International Conference
on Information Science and Systems (ICISS).

Chompookham, T., Gonwirat, S., Lata, S.,
Phiphiphatphaisit, S., & Surinta, O. (2020). Plant Leaf
Image Recognition using Multiple-grid Based Local
Descriptor and Dimensionality Reduction Approach.
International Conference on Information Science and
Systems (ICISS), 72–77.
https://doi.org/10.1145/3388176.3388180

Noppitak, S., Gonwirat, S., & Surinta, O. (2020). Instance
Segmentation of Water Body from Aerial Image using
Mask Region-based Convolutional Neural Network.
International Conference on Information Science and
Systems (ICISS), 61–66.
https://doi.org/10.1145/3388176.3388184

Gonwirat, S., & Surinta, O. (2022). CycleAugment:
Efficient Data Augmentation Strategy for Handwritten

85

Text Recognition in Historical Document Images.
Engineering and Applied Science Research, 49(4), pages
505-520.
https://doi.org/10.14456/EASR.2022.50

Gonwirat, S., & Surinta, O. (2022). DeblurGAN-CNN:
Effective Image Denoising and Recognition for Noisy
Handwritten Characters. IEEE Access, 10, 90133-90148.
https://doi.org/10.1109/ACCESS.2022.3201560

	Titlepage
	Abstract
	Acknowledgements
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Reference
	Profile

