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ABSTRACT 

  
Sign language is essential for communication with the hearing impaired. 

It's difficult for normal people to understand so that people can communicate or 
interpret sign language. This thesis purposes to invent an automatic Thai sign language 
system that can translate sign language using the proposed deep learning techniques. 
This method recognized Thai Sign Language covering both Static and Dynamic 
spellings in Thai Sign Language, including the words in the sentence. 

In the first approach, we proposed an end-to-end method of recognizing 
sign language with deep learning based on static Thai sign language (1-stage) from 
complex images. This approach was based on hand detection from the YOLO v3 
architecture to detect the region of interest (ROI) in hand only. We performed feature 
extraction and quantified the recognition efficiency of five CNNs: MobileNetV2, 
DenseNet121, InceptionResNetV2, NASNetMobile, and EfficientNetB2 for training. 
The results showed that DenseNet121 and MobileNetV2 outperformed other CNN 
models that have high accuracy in image recognition of Thai Sign Language.  

In the second approach, Thai Sign Language required a variety of gestures 
(from 2-Step up) to interpret meaning. We proposed Dynamic Sign Language 
Recognition based on the deep learning approaches: the YOLOv5 algorithm for human 
detection and a combination of two deep learning methods of the Convolutional Neural 
Network and Recurrent Neural Network to aid sequence-based image recognition. The 
RNN used two different LSTM and GRU and numbers of units: 32 and 64. We created 
various CNN models based on three architectures: MobileNetV2, ResNet50, and 
DenseNet201. It was called the CNN-LSTM architecture. We decided to add the extra 
densely connected layer with 64 units between the GAP layer and softmax activation 
function. The results obtained from the ResNet50-LSTM architecture achieved the 
highest accuracy on the validation set.  

In the third approach, Thai Sign Language was generally used to 
communicate in words that express gestures in a continuous sentence. To increase the 
number of datasets, we selected 32 and extended data frames 100 times to obtain 
different datasets. In addition, Thai sign language sentence recognition was used for 
predicting words in sentences of the Thai sign language base on three CNN: RestNet50, 
DenseNet121, and VGG16 architectures. The sequence patterns were given to the 
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Conv1D and LSTM to classify words in sentences. Also, we compared the performance 
of the number of layers of Conv1D consisting of 1-4 layers and BiRNN input sizes 
64,128,256,512, respectively. Finally, we used the SoftMax activation function and 
CTC decoding to help answer sentences before making predictions. The best results 
using 4 layers of Conv1D after following two RNNs architecture: GRU and LSTM 
(called BiRNN) were found BiLSTM to be more efficient than BiGRU and RNN size 
equal to 128.We tested performance with the words error rate (WER) value. Overall, 
DenseNet121 BiLSTM-based architecture with input RNN size=128, 4 conv1D layers 
had the highest efficiency WER is 0.4286. 

 
Keyword : Thai Fingerspelling Recognition, Hand Gesture Recognition, Sign 
Language Recognition, Dynamic Fingerspelling Recognition, Convolutional Neural 
Network, Hand Detection, YOLO Architecture, Long Short-Term Memory, Sequence 
Pattern, Word Sing Language Recognition, Long Short Term Memory, Extend Data 
Frames, Connection Temporal Classification, Dynamic Thai Fingerspelling Dataset, 
Thai Sign Language Sentence Dataset, Thai Sign Language Recognition 

 

 

 



 

 

 
 F 

ACKNOWLEDGEMENT S 
 

ACKNOWLEDGEMENTS 

  
This thesis was accomplished with excellent assistance and advice from 

Assistant Professor Dr. Olarik Surinta, thesis advisor, who transfers research knowledge 

and skills, sacrifices time to give advice, and allows me to develop the necessary skills 

while studying the Ph.D. I greatly appreciate this opportunity and would like to express 

my deep gratitude. Thank you to the Doctor of Philosophy program in Information 

Technology and  Multi-agent Intelligent Simulation Laboratory Research Unit Maha 

Sarakham University for providing scholarships in research and support for research 

work. Thanks to the Bachelor of Education Program in Special Education at Rajabhat 

Maha Sarakham University, students assisted with the dataset for creating a dataset. In 

addition, I would like to thank the Department of Computer Rajabhat Maha Sarakham 

University for my work, classmates, colleagues, and the research teams who have spent 

time together in the research room. Also, my family has always supported and assisted 

me in various fields until graduation. 

  
  

Siriwiwat  Lata 
 

 

 



 

 

 
  

TABLE OF CONTENTS 

 Page 

ABSTRACT .................................................................................................................. D 

ACKNOWLEDGEMENTS ........................................................................................... F 

TABLE OF CONTENTS .............................................................................................. G 

LIST OF TABELS ......................................................................................................... I 

LIST OF FIGURES ....................................................................................................... J 

Chapter 1  Introduction .................................................................................................. 1 

1.1 Introduction .......................................................................................................... 1 

1.2 Research Aim ....................................................................................................... 4 

1.3 Research Question ............................................................................................... 4 

1.4 Contributions ....................................................................................................... 5 

1.5 The automated Thai sign language recognition system ....................................... 6 

Chapter 2  An End-to-End Thai Fingerspelling Recognition Framework  with Deep 
Convolutional Neural Networks .................................................................................. 14 

2.1 Introduction ........................................................................................................ 14 

2.2 Related work ...................................................................................................... 15 

2.3 End-to-End Thai Fingerspelling Recognition Framework ................................ 16 

2.4 Fingerspelling Datasets ...................................................................................... 18 

2.5 Experimental Results ......................................................................................... 20 

2.6 Conclusions ........................................................................................................ 23 

Chapter 3 Dynamic Fingerspelling Recognition from Video using Deep Learning 
Approach: From Detection to Recognition .................................................................. 25 

3.1 Introduction ........................................................................................................ 25 

3.2 Related work ...................................................................................................... 26 

3.3 Dynamic Fingerspelling Recognition System Architecture .............................. 27 

3.4 Dynamic Thai Fingerspelling Dataset. .............................................................. 30 

3.5 Experimental Results and Discussion. ............................................................... 31 

    



 

 

 
 H 

3.5 Conclusions ........................................................................................................ 35 

Chapter 4 Word Recognition in Thai Sign Language Sentences  From Video with 
Deep Learning .............................................................................................................. 36 

4.1 Introduction ........................................................................................................ 36 

4.2 Related work ...................................................................................................... 38 

4.3 Proposed Method ............................................................................................... 40 

4.4 Experimental Setup ............................................................................................ 43 

4.5 Experimental result and Discussion .................................................................. 48 

4.6 Discussions ........................................................................................................ 51 

4.7 Conclusions ........................................................................................................ 52 

Chapter 5 Discussion ................................................................................................... 53 

5.1 Answers to the Research Questions ................................................................... 55 

5.2 Future Works ..................................................................................................... 57 

REFERENCES ............................................................................................................ 58 

APPENDIX .................................................................................................................. 62 

BIOGRAPHY .............................................................................................................. 63 

 



 

 

 
  

LIST OF TABELS 

Table 1 Performance evaluation of the YOLOv3 on the TFS dataset. ....................... 20 

Table 2 Performance evaluation of the CNN architectures on the validation and test 
sets when training with the different numbers of training set ...................................... 22 

Table 3 The YOLOv3 detection value (mAP) and the CNNs recognition accuracies 
(%) of 1-stage Thai fingerspelling experiments on the TFS datasets .......................... 22 

Table 4 Experiment with different Learning rates. ..................................................... 31 

Table 5 Comparison between CNN-LSTM and CNN-GRU with different RNN units.
...................................................................................................................................... 32 

Table 6 Comparison between CNN-LSTM and CNN-LSTM with a densely 
connected layer. ........................................................................................................... 32 

Table 7 Evaluation of Fusion CNNs-LSTM. .............................................................. 34 

Table 8 Show in Thai sign language sentences (TSLS) Dataset. ................................ 43 

Table 9 The performance of CNNs architectures and extend data frames on the  TSLS 
dataset. ......................................................................................................................... 48 

Table 10 The Comparison results of the using and not using optical flow. ................ 49 

Table 11 Evaluation of performance number layers of Conv1D ................................ 49 

Table 12 The comparison results of different RNN types using BiLSTM, and BiGRU.
...................................................................................................................................... 50 

Table 13 The recognition results of the DenseNet121-LSTM architecture using the 
CTC decoding algorithm.............................................................................................. 51 



 

 

 
  

LIST OF FIGURES 

Figure 1 Types of gesture recognition Static and Dynamic ......................................... 2 

Figure 2 Static gestures for all 15 alphabets. ................................................................ 7 

Figure 3 Examples of dynamic gestures, alphabets ง/ng/, and ฌ/ch/, respectively. ..... 7 

Figure 4 Examples of gestures: words, and sentences in Thai Sign Language ............ 7 

Figure 5 illustration of the convolutional neural network architecture ......................... 9 

Figure 6 Illustration of the convolutional operation ..................................................... 9 

Figure 7 The network architecture of YOLO. ............................................................. 12 

Figure 8 The internal structure of the LSTM. ............................................................. 13 

Figure 9 The proposed framework of the 1-stage Thai fingerspelling recognition .... 16 

Figure 10 Hand detection with Yolov3 Network Architecture. .................................. 17 

Figure 11 Examples of the 1-stage Thai fingerspelling consonants that recorded in 
(A) non-complex and (B) complex backgrounds. ........................................................ 18 

Figure 12 Examples of the TFS datasets. (A) Unseen-TFS and (B) KKU-TFS datasets
...................................................................................................................................... 19 

Figure 13 Illustration of the output that was detected using the YOLOv3. ................ 21 

Figure 14 Frame Selection method. ............................................................................ 28 

Figure 15 Human Detection with YOLOv5. ............................................................... 28 

Figure 16 Illustration of the dynamic fingerspelling recognition system ................... 28 

Figure 14 Examples of dynamic Thai fingerspelling dataset. ..................................... 31 

Figure 18  Illustrated the validation loss values of CNN-LSTM models. .................. 33 

Figure 19 Illustration of the ROC curves for dynamic fingerspelling  recognition 
using different CNNs. .................................................................................................. 34 

Figure 20 The Proposed Framework for Thai sign language recognition. ................. 41 

Figure 21 Class distribution of word frequency the TSLS dataset. ............................ 43 

Figure 22 Example Thai sign language sentences Dataset ......................................... 44 

Figure 23 The sample of image frames show ............................................................. 45 

Figure 24 The Process for selecting frames from a video........................................... 46 

Figure 25 The sample of image frames show (A) Original sequence images,  (B) 
Optical flow on sequence images. ............................................................................... 47 



 

 

 
  

Chapter 1  

Introduction 

1.1 Introduction  

Humans are perceived as the most valuable resource in the world. However, 
several factors result in human imperfections which can cause human disabilities, such 
as accidents, congenital disabilities, etc. In 2021, the World Health Organization's 
Disability Situation Report found that more than 1500 million people worldwide, or 
about 15 percent of the world's population, are people with disabilities. It also found 
that there are at least 430 million people with hearing impairments as children as 34 
million. By 2050, it is estimated that there will be more than 700 million people with 
hearing impairments (World Health Organization, 2021). These groups need to be taken 
care of, especially when it comes to communicating with normal people who lack an 
understanding of sign language gestures, causing difficulty in communication between 
people with disabilities and normal people and misunderstandings (Watcharin, 2015). 
This means that these groups of people need to communicate with each other by the 
hand, known as sign language. 

Sign language is a nonverbal language that is communicated by gestures and 
movements of the hands, body, and the use of lips to convey meanings or 
representations for people with hearing impairments. The use of hand and finger 
gestures in spelling and gestures to convey the meaning of words and sentences. 
Therefore, Thai sign language is a common language used for communication among 
deaf people and is important for the development of deaf people's knowledge and 
abilities (Boonya, 2008). However, the main problem with using sign language is the 
inability to communicate with normal people or people who do not know sign language. 
The importance of sign language affects these people with disabilities, therefore, 
various methods or techniques have been introduced to assist in communication, 
especially in computer vision, to recognize gestures from a variety of sign languages, 
both the shape of the hand movements of the hands, arms, including the face to learn 
gestures and interpret results to get the most accurate value in the meaning. Modern 
technology has been applied in various areas to improve hand gesture recognition. It 
can be classified according to two types of recognition (Rautaray & Agrawal, 2 0 12) : 
Static, and Dynamic (Rautaray & Agrawal, 2012). Static refers to the gesture of the 
hand with only one gesture to convey meaning. Also, dynamic refers to the gesture of 
the hand, having many strokes to convey meaning, as shown in Figure 1. 
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Figure 1 Types of gesture recognition Static and Dynamic 

 The diverse gestures of each sign language in the world are unique, so each sign 
language is different. Likewise, Thai Sign Language is the national language and needs 
to be learned as the basis of education for the hearing impaired in Thailand and as a 
language of communication. For instance, if we want to converse with English people, 
we need to learn English. Therefore, teaching Thai sign language, alphabet, and Thai 
tones is necessary for learning and affecting writing. In addition, specific meanings or 
spelling to tell meanings such as names of people places names and specific words that 
are not in the words provided in Thai Sign Language. Thai Sign Language uses various 
complex words and sentences that are difficult to learn. Due to the need to interpret the 
gestures and hand movements, it still doesn't get the attention of normal people. As a 
result, people with disabilities have problems with communication and become 
incapable of living with normal people and with the problem of limited communication. 

Therefore, technology and equipment are needed to help communicate with these 
groups.  

 Many researchers have invented and applied technologies to improve the 
efficiency of sign language communication, such as the introduction of sensor 
technology to facilitate communication such as Accelerometers, Gyroscope (Bajpai, 
2015), Flex Sensor (Shukor et al., 2015), and Depth Camera  (Huang et al., 2018), 
(Bantupalli & Xie, 2018).  Such an expensive technology has led researchers to focus 
on developing artificial intelligence-powered image or video recognition since only a 
webcam could be used to communicate with people with disabilities. The technique 
was able to detect movement (Zhao et al., 2019) of the hand and was able to interpret 
hand gestures or gestures expressed by people with disabilities due to the complexity 
of sign language. 

 The researchers started by designing and developing a process for static-sign 
language recognition. That means one gesture has only one meaning (Salian, 
2017),(Zisserman, 2015), for example, American sign language recognition (C. M. Jin 
& Omar, 2016), number recognition from sign language (Thalange & Dixit, 2016) by 
research by Pariwat & Seresangtakul (2017) (Pariwat & Seresangtakul, 2017). In 
addition, Nakjai & Katanyukul (2018) (Nakjai & Katanyukul, 2018) has created a static 
sign language image dataset by setting the background to a color that contrasts with the 
color of human skin. However, if the dress is black, it will be able to detect the hand 
area. In a study by Oliveira et al (2017) (Oliveira et al., 2017), a dataset of the Irish sign 
language static alphabet with a total of 2 3  static gestures was generated. This dataset 
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stores only the hand and the image have a black background and then takes the specific 
area of the hand to recognition with different methods, including support vector 
machines, linear discriminant analysis (LDA), multi-layer perceptron (MLP), K-nearest 
neighbor (KNN), and convolutional neural network (CNN). However, in actual 
situations where sign language interpretations may not be in the provided space, this 
may result in the designed algorithm being unable to detect the hand and recognize it 
correctly.  

 Currently, there are deep learning algorithms for object detection that can be 
effectively divided into two types: 1) One-Stage: Suitable for detecting small objects 
with high detection speed, including Single Shot Detector (SSD) (Liu et al., 2016) and 
YOLO. YOLO algorithm was developed from version 1 to version 3, improving the 
algorithm to be faster and more accurate (Redmon & Farhadi, 2018). 2) Two-Stage: An 
algorithm that uses a Selective Search method to find an object localization. As it is the 
most difficult method of object detection, the process must find the desired objects from 
many regions of interest. For example, the  R-CNN method (Girshick et al., 2014), Fast-
RCNN (Girshick, 2015), Faster-RCNN (Shaoqing Ren, Kaiming He Ross Girshick 
Jian, 2015), and RetinaNet (Lin et al., 2017). 

 The object detection method mentioned above can be used to detect the hand 
area where the background doesn't need to be black, so it can be detected in any 
environment. In addition, deep learning is also used in sign language recognition by a 
popular algorithm using a convolutional neural network (CNN). Using this technique, 
it can recognize illustrations that are effective and suitable for sign language (Salian, 
2017), (Zisserman, 2015). It is used in two ways, static and dynamic, which can be 
interpreted to communicate with a normal person. The dynamic nature of the motion or 
video gesture recognition requires CNN deep learning. In addition, it is implemented 
for the learning of sign language sentence translation using the Recurrent neural 
network (RNNs) architecture pioneered by hierarchical learning. 

 In particular, the long short-term memory (LSTM) (Hochreiter & Schmidhuber, 
1997) neural networks are well suited for use with sequences such as video work, and 
word separation from the text in the book. It has a hierarchical recognition feature that 
makes it possible to recognize multi-stroke gestures for different hand gestures. 
However, in everyday life, Thai sign language speakers use a large number of words in 
succession to form sentences. People who study sign language need to learn both the 
various gestures in one word and link them into the correct sentences because sign 
language has complicated before and after gestures that are difficult to learn. 

 Therefore, we utilized the effective decoding of the connectionist temporal 
classification loss (CTC) (Graves et al., 2006)  technique to learn hierarchy to help 
locate the appropriate word placement and interpret the results. It can be a sign language 
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sentence from the animation. This will cover a fully automated Thai sign language 
translation system. 

1.2 Research Aim          

 To develop an automated sign language translation system for the hearing 
impaired using deep learning that can translate both consonant and verbal sign 
language. 

1.3 Research Question 

 Due sign language is a unique and communicative language characterized by 
using hands to interpret the meaning with both single and multi-gesture interpretations 
which complicate the use of both rhythm and gestures (Boonya, 2008) therefore, this 
thesis presents an efficient automatic sign language translation system using for deep 
learning. 

 It consists of the following research questions: 

 RQ1: In general, the nature of the use of sign language seen through a 
conventional device is to see, not just the area of the hand. We see it as a half-body 
image, most of which is illustrated with a complex background. How does the deep 
learning method for the detection and recognition improve on Static Sign Language 
recognition efficiency? Which consists of 15 alphabets using YOLO architecture for 
hand detection and CNN architecture for recognition. We experimented with five 
architectures of CNN: MobilNetV2, DenseNet121, InceptionResNetV2, NASNet-
Mobile, and EfficientNetB2. This research tests three Thai Fingerspelling (TFS) 
datasets: TFS, Unseen-TFS, and KKU-TFS. 

RQ2: Since the learning illustrations in the TFS datasets contain only static     
datasets, it is not possible to learn the Dynamic of Thai Fingerspelling. Do Deep 
learning neural networks in combination with LSTM learning increase the efficiency 
of dynamic Sign Language recognition efficiency?   Therefore, we created the Dynamic 
Thai Finger Spelling Dataset (DTFS) as a video of all Thai Sign Language alphabet. It 
continues to reduce the background of unrelated images by using the state-of-the-art 
YOLO v5 architecture to detect person images before sending them to CNN and using 
LSTM in sign language recognition that enables them to recognize the Memorize 
alphabet with multiple strokes or animated form. 

 RQ3: In addition to the two forms of recognition, Thai Sign Language in 
everyday life often uses words and sentences with contiguous gestures forming 
sentences. Therefore, learning words in sentences is an important part of using Thai 
Sign Language. This study created the Thai sign language sentence (TSLS) Dataset. 
After that, how can we increase the dataset to train from low data? We chose a method 
to reduce the background of the image in the unrelated section using the YOLO v5 
architecture. Followed by using CNN deep learning in conjunction with the LSTM 
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architecture, Conv1D, and using Connectionist Temporal Classification (CTC) to 
decoding the output in the sentence to be classified words to translate the sentences in 
sign language automatically. 

1.4 Contributions 

 In the research paper in the thesis on an automatic sign language translation 
system using deep learning, the research team tried to develop a complex Thai sign 
language recognition system. The researcher presented an effective Thai sign language 
recognition process by categorizing the research process as follows:   

 The first section focuses on an end-to-end Thai sign language recognition by 
focusing on non-specific images of the hand and images with complex backgrounds by 
using deep learning to perform detected in the hand area.  
 Then, the researchers took the images of the detected hands to perform the sign 
language recognition. It focuses on the Static Thai Sign Language data set consisting 
of 15 alphabets (ก/k/, ด/d/, ต/t/, น/n/, บ/b/, พ/p/, ฟ/f/, ม/m/, ย/y/, ร/r/, ล/l/, ว/w/, ส/s/, ห/h/, 
and อ/o/)  by using the YOLOv3  architecture for hand detection. Next, we found a 
suitable CNN architecture in the dataset by experimenting with five different CNN 
architectures: MobilNetV2, DenseNet121, InceptionResNetV2, NASNetMobile, 
EfficientNetB2. In the resulting model, we tested three Thai Sign Language datasets 
consisting of one learning-related dataset and two independent data sets, Unseen-TFS 
and KKU-TFS of Pariwat and Seresangtakul in 2017 (Pariwat & Seresangtakul, 2017) 

to test the performance of the developed model.  
 This thesis is based on the following publications. 
 Lata, S., & Surinta, O. (2022). An end-to-end Thai fingerspelling recognition 
framework with deep convolutional neural networks. ICIC Express Letters ICIC 
International c, 2022(5), 529–536. https://doi.org/10.24507/icicel.16.05.529 
 
 Part 2, we focus on solving a single gesture recognition problem by presenting 
a method for recognizing informative information in multiple gestures. We will use the 
whole set of Thai Sign Language consonant VDO while still minimizing the irrelevant 
portion of the image by using the state-of-the-art YOLO v5 architecture to detect person 
images before sending them to learn with CNN. We will compare the MobileNet V2, 
ResNet50, and DenseNet201 architectures and use Fusion CNNs of the three 
architectures which are MobileNetV2+DenseNet201, MobileNetV2+ResNet50 and 
ResNet50+DenseNet201. In addition, we will conduct a comparative experiment in 
conjunction with the RNN architectures GRU and LSTM to assist in hierarchical visual 
recognition enabling single and multiple gesture recognition alphabet or VDO formats. 
 This thesis is based on the following publications. 
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 Lata, Siriwiwat, et al. (2022). Dynamic Fingerspelling Recognition from Video 
using Deep Learning Approach: From Detection to Recognition. ICIC Express Letters 
ICIC International B, 2022, 949–957. 13(9). 10.24507/icicelb.13.09.949 

 Finally, we focus on providing the system with comprehensive recognition of 
Thai Sign Language, alphabet, words, and sentences to communicate meanings by 
using multiple and continuous sign language gestures to achieve the proper architecture 
for learning words and sentences in the perfect Thai sign language. The researcher 
chose to extract specific features in the interpretive area.  The area of the image was 
reduced to the unrelated areas with person detection using the YOLO v5 architecture. 
Consequently, this research requires CNN-based deep learning in combination with an 
LSTM architecture with hierarchical learning properties. In addition, this study used 
the properties of CTC as an output type neural network and a recognition function for 
training recurrent neural networks (RNNs) to solve the problem of variable gesture 
sequences of sentences in Thai sign language. As a result, a system that can 
automatically translate sign language is comprehensive. 

1.5 The automated Thai sign language recognition system 

 Automated sign language recognition systems can provide tangible benefits and 
improve quality of life for people who rely on sign language to communicate daily 

(Wadhawan & Kumar, 2021). The main objective of this research was to study deep 
learning methods and optimization model selection algorithms to select the best model. 
It's a way to automatically interpret the results of sign language gestures. In this chapter, 
we present the basic knowledge to understand the basic concepts of the Automatic Thai 
Sign Language Translation System as follows. 

1 . 5 . 1 Thai Sign Language (TSL):  Thai  Sign  Language  is  the  official  sign 
language of Thailand and is widely used in Thailand. Therefore, Thai Sign Language 
is the official language of Thailand for the deaf. In August 1999, it was signed by the 
Minister of Education on behalf of the Thai government (Reilly, Charles & Suvannus, 
1999) to provide Thai Sign Language learning. Thai Sign Language includes gestures, 
hand movements, and finger spelling in alphabets, words, and sentences. It can be 
divided into two types: static and dynamic which uses only one hand and both hands. 

 1) Thai Sign Language consonants are characterized by gestures that consist 
of gestures with fingers in various shapes representing the alphabet, vowels, tones, and 
other symbols. It is divided into Static 15 alphabets (Figure 2) and Dynamic 27 
alphabets for a total of 42 alphabets, as shown in Figure 3. 
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Figure 2 Static gestures for all 15 alphabets. 

ก/k/, ด/d/, ต/t/, น/n/, บ/b/, พ/p/, ฟ/f/, ม/m/, ย/y/, ร/r/, ล/l/, ว/w/, ส/s/, ห/h/, and อ/o/ 

respectively. 

 

 

Figure 3 Examples of dynamic gestures, alphabets ง/ng/, and ฌ/ch/, respectively. 

 2) Thai Sign Language Sentences and Words: Sign language is not a 
universal language that can be used in all countries as the use of sign language differs 
depending on the nature of the language in the country. Thai sign language gestures are 
characterized by the continuity of gestures to convey the meaning of several words to 
form sentences that are complex and understandable. There are both Static and 
Dynamic gestures, making interpretation difficult to understand as shown in Figure.4 

 

 
Figure 4 Examples of gestures: words, and sentences in Thai Sign Language 

Thai sign language is like the common language of the hearing impaired, 
therefore communication needs to be perceived by both parties, especially the recipients 
who are normal people. Most of them are people who do not have the knowledge of 
sign language, so each communication requires an interpreter, which are very few 
nowadays. Therefore, using technology to help the hearing impaired communicate with 
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normal people requires image processing and machine learning techniques based on 
gestures to recognize alphabets, word, and sentence gestures. Several countries, such 
as Wenjin Tao et al. (Tao et al., 2018), use CNNs to recognize American Sign Language 
(ASL) characters from Microsoft Kinect machines. Farhad Yasir et al (Yasir et al., 
2017) performed Bengal Sign Language recognition using CNN network to recognize 
sign language usage data from Leap motion controller (LMC). However, in-depth 
detector learning, depth vision remains a matter of adoption in real-world environments 
but with the popularity and efficiency of CNNs, researchers are focusing on developing 
these architectures. However, the popularity of effective deep learning has resulted in 
researchers focusing on architecture development, as shown in the next section. 

1.5.2 Deep learning for sign language recognition 

Deep learning is the use of automated computer software based on the concept 
of neural networks in the human nervous system. In addition, it is a form of machine 
learning that uses processing on a complex structure. Deep learning has been used to 
translate continuous sign language communication quickly and easily. The proposed 
models are quite effective for a wide range of tasks, but none currently has the potential 
to be used for both problem-solving and commercialization (Al-Qurishi et al., 2021) . 
Sign language recognition entails pattern matching, computer vision, linguistics, and 
other aspects of natural language processing (Yin et al., n.d.). According to the network 
structure, two architectures are commonly used: recurrent neural networks (RNNs) with 
at least one recurrent layer and convolutional neural networks (CNNs) with at least one 
convolutional layer for different tasks depending on the number and type of layers. 
These networks contain training procedures that affect the performance of the 
algorithm. Specific data sets will help strengthen network training, so the quality of 
training sets is an important factor. Further customization of the model can be made by 
changing some of the associated hyperparameters that are defined in the training 
process. (Lecun et al., 2015). The application of deep learning techniques is widely 
applied to effectively solve problems such as detection, classification, and grouping.  In 
this research, the unique properties of deep learning are used in the detection of objects 
as well, which will be explained in the next section. 

1.5.3 Convolutional Neural Networks (CNNs) 

Convolutional neural networks are architectures that learn based on neural 
networks that receive an input image ( Al-Qurishi et al., 2 0 2 1 ). Its highlight is that it 
can directly extract features and classify information which is used to recognize or 
classify things from complex data and is popular for image recognition. A convolutional 
neural network is a multilayer perceptron. (Y. LeCun, B. Boser, J.S. Denker, D. 
Henderson, R. Howard, W. Hubbard, 1990) CNN's work uses complex mathematical 
methods that contain a large amount of data. Deep learning, in addition to popular 
architectures, includes Long Short-Term Memory (LSTM), Recurring Neural Networks 
(RNN), and Deep Belief Networks (DBN) (Shrestha & Mahmood, 2019) In image 
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recognition, data is automatically extracted with convolution-layer learning generated 
by the weight of feature maps. A typical CNN structure starts with the input image and 
then features extraction of the image designed with the Convolutional layer and Pooling 
layer (LeCun, n.d.) It is a mathematical computation when the characteristics are fed to 
the Fully connected layer's neural network, the prediction layer, with the computation 
for classification or image recognition, shown in Figure5. 

 
Figure 5 illustration of the convolutional neural network architecture 

Convolutional Layers calculate the value of each kernel image and its weight 
through a function called Activate Function to send data to pooling, which is a 
computational layer to reduce image detail. It will select the largest value in each kernel 
derived from the image to represent the next generation of data to compute the kernel 
from the source image from the top left to the right key area, the convolution operation 
is computed by multiplying the corresponding values from the source image and the 
kernel and adding them together, as shown in Figure 6 

 

Figure 6 Illustration of the convolutional operation 
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Hand shape recognition is a process created by the subject's gestures. There is 
an unclearly high intra-class ambiguity that results in the increased burden of acquiring 
training data in many cases (Al-Qurishi et al., 2021). CNNs require a much lower level 
of pre-processing compared to other deep learning algorithms (Koller et al., 2016). 
labeled training data (Agathe Balayn et al., 2018). The methodology applied an end-to-
end CNN architecture to a training dataset for comparison purposes Amarican Sign 
Lauange (Nguyen & Do, n.d.), as well Ameen and Vadera (Ameen & Vadera, 2017) 
developed a CNN focused on grouping  fingerspelling images using a mixture of image 
intensity and depth data.  

In addition, it has also been found that hand detection is an important 
preprocessing step, and it can still be difficult to correctly recognize certain hands in 
cluttered environments, and the intricate rendering of the human hand is agile and has 
a wide range of movements. Therefore, the use of object detection architecture detects 
objects to extract the relevant areas into consideration can increase the efficiency of the 
model.  

1.5.3 Object Detection   

Object detection is a system for detecting still images or videos to find and 
recognize the object of an image. The result of detection is displayed in the area of the 
object in the image and the desired position is determined from the detected object in 
the image, such as face detection, people detection, object detection, etc. The detection 
is displayed as a rectangular box indicating the presence of an object in the image, 
providing important information for learning image classification (Zhao et al., 2019). 
Most detectors are used to extract image data in the form of feature vectors, which face 
the problem of tracing and detecting hand parts from a variety of environments both 
complex backgrounds and hand obscuring (Dewi & Juli Christanto, 2022). However, 
there are various attempts at hand detection. In the early stages of detection, the theory 
of Michael J. Jones and James M. Rehg (Jones et al., 1998) was applied to the color of 
the skin detection, as well as Dardas & Petriu  (Dardas & Petriu, 2011). However, this 
research still has problems when the hand moves to cover other skin areas of one's 
own.Additionally, Xingbao Meng et al (Meng et al., 2012) performed hand detection 
using a histogram of oriented gradients (HOG) and a skin color histogram of oriented 
gradients (SCHOG) are used to help visualize and detect areas of the hand. In addition, 
the use of border features from hand detection assisted in the analysis of gestures and 
the various equalizer histograms of Regina Lionnie et al (Lionnie et al., 2011)  

Nowadays, the challenge of implementing another effective form of deep 
learning detection. There are two styles: 1) One-Stage style and 2) Two-Stage style. 1) 
The one-stage model is a single-stage object detection model which bypasses the 
regional proposal step of the two-stage model and runs detection directly over a dense 
sampling of locations. For example, Single Shot Detector (SSD) is suitable for detecting 
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small objects in images (Liu et al., 2016), which has been applied to robots to control 
and interact with humans (Gao et al., 2018). YOLO has been developed to increase the 
speed and accuracy of detection which YOLO v2. For example, Xianlei and Shuying 
(Qiu & Zhang, 2017) used YOLO v2  to run Grab-and-Go Groceries with a high mAP 
of 90.53%. Of course, in detecting hand images from normal photos, the hand detection 
area is smaller but still faster than YOLO v3 , optimized to emphasize more accuracy 
(Redmon & Farhadi, 2018).  Additionally, YOLO v4 is faster and more accurate in the 
dataset (MS COCO AP5 0 . . . 9 5 and AP5 0 )  than all existing detection models 
(Bochkovskiy et al., 2020).Moreover, the ultralytics-designed YOLOv5 is characterized 
by high detection accuracy and good object detection in complex environments (Z. Jin 
et al., 2021)  Trung-Hieu Le et al (Le et al., 2018) used YOLO Architecture to detect 
hands by optimizing spatial data transfer connections. It provides spatial-transfer 
connection (STC) between high-level layers and low-level layers to optimize hand 
detection, which is considered a small object in the picture. 2) Two-Stage Algorithms 
in this group are R-CNN (Girshick et al., 2014), Fast-RCNN (Girshick, 2015), Faster-
RCNN (Shaoqing Ren, Kaiming He Ross Girshick Jian, 2015), and RatinaNet (Lin et 
al., 2017) has been recognized for its fast and accurate object detection performance. 
The usage of a process based on Selective Search creates a set of visual proposals 
scattered about how many objects in the image should be present while examining and 
managing most of the space and then classifying objects and backgrounds. 

1.5.4 You Only Look Once (YOLO) Detectors:  

 You Only Look Once: Unified, Real-Time Object Detection and released in 
2016 (Redmon et al., 2016). YOLO features a single neural network detection to predict 
bounding boxes from grid lines created with a sliding window to find all objects present 
in the class. YOLO will divide the input image into a line or grid size S x S cells. Each 
cell is responsible for predicting its bounding boxes. Then, it finds the midpoint of the 
objects in that grid's cell and defines a boundary to find the probability of what is being 
searched from the grid in each cell. In the next step, it creates a bounding box in the 
probability of different classes coming together. Then, it will be brought together to 
select a pair of classes and boxes created that will select the highest score as the answer 
indicating what the object is and where it is in the image. If no object exists in the grid 
cell, the YOLO loss function will not optimize for invalid class prediction. The network 
predicted the probability of only one class per cell regardless of the number of B boxes. 
The YOLO architecture is similar to GoogLeNet which draws on the DarkNet 
Architecture with Conv. 1 x1  and 3 x3  Conv layers and adds class prediction to the 
vector output fully connected. The last sequence will get the shape S x S x (B * 5 + C) 
as the output Figure 7. 
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Figure 7 The network architecture of YOLO.  

In 2021, YOLO was compared with the research of (Ge et al., 2021) on the MS 
COCO data set used to train and test the algorithm. It was found that YOLOv5 had 
better accuracy performance than YOLOv4 and YOLOv3. However, the speed of 
detection showed that YOLOv3 was faster, so we considered using only these two 
versions.  

In YOLOv3 has been improved to focus more on accuracy and detection of 
small objects. Improved detection density is achieved by using Darknet 53 as the core 
to extract features from input images. Afterwards fed to feature pyramid network (FPN) 
as a neck for feature fusion. It is composed of the several bottom-up and top-down paths 
and the head is composed of YOLO layer. Finally, YOLO layer generates the results. 

In YOLOv5 (Nepal & Eslamiat, 2022) is different from the previous releases. 
It utilizes PyTorch instead of Darknet and CSPDarknet53 as a backbone. This backbone 
solves the repetitive gradient information in large backbones and integrates gradient 
change into the feature map that reduces the inference speed, increases accuracy, and 
reduces the model size by decreasing the parameters. This backbone solves the 
repetitive gradient information in large backbones and integrates gradient change into 
the feature map that reduces the inference speed, increases accuracy, and reduces the 
model size by decreasing the parameters. It uses the path aggregation network (PANet) 
as neck to boost the information flow. PANet adopts a new feature pyramid network 
(FPN) that includes several bottom ups and top down layers. This improves the 
propagation of low level features in the model. 

1.5.5 Long Short-Term Memory (LSTM)   
Long Short-Term Memory, developed from a Recurrent Neural Network 

(RNN), is suitable for use with sequences (Hochreiter & Schmidhuber, 1997), such as 
video work or extracting words from the text in a book, etc. LSTM was developed to 
solve the problem of lower gradient values from the back-propagation by storing the 
state of each node to be used to recognize the true value when a rollback occurs and to 
decide whether the incoming data should be remembered or discarded with a structure 
as shown in Figure 8. The internal structure of the LSTM consists of four functions that 
are used to create functions called gates.  
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Figure 8 The internal structure of the LSTM. 

1.5.6 Connectionist Temporal Classification Loss (CTC Loss)   

CTC Loss (Graves et al., n.d.) is a function used in LSTM learning to decode it 
to solve the problem of sequenced data. CTC Loss predictive continuity is used to 
classify sequences of groups of data. In handwriting recognition and speech 
recognition, the CTC finds whether blank or inactive information is used. Therefore, 
blank or non-character data will be replaced with a similar prediction.  

 
 



 

 

 
  

Chapter 2  

An End-to-End Thai Fingerspelling Recognition Framework  

with Deep Convolutional Neural Networks  

The WHO reports that approximately 34 million people worldwide are deafness 
and hearing loss. In 2050, it will increase to 900 million people. It is essential to 
communicate with the hearing impaired in hand sign language. This paper proposed an 
end-to-end fingerspelling recognition framework of the Thai sign language based on 
deep convolutional neural networks (CNNs). Future, we divided our framework into 
two processes. In the first process, we focus on the detection of hands using the 
YOLOv3 objection detection framework. In the second process, we proposed using 
five CNN architectures; MobileNetv2, DenseNet121, InceptionResNetV2, 
NASNetMobile, and EfficientNetB2, to create the most robust model that provides high 
recognition performance. Hence, we evaluated the proposed framework to detect and 
recognize three Thai fingerspelling (TFS) datasets, including TFS, KKU-TFS, and 
Unseen-TFS. As a result, we found that the YOLOv3 showed a high precision value on 
the TFS dataset. However, the worst performance presented on KKU-TFS and Unseen-
TFS datasets. But, our proposed framework could not detect hands from only one image 
on the KKU-TFS and Unseen-TFS datasets. Therefore, we also examined the CNN 
architectures to recognize the 1-stage Thai fingerspelling images. The experimental 
results showed that the DenseNet121 obtained an accuracy of 93.99% on the TFS 
dataset and 90.40% on the KKU-TFS dataset.  

2.1 Introduction  

 Humans are considered as a valuable resource. Various factors that affect 
human beings are imperfect in their physical condition causing disabilities, such as 
congenital disabilities and accidents. World Health Organization (WHO) reported that 
over 1 billion people, or approximately 15% of the world's population who were 
disabled. Globally, more than 1.5 billion people experience some decline in their 
hearing capacity during their life course, of whom at least 430 million will require care. 
It is estimated that by 2050 over 700 million people will have disabling hearing loss 
(World Health Organization., 2021). Therefore, it is assumed that these groups need to 
communicate with each other using sign language, which is likely to cause 
communication problems with ordinary people. 

 Many researchers had developed technologies facilities for the disabled, 
(Pornthep Sarakon et al., 2021) especially the hearing loss in order to improve the 
efficiency of sign language communication, such as sensor technology and depth 
camera. (Hoang et al., 2020) Because of the expensive technology, researchers focus 
on improving image and video recognition using artificial intelligence techniques. Zhao 
et al. (Yang et al., 2016) proposed using only a webcam to communicate with disabled 
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people. These techniques have detected hand movement and interpret hand gestures 
that disabled people express to ordinary people. 

 Due to the complexity of sign language, researchers designed and developed 
processes for static-sign language recognition, which means one gesture has only one 
meaning. Pariwat & Seresangtakul (Pariwat & Seresangtakul, 2017) and Nakjai & 
Katanyukul (Nakjai & Katanyukul, 2019) created a static sign language image dataset. 
The image collections are created by setting the scene and assigning the background 
color to contrast with human skin color. However, the black suit is also worn to be able 
to detect the hand area.  

In actual situations, sign language interpretation may not be in the setup area. It 
harmful impacts the algorithm that unable to detect and recognize hand correctly. 
However, deep learning algorithms, such as single shot detector (SSD) (Liu & 
Kehtarnavaz, 2016) and YOLO (Redmon et al., 2016), can be proposed to detect the 
hand area without a black background, making it possible to detect hands in any 
environment. 

2.2 Related work  

2. 2.1 Hand detection. In 2018, the improved single shot multi box detector 
(SSD) with the VGG16 architecture as a backbone module was proposed by Gao et al. 
(Gao et al., 2018) The improved SSD method was invented to detect small target hands 
for space human-robot interaction in a real-time environment. It increased the detection 
of the small target hands by adding the feature fusion module. 

Le et al. (Le et al., 2018) proposed the YOLO architecture using the spatial 
transfer connection (STC) for detecting the hands from the complex environment. With 
the STC operation, the small convolution operation with the size of 1x1 was applied to 
the input features in each convolution layer to reduce the output feature. These two 
YOLO architectures were evaluated based on the intersection over union (IOU) value 
on the hand dataset. The result showed that the YOLO with STC operation 
outperformed the original YOLO architecture. 

In 2019, Bose & Kumar (Rubin Bose & Sathiesh Kumar, 2019) used Faster R-
CNN with the InceptionV2 architecture as a backbone module. The Faster R-CNN 
method was proposed to find out the region proposals and classify the hands from the 
whole image. This method was trained using three gradient descent optimization 
techniques (Momentum, RMSprop, and Adam) and train with 35,000 epochs. The result 
showed that the Adam optimization algorithm performed better than momentum and 
RMSprop optimizers.  

2.2.2 Hand gesture recognition using convolutional neural network. In 
2017, Yasir et al. (Yasir et al., 2017) proposed the convolutional neural network to 
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recognition of the Bangla sign language. First, the Leaf motion device was used to track 
the hand motion. With the Leaf motion, continuous frames of hand were extracted using 
the Leaf motion device. Second, the continuous frames were then segmented using the 
hidden Markov model into the specific state. The time-series data were generated at 
this state. Finally, the time-series data was sent to train with the CNN method. The 
experimental result showed that the error rate was decreased from 5% to around 1.5% 
in only three epochs.  

In 2018, Rao et al. (Rao et al., 2018) presented a multi-stage CNN for Indian 
sign language gesture recognition. In the first stage, the feature extraction module 
consisted of four convolution layers, four rectified linear unit (ReLU) activation 
functions, and two stochastic pooling layers. In the second stage, the classification 
module comprised one dense layer followed by the ReLu layer and a softmax function 
which was the last layer of the network. The output of the proposed CNN model had 
200 units. The multi-stage CNN model obtained a recognition accuracy of 92.88%.  

Bhuiyan et al. (Islam et al., 2018) the robust deep features were extracted from 
human hand gesture images using a deep CNN method. The proposed deep CNN 
method included five convolution layers and two fully connected layers. The last fully 
connected created the feature vector of size 4,096 units. Subsequently, the support 
vector machine (SVM) with a one-against-all strategy was offered for training the deep 
feature. The result showed that the proposed method provided a recognition accuracy 
of 94.57% on the American sign language dataset. 

2.3 End-to-End Thai Fingerspelling Recognition Framework 

This section introduces the end-to-end Thai fingerspelling recognition 
framework that mainly focuses on 1-stage Thai fingerspelling images, as shown in 
Figure 9.  

 

Figure 9 The proposed framework of the 1-stage Thai fingerspelling recognition 
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2.3.1 Hand Detection using YOLOv3. Redmon et al. (Redmon et al., 2016) 
proposed YOLO (you only look once) for real-time object detection and could process 
video in real-time at 45 frames per second, which is implemented and improved the 
object detection and tracking faster. YOLOv3 consists of two parts; feature extraction 
and bounding box prediction. In the feature extraction part, the 53 convolutional layers 
are followed by two fully connected layers for extracting the feature from the grid cell. 
In the bounding box prediction part, the YOLOv3 algorithm starts with dividing the 
image into a small grid cell (Dang et al., 2020). Then, the YOLOv3 algorithm will 
predict the bounding boxes in three different scales from each grid cell and return the 
class probabilities for those boxes. Finally, these probabilities are used to predict if the 
gird cell contains target objects, as shown in Figure 10. 

 

Figure 10 Hand detection with Yolov3 Network Architecture. 

2.3.2 1-stage Thai Fingerspelling Recognition with Deep Convolutional 

Neural Networks. This section described two deep CNNs, including DenseNet121 and 
MobileNetV2, according to the high performance obtained while evaluating these two 
CNNs. 

DenseNet121. Huang et al. (Huang et al., 2017) proposed a dense convolutional 
network, called DenseNet. The DenseNet architecture was designed to connect a 
current layer to other layers in a feed-forward layer. The concept of the DenseNet was 
that the current layer obtained additional feature maps from all earlier layers. Thus, the 
feature maps from previous layers were then concatenated with the current feature 
maps. Further, they connected until the last layer. The advantage of the DenseNet was 
that it collected all the knowledge of earlier layers. This study used the DenseNet121 
architecture consisting of five convolution layers; convolution layer, max-pooling 
layer, dense block, transition layer, and classification layer. In addition, the 
classification layer was set as 15 dimensions fully connected and classified with the 
softmax function. 
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MobileNetV2. Sandler et al. (Sandler et al., 2018) invented a new lightweight 
architecture that the extended version of the MobileNet, called MobileNetV2. This 
architecture was designed based on inverted residual and linear bottlenecks. The 
depthwise convolution operations were also proposed to create a lightweight 
architecture because it allowed factorizing the convolution layer into two separate 
layers; depthwise and pointwise convolution layers. Furthermore, it decreased the 
parameters to calculate. As a result, the model was relatively small and reduced the 
chance of overfitting. 

2.4 Fingerspelling Datasets 

2.4.1 Thai Fingerspelling Dataset (TFS). This research focused only on the 
one-stage fingerspelling of Thai sign language that contained 15 signs (/k/, /d/, /t/, /n/, 
/b/, /ph/, /f/, /m/, /y/, /r/, /l/, /w/, /s/, /h/, and /o/).  

The TFS dataset used in the experiments included 7,200 images, 480 images in 
each class, and 1280*720 pixels resolution. We collected the Thai fingerspelling 
consonants with the support of 14 undergraduate students in the special education 
department who have experience using Thai sign language and 50 undergraduate 
students with no experience in using Thai sign language. We recorded the images in 
complex and non-complex backgrounds. Examples of the TFS dataset are shown in 
Figure 11. 

  
   (A)  

 
(B) 

Figure 11 Examples of the 1-stage Thai fingerspelling consonants that recorded in 

(A) non-complex and (B) complex backgrounds. 
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2.4.2 Unseen Thai Fingerspelling Dataset (Unseen-TFS). We also proposed 
the unseen Thai fingerspelling dataset, called Unseen-TFS, to evaluate Thai 
fingerspelling detection and recognition algorithms. Remarkably, four volunteer 
undergraduate students with no experience using Thai sign language support us in 
completing this dataset. The Unseen-TFS dataset consists of 300 images of 15 
consonants, as shown in Figure 12(A). 

2.4.3 KKU Thai Fingerspelling Dataset (KKU-TFS). The KKU-TFS was 
proposed by Pariwat and Seresangtakul (Pariwat & Seresangtakul, 2017) in 2017. It 
contains 15 signs of 1-stage Thai fingerspelling and has 375 images, five images in 
each sign. Each image has a size of 250*288 pixels resolution recorded from five 
volunteers. The samples of the KKU-TFS dataset are shown in Figure 12(B). 

  

(A)            

 

(B) 

Figure 12 Examples of the TFS datasets. (A) Unseen-TFS and (B) KKU-TFS datasets 
 



 

 

 
 20 

2.5 Experimental Results 

We evaluated experiments on the TFS datasets, including Thai fingerspelling 
(TFS), Unseen-TFS, and KKU-TFS. All experiments were performed using 
TensorFlow deep learning framework that was running on Intel(R) Core-i5 9400F CPU 
@ 2.90GHz, 32GB RAM, and GPU NVIDIA GeForce GTX 1080. The experiment 
results are explained as follows. 

2.5.1 Experiments on hand detection using YOLOv3. This experiment 
mainly focused on using the YOLOv3 real-time object detection framework for hand 
detection. We concentrated on training the network to identify the location of an object 
which is a hand in an image. We used the mean average precision (mAP) that compares 
the output of the network and the ground-truth bounding box to evaluate a model. A 
higher mAP value is presented the better detection performance. 

The trained the YOLOv3 model on the TFS dataset that included 4,320 training 
images and evaluated on 2,880 test images. The sizes of the input images were 
1280*720 and 1080*720 pixels resolution. The parameter settings used to train the 
YOLOv3 model are as follows: down sample and the batch size are 32 and 4, 
intersection over union (IOU) and non-maximum suppression are 0.5 and 0.5, and the 
number of training iterations is 100 epochs. 

Table 1 Performance evaluation of the YOLOv3 on the TFS dataset. 

Classes mAP Classes mAP 

/k/ 0.9808 /y/ 0.9819 
/d/ 0.9688 /r/ 0.9635 
/t/ 0.9312 /l/ 0.9845 
/n/ 0.9583 /w/ 0.9844 
/b/ 0.9952 /s/ 0.9948 
/ph/ 0.9844 /h/ 1.0000 

/f/ 0.9792 /o/ 0.9887 
/m/ 0.9851 Overall 0.9787 

Table 1 showed the high average precision value achieved from the YOLOv3 
model with mAP = 0.9787. Hence, the highest mAP value appeared in class /h/ with 
the mAP value of one and also the lowest value appeared in class /t/ with the mAP value 
of 0.9312. However, most of the out results could not detect the hand from the complex 
background, as shown in Figure 4b. Moreover, the most expensive computation time 
spent while training the YOLOv3 was 77 hours.  

Therefore, if the increase of the mAP value is needed, thus, it still has an 
opportunity to improve the detection performance by training more example images, 
increase more training iteration, and propose novel data augmentation techniques. 
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(A) 

 

 
(B) 

Figure 13 Illustration of the output that was detected using the YOLOv3. 

(A) The correct hand detection and (B) not detecting hand. 

2.5.2 Experiments of the CNN architectures on 1-stage fingerspelling.   
 We performed the transfer learning technique for the CNN experiments to train 
on the 1-stage fingerspelling images using five CNN models, including MobileNetv2, 
DenseNet1 2 1 , InceptionResNetV2 , NASNetMobile, and EfficientNetB2 .  We also 
concentrated on performing with a small training set. Hence, we selected the training 
set with 60%, 50%, 40%, and 30%, which was the 4,320, 3,600, 2,880, and 2,160 

images, respectively. For the validation, we tested the YOLOv3 five times and reported 
accuracy and standard deviation. The validation and test set used in the experiments 
were 720 and 2,880 images. 
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Table 2 Performance evaluation of the CNN architectures on the validation and test 

sets when training with the different numbers of training set 

CNNs Validation and test accuracy (%) with different 

numbers of training set 

 

60% 50% 40% 30% 

Valid Test Valid Test Valid Test Valid Test 

MobileNetv2 99.47 

±0.003 

98.02 97.77 
±0.002 

96.91 97.38 
±0.004 

95.71 96.17 
±0.006 

93.86 

DenseNet121 99.27  
±0.009 

98.04 98.55 

±0.004 

97.96 98.16 

±0.008 

96.57 96.90 

±0.007 

92.35 

InceptionResNet 
V2 

97.29  
±0.004 

96.62 96.51 
±0.005 

96.19 97.00 
±0.006 

95.21 93.46 
±0.002 

92.80 

NASNetMobile 97.09 
±0.007 

95.23 94.72 
±0.009 

94.69 94.82 
±0.001 

92.81 89.78 
±0.010 

89.00 

EfficientNetB2 93.38 
±0.005 

93.09 92.30 
±0.004 

92.11 91.68 
±0.001 

91.96 90.15 
±0.004 

90.06 

In Table 2, we presented the experimental results with five CNN models. The 
results showed that all CNN architectures obtained accuracy above 90%, except the 
NASNetMobile that gave 89% when training with 30% of the training set. At 60% of 
the training set, MobileNetv2 and DenseNet121 were performed with the highest 
accuracy above 99% on the validation set. 

We found that both MobileNetv2 and DenseNet121 architectures presented 
significant results when training with small training data. These two models obtained 
an accuracy of 93.86 and 92.35%. 

2.5.3 Experiments of the End-to-End Thai fingerspelling framework.  
 We considered the results as showed in Table 2, which showed that the 
DenseNet121 and MobileNetV2 outperformed other CNN architectures. The detection 
and recognition results are presented in Table 3. 

Table 3 The YOLOv3 detection value (mAP) and the CNNs recognition accuracies (%) 

of 1-stage Thai fingerspelling experiments on the TFS datasets 
Processes Methods TFS Datasets 

TFS KKU-TFS Unseen-TFS 

Detection YOLOv3 0.9787 0.6553 0.7944 

Recognition 
DenseNet121 93.99% 90.40% 82.00% 
MobileNetV2 92.81% 65.33% 74.67% 

For hand detection, we trained the YOLOv3 model with 1-stage Thai 
fingerspelling images and achieved the mAP values of 0.9787, 0.6553, and 0.7944 on 
the TFS, KKU-TFS, and Unseen-TFS, respectively. However, the mAP value of the 
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KKU-TFS data was relatively low, but it was detected hand in all 375 images. 
Consequently, the YOLOv3 was not detected in only one image in the Unseen-TFS 
dataset from 300 images and was not detected in six images from the 2,880 test images 
of the TFS dataset. 

For 1-stage Thai fingerspelling recognition, we received the detected result of 
the hand image from the YOLOv3 directly then sent it to the CNN models for 
recognition. In this case, the detected hand images may localize at not the exact location 
as in the ground-truth bounding box. The result showed that the recognition accuracy 
of the TFS dataset was decreased to 93.99% and 92.81% when using DenseNet121 and 
MobileNetV2. As for the Unseen-TFS dataset, these CNN models (DenseNet121 and 
MobileNetV2) obtained low accuracy performance with only 82% and 74.67%. 
Therefore, we conclude that the DenseNet121 can cope well with all TFS datasets, 
especially with the Unseen-TFS dataset. 

In comparison, we compared our result with result in Pariwat & Seresangtakul 
(Pariwat & Seresangtakul, 2017) reported that their method obtained an accuracy of 
91.20% on the KKU-TFS dataset, but it tested on only 75 images. Therefore, our 
experimental results showed an accuracy of 90.40% when testing 375 images of the 
KKU-TFS dataset, so we experimented with five times larger images than Pariwat & 
Seresangtakul. 

2.6 Conclusions 

This paper aims to introduce an end-to-end Thai fingerspelling framework that 
performs hand detection and 1-stage fingerspelling of Thai sign language using deep 
convolutional networks. We first proposed to use state-of-the-art YOLOv3 for training 
on the Thai fingerspelling (TFS) datasets, including Thai fingerspelling (TFS), KKU-
TFS, and Unseen-TFS, to detect and localize the hand. Second, we trained five 
convolutional neural networks (CNNs), consisting of MobileNetv2, DenseNet121, 
InceptionResNetV2, NASNetMobile, and EfficientNetB2. The main purpose was to 
decrease the training examples while training the CNN models. So, we experimented 
with a small training set (60%, 50%, 40%, and 30%). The results showed that 
DenseNet121 and MobileNetv2 outperformed other CNN models. MobileNetv2 and 
DenseNet models, when training with only 30% of the training set, obtained an 
accuracy above 92%. However, when training with 60%, we obtained an accuracy of 
98% from these two CNN models. Finally, we evaluated our end-to-end Thai 
fingerspelling framework on three TFS datasets. We found that our framework could 
detect hands from the image quite well and give the high mAP value on the TFS dataset. 
However, the mAP value significantly decreased when evaluated on the KKU-TFS and 
Unseen-TFS datasets. But, our framework still detects hands at the correct location. 
Moreover, our framework showed an accuracy above 90% on TFS and KKU-TFS 
datasets and slightly reduced accuracy to 82% on the Unseen-TFS dataset. 
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In the future direction, it is important to increase the performance of our end-
to-end Thai fingerspelling recognition framework, including recognition of multistage 
Thai fingerspelling, or recognition hand sign from the video, called action recognition. 
Another direction for future work is considering train the CNN models on the limited 
size of the training set and still provide high recognition accuracy. 

Acknowledgment. We would like to thank all participants from Rajabhat 
Mahasarakham University for their time and interest in contributing to this research. 
Without engagement from participants in collecting the dataset process, this research 
would not be possible.  

 
 
 



 

 

 
  

Chapter 3 

Dynamic Fingerspelling Recognition from Video using Deep Learning 

Approach: From Detection to Recognition  

The world health organization found that more than 34 million people suffer 
from hearing loss and these people need to use sign language to communicate. Hence, 
the sign language recognition system is proposed to communicate with hearing loss 
people and others. In this paper, we aim to propose an end-to-end system to recognize 
the dynamic Thai fingerspelling from video. The proposed system includes two main 
processes. First, we use the YOLOv5 algorithm for the human detection task. 
Subsequently, a uniform distribution method is proposed to select the robust frames 
before applying robust frames to the detection algorithm. Second, we propose dynamic 
fingerspelling recognition that consists of two deep learning architectures: 
convolutional neural network (CNN) and long short-term memory (LSTM). We then 
combine CNN and LSTM, called CNN-LSTM architecture, followed by the recognition 
block. The recognition block comprises dropout, global average pooling, and SoftMax 
layers. For the CNN architectures, we evaluated three CNNs: MobileNetV2, ResNet50, 
and DenseNet201. We found that the proposed ResNet50-LSTM architecture achieved 
an accuracy of 88.42% on the test set of the dynamic Thai fingerspelling dataset and 
also prevented the overfitting problem.  

3.1 Introduction 

Language is essential for the communication of people worldwide. According 
to a World Health Organization survey in 2021 (World Health Organization., 2021), 
over 34 million people worldwide suffer from hearing loss, and the number of people 
with hearing loss is increasing. These people need to use sign language for primary 
communication, thus resulting in the development of technology to learn sign language 
from the movements of the hands and arms to convey meaning. The sign language of 
each country around the world has a different identity.  

Deep learning research proposes a communication tool for effective 
communication between persons with disabilities and people without disabilities.    
Islam et al. (Islam et al., 2018) proposed deep learning to recognize English sign 
language. Their research used the convolutional neural network (CNN) to extract 
features of hand images and learn them with the support vector machine (SVM) 
method. Phong and Ribeiro (Phong & Ribeiro, 2019) used a capsule network to detect 
hands and recognize them at the same time. However, there are different methods to 
find the region of interest (ROI), such as Faster R-CNN and YOLO (Mujahid et al., 
2021) (Yu, 2019). These methods use CNN as the backbone, giving the algorithm to 
find ROI and recognize that particular ROI. In (Phong & Ribeiro, 2019), their method 
is a static recognition of hand signs, which means that their proposed method can 
recognize from only one image. It is not possible to recognize a dynamic hand sign. 



 

 

 
 26 

3.2 Related work 

 In 2016, Chansri and Srinonchat (Chansri & Srinonchat, 2016) presented a 
method for detecting hands from complex backgrounds based on the depth image 
captured by the Kinect sensor for high brightness value objects close to the Kinect 
sensor. It can detect the hand area because hands are closest to the Kinect sensor. The 
hand area was then extracted using a histogram of oriented gradients (HOG) and 
recognized by a neural network. 

In 2017, Pariwat and Seresngtakul (Pariwat & Seresangtakul, 2017) proposed a 
method to recognize Thai sign language by performing only on the static hand sign 
language with a total of 15 Thai symbols. The Thai sign language data used in the test 
were hand-only images taken against a blue background, allowing segment hands by 
transforming the color space from RGB to HSV and then transforming HSV to 
grayscale. Hence, images were transformed from grayscale into a binary images by 
selecting a threshold value of 0.45 to extract the hand area. Then, global and local 
features were extracted. Finally, all the features were learned using the SVM method 
with the RBF kernel and achieved with 91.20% accuracy.  

In 2019, Nakjai and Katanyukul (Nakjai & Katanyukul, 2019) presented a 
method of hand sign recognition for Thai fingerspelling. Their research used a hand 
extraction method by transforming RGB color images to YCbCr. Then, the skin region 
was examined by the brightness values from the chroma channels. Then, extract the 
hand area and learn with CNN, which can recognize 25 classes. The results showed a 
recognition accuracy of 91.26%. 

The limitation of Thai fingerspelling sign language is static hand sign which is 
only 15 Thai alphabets (Nakjai & Katanyukul, 2019) and in a recognition process 
designed to recognize only from one image so that it is unable to recognize dynamic 
hand signs as it requires more than one input image.  

      In 2020, Sugandi et al. (Sugandi et al., 2020) proposed hand gesture recognition 
using a back-propagation neural network (BPNN) based on visual tracking in a real-
time environment. They used skin color detection based on a YCbCr color filter to 
extract the hand region from the background and then converted it to grayscale and 
binary images to speed up the processing time. The hand feature from the binary image 
of the hand region was divided into six regions. Finally, six regions of the hand feature 
of each gesture became the input data of the BPNN. The results showed that the BPNN 
achieved an accuracy of 86.67%. 

In 2021, Pariwat and Seresangtakul (Pariwat & Seresangtakul, 2021) designed 
a Thai sign language recognition system that could recognize dynamic hand signs by 
receiving video inputs, which can recognize Thai hand sign in up to 42 Thai 
symbols. Moreover, Nakjai and Katanyukil (Nakjai & Katanyukul, 2021) designed an 
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automatic Thai finger spelling transcription system that can transcribe Thai Sign 
Language from the video by being able to classify Thai sign language with 20 Thai 
characters and 20 vowels. Their system consists of three steps: alphabet separation, sign 
recognition, sign-sequence classification. 

In this paper, an automated end-to-end fingerspelling recognition system is 
proposed to solve human detection and dynamic fingerspelling recognition tasks. First, 
we select robust frames from the video using the uniform distribution method and send 
those frames to detect humans using the YOLOv5 algorithm automatically. The 
sequence frames are given to extract the sequence pattern and temporal features using 
CNN and LSTM architectures. For that, we combine state-of-the-art CNN with an 
LSTM network, called CNN-LSTM, including MobileNetV2-LSTM, ResNet50-
LSTM, and DenseNet201-LSTM. Further, we add a recognition block containing; 1) a 
dropout layer to prevent the overfitting, 2) a global average pooling layer to average 
output and reduce the dimension of feature maps, and 3) the softmax activation function 
to recognize dynamic fingerspelling from video. The proposed system also enhances 
the accuracy and computation time. In addition, we collected 3,025 videos of dynamic 
Thai fingerspelling, consisting of 42 Thai alphabets, that were taken from 14 volunteers 
who are proficient in Thai sign language. 

The rest of this paper is organized as follows; In Section 2 presents the end-to-
end system of dynamic fingerspelling recognition. The Thai fingerspelling dataset is 
described in Section 3. The experimental results are presented in Section 4. The 
conclusion and future direction are concluded in the last section. 

3.3 Dynamic Fingerspelling Recognition System Architecture  

We divided the proposed architecture into three main parts: frame selection, 
human detection, and dynamic fingerspelling recognition. The proposed architecture is 
shown in Figure 16 and the details of the three parts are in the following sections.  

3.2.1 Frame Selection. Generally, videos were recorded with unequal length. 
In this paper, we first cut frames at the start and end of the video with 10% and 5%, 
respectively, because these parts contain unnecessary information. Second, we 
computed the jump ratio over the video frame using the following equation: jump ratio 

= floor (No. of all frames / No. of selected frames), where No. of selected frames in our 
experiment is 32.  For example, if the jump ratio was 5, we used frames no. 1, 6, 11, ..., 
N, where N is the last frame. Finally, we randomly selected only 32 frames using the 
uniform distribution method which the probability of each frame is equal chances to 
select, as shown in Figure 14. 
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Figure 14 Frame Selection method. 

3.2.2 Human Detection. To build an end-to-end fingerspelling recognition 
system, this paper first aims to detect humans from the videos using a deep learning 
approach. We proposed to use the fast and accurate YOLOv5 (You Only Look Once) 
algorithm because we required an algorithm that detects humans in a real-time 
condition. YOLOv5 [12], the latest update algorithm, the pre-trained model that trained 
on the COCO dataset was proposed to detect the human from the video, as shown in 
Figure 15. In this paper, we did not experiment on human detection. We only applied 
the YOLOv5 algorithm. 

 
Figure 15 Human Detection with YOLOv5. 

  As shown in Figure 16, after we extracted images from the video, we applied 
the YOLOv5 algorithm to detect humans as the region of interest (ROI) and send that 
ROI to the CNN model. 

 

Figure 16 Illustration of the dynamic fingerspelling recognition system 
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3.2.3 Dynamic Fingerspelling Recognition. Dynamic fingerspelling recog-
nition combines two deep learning approaches: CNN and RNN. The details of the deep 
learning approaches are described as follows. 

CNN. We used different architectures of CNN: MobileNetV2, ResNet50, and 
DenseNet201, to extract robust deep features from a short video. In this research, the 
video was first extracted into a single frame (image) and then given to the CNNs to 
extract the spatial features from the image. We briefly described three CNN 
architectures in the following section. 

 MobileNetV2. We used the lightweight MobileNetV2 architecture in our 
experiments. MobileNet was invented for mobile visual applications (Sandler et al., 
2018) because it used depth wise separable convolution to reduce the number of CNN 
parameters. In addition, MobileNetV2 was designed based on an inverted residual 
structure and linear bottleneck. The bottleneck block contains three layers (1x1 conv2D 
with ReLU6, depthwise convolution with ReLU6, and linear 1x1 conv2D) and each 
layer has the expansion factor that expands the convolutional layers. Further, the 
residual was proposed to connect two bottleneck layers, like ResNet architecture. 

 ResNet50. Plain architectures, such as VGGNet and Alexnet, could have 
problems of vanished and exploding gradients when using very deep layers. The 
residual network (ResNet) was proposed to solve these problems by introducing the 
shortcut connection that does not transform the input from the previous to the following 
building blocks (called bottleneck design)(Kaiming He et al., 2016). In the bottleneck, 
the 1x1 conv2D is added at the beginning and end of the block to reduce the number of 
parameters in the network. In our experiments, we used ResNet50 which contains only 
50 layers.  

 DenseNet201. The idea of connections between layers was invented in 
DenseNet201 and was the same as the ResNet. In the DenseNet architecture (Huang et 
al., 2017), instead of shortcut connections, dense connections were used to connect 
between the current and following layers. Hence, the feature maps from the current 
layer were concatenated and passed to the next layers during forwarding propagation. 
At the same time, the backpropagation process sent back the error signal from the final 
classification layer to the earlier layers to adjust the parameters. In this paper, we used 
the DenseNet201 architecture that contained convolution, pooling, four dense blocks, 
three transition layers, and a classification layer. 

In our proposed network, the last layer of CNN architectures was the global 
average pooling (GAP) because the fully connected layer (FC) and softmax function 
were removed from the CNN architectures. After applying the GAP layer, the size of 
the feature map in each CNN was as follows: MobileNetV2=1x1280, 
ResNet50=1x2048, and DenseNet201=1x1920. Furthermore, we extracted 32 images 
from the video and then computed sequence patterns from sequence images. Hence, the 
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sequence patterns given to the recurrent neural network (RNN) of each CNNs were as 
follows: MobileNetV2=32x1280, ResNet50=32x2048, and DenseNet201=32x1920. 

RNN. The RNN architecture was proposed to learn the sequence pattern of the 
spatial features extracted by CNN architectures. In the RNN architecture, we added 
dropout and GAP layers to avoid the overfitting problem and to decrease the size of the 
feature map before giving them to the softmax layer. We experimented with two RNN 
architectures: LSTM and GRU. The details are presented as follows. 

 Long short-term memory. LSTM is a sequential network proposed to learn 
sequence patterns and address the vanishing gradient problem (Soliman et al., 2019). It 
has memory blocks that contain three gates: input, output, and forget gates. The LSTM 
also has a memory cell that can be recurrently self-connected. The memory blocks are 
designed to control the information inside the LSTM unit that has an advantage in 
remembering past information and forgetting unnecessary information from the 
network. 

 Gated recurrent unit. The GRU was designed to be similar to the LSTM 
network, but simpler than it (Chen et al., 2021). The GRU network could also solve the 
vanishing gradient problem that constantly occurs when using the RNN architecture. It 
contains only two gates: reset (short-term memory) and update gates (long-term 
memory). The GRU can store sequence patterns from long ago and release irrelevant 
patterns to the output. Further, the GRU trains faster than the LSTM network. In this 
paper, we compared the performance of two hidden state sizes (32 and 64 hidden states) 
of LSTM and GRU. 

Recognition block. After extracting the temporal features using RNN 
architecture, we decided to include two extra layers followed by the softmax layer.        
1) The dropout layer to prevent the model from overfitting problems, and 2) A layer to 
calculate the average output of each feature map using the GAP operation. It also could 
reduce the dimension of the feature map. The softmax layer is the last layer that 
computes the final probabilities and recognizes the output. 

3.4 Dynamic Thai Fingerspelling Dataset.  

Dynamic Thai fingerspelling is a short video database with 3,025 videos and 42 
classes. The videos of dynamic Thai fingerspelling were recorded using a DSLR camera 
using a frame rate of 50 frames per second. We recorded the videos with 14 volunteers 
who can use Thai sign language fluently. The recorded length of the videos was around 
1-5 seconds. Examples of the DTF dataset are shown in Figure 17. 
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               f1                            f2                          f3                   f4                          …..                       fn 

 

Video 1 

 

Video 2 

Figure 17 Examples of dynamic Thai fingerspelling dataset. 

Note that, f1, f2, …, fn means frame number 1, 2, …, n. 

3.5 Experimental Results and Discussion.  

The proposed framework was implemented based on the TensorFlow platform 
running on Intel(R) Core (TM) i7-4790 Processor 3.6GHz, 16GB DDR4 RAM. We 
trained all deep learning models with these parameters: stochastic gradient descent 
(SGD) optimizer, the momentum of 0.9, rectified linear unit (ReLU) activation 
function, and 500 epochs training. Furthermore, we performed the 5-fold cross-
validation (5-cv), test accuracy, and testing time as for the evaluation metrics. 

3.4.1 Experiments with CNN models using different learning rates. We 
experimented by extracting the deep sequence features using three CNN models: 
MobileNetV2, ResNet50, and DenseNet201. Then, all features were given to the LSTM 
architecture using 32 units to extract temporal features and classify by using the 
SoftMax function. In this experiment, the CNN parameters were adjusted according to 
the previous section. Further, we mainly study the impact of the learning rate used while 
training the CNN-LSTM model using 0.001, 0.0001, and adaptive learning rate that 
reduces the value from 0.01 to 0.0001. We trained the CNN models on the training set 
and used the validation set for evaluation. The experimental results are shown in     
Table 4. 

Table 4 Experiment with different Learning rates.  

CNN-LSTM Model 
Test Accuracy (%) with Different Learning Rates 

0.001 0.0001 Adaptive 
MobileNetV2-LSTM 81.98 80.98 79.01 
DenseNet201-LSTM 82.97 72.14 77.76 

ResNet50-LSTM 87.93 82.14 81.81 
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In Table 4 shows the experimental results from three CNN models, when using 
a learning rate of 0.001 which achieved the highest accuracy on the validation set. As a 
result, the best CNN model was the ResNet50 which achieved 87.93% accuracy. Note 
that we subsequently used the learning rate of 0.001 while training the CNN-LSTM 
models in the following experiments. 

3.4.2 Experiments with CNNs and RNNs using different RNN sizes. In this 
section, we evaluated the performance of the CNNs and RNNs (LSTM and GRU) 
using two different numbers of units: 32 and 64 units.  

Table 5 Comparison between CNN-LSTM and CNN-GRU with different RNN units. 

CNN Models 

No. of Units in RNNs 

LSTM GRU 

32 64 32 64 

MobileNetV2 81.98 83.96 71.23 72.23 
DenseNet201 82.97 84.62 72.14 74.24 

ResNet50 87.93 89.16 77.52 77.68 

As shown in Table 5, it undoubtedly shows that the LSTM, when using both 32 
and 64 units, outperformed the GRU. The maximum accuracy of the ResNet50-GRU 
with 64 units was only 77.68%. In contrast, the ResNet50-LSTM with 64 units had the 
best performance and achieved 89.16% accuracy on the validation set. In addition, the 
accuracy obtained above 81% when the CNN model combines with the LSTM. Note 
that we chose the number of units in the LSTM as 64 units in the following experiments. 

3.4.3 Experiments with CNN-LSTM. In this experiment,  as shown in  Figure 
16, we decided to add the extra densely connected layer with 64 units between the GAP 
layer and softmax activation function. In the densely connected layer, the dot product 
was applied as a non-linear transformation between the weighted parameters and the 
output of the GAP layer. 

Table 6 Comparison between CNN-LSTM and CNN-LSTM with a densely connected 

layer. 

  

CNN Models 

LSTM LSTM with a densely connected 

layer 

5-CV Test 

Accuracy 

(%) 

Testing time 

(seconds per 

video) 

5-CV Test 

Accuracy 

(%) 

Testing time 

(seconds per 

video) 

MobileNetV2 83.95±2.525 83.41 6.70s 82.54±3.006 82.14 6.73s 
DenseNet201 84.64±2.462 82.97 7.04s 79.45±1.426 76.85 7.07s 

ResNet50 89.15±2.571 88.42 9.50s 86.45±2.146 85.45 9.53s 

The experimental results comparing CNN-LSTM and CNN-LSTM with one 
densely connected layer are shown in Table 6. The results showed that the LSTM 
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without a densely connected layer outperformed LSTM with one densely connected 
layer. As a result, the ResNet50-LSTM achieved the best accuracy on both the 5-CV 
and test set with 89.15% and 88.42%. We confirmed that the proposed network with a 
combination between CNN and LSTM prevented the overfitting problem.  

   
(A) 

 

(B) 
Figure 18  Illustrated the validation loss values of CNN-LSTM models. 

The loss values of CNN-LSTM (A) without and (B) with a densely connected layer. 
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Figure 19 Illustration of the ROC curves for dynamic fingerspelling  

recognition using different CNNs. 

The validation loss values of CNN-LSTM architecture are shown in Figure 18. 
Figure 18(A) shows that the loss values decreased quickly at approximately epoch 50. 
Also, the loss values of Figure 18(A) are smoother than Figure 18(B). Consequently, 
the loss values of Figure 18(A) indicated that the CNN-LSTM without a densely 
connected layer was trained with the optimal architectures and parameters. 

Additionally, the receiver operating characteristic (ROC) curves for CNN 
models are shown in Figure 19. The ResNet50 had the greatest AUC (0.9891) in 
dynamic fingerspelling recognition. 

3.4.4 Accuracy of Fusion CNNs-LSTM architecture. In other papers, the 
fusion architecture between two CNNs and LSTM outperformed the single CNN and 
LSTM. We demonstrate the impact of the fusion CNN-LSTM architectures, as shown 
in Table 7.  

Table 7 Evaluation of Fusion CNNs-LSTM. 

Fusion CNNs 

LSTM 

5-CV Test Accuracy 

(%) 

Testing time 

(seconds per 

video) 

MobileNetV2+DenseNet201 85.29±3.395 84.29 13.74s 
MobileNetV2+ResNet50 89.42±3.670 88.62 16.20s 
ResNet50+DenseNet201 88.36±2.917 87.76 16.54s 

Table 7 shows the results of experiments with combinations of CNNs: 
MobileNetV2+DenseNet201, MobileNetV2+ResNet50, and ResNet50+DenseNet201, 
using the concatenation operation before sending the sequence patterns to the LSTM 
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network. The combination of MobileNetV2 and ResNet50 outperformed other 
combination CNNs. The fusion CNNs (MobileNetV2+ResNet50)-LSTM achieved an 
accuracy of 89.42% and 88.62% on the 5-CV and test sets, respectively.  

Consequently, the Fusion CNN-LSTM showed slightly higher accuracy 
compared with the single CNN-LSTM, but the result was not significant at p< 0.05. 
However, the Fusion CNN-LSTM architecture spent much more time on recognition 
than using only a single CNN-LSTM architecture. 

3.5 Conclusions 

We presented an automated end-to-end dynamic fingerspelling recognition 
system that contains frame selection, human detection, and fingerspelling recognition. 
We focused on the deep learning approaches; the YOLOv5 algorithm for human 
detection and CNN-LSTM architecture for recognizing the dynamic fingerspelling 
from the video. First, 32 video frames were selected using the uniform distribution 
method and sent to extract the sequence patterns using CNN architecture. Second, the 
sequence patterns were given to the LSTM architecture, followed by three layers: 
dropout, GAP, and SoftMax activation function. Moreover, we mainly evaluated the 
recognition performance of CNN-LSTM architectures. The results obtained from the 
ResNet50-LSTM architecture achieved the highest accuracy on the validation set. We 
experimented with the 5-CV and test set to confirm that the ResNet50-LSTM 
architecture outperformed MoblieNetV2-LSTM and DenseNet201-LSTM 
architectures. Additionally, we compared the MobileNetV2-LSTM with the fusion 
CNN-LSTM architecture. The results showed that the fusion CNN-LSTM slightly 
outperformed MobileNetV2-LSTM. The fusion CNN-LSTM spends more 
computational time on recognition. As a result, we are not recommending the use of 
fusion CNN-LSTM architecture for real-time video fingerspelling recognition.  

In the future work, we plan to apply the proposed method to recognize multiple 
words and sentences of the Thai sign language. The lightweight 3D-CNN might be 
included in future experiments to enhance accuracy and computation time. 

Acknowledgments. This research project was financially supported by Mahasarakham 
University. We would like to thank all participants from Rajabhat Mahasarakham 
University for their interest in contributing to this research.  

 

 



 

 

 
  

Chapter 4 

Word Recognition in Thai Sign Language Sentences  

From Video with Deep Learning 

Sign language is a common language used for communication among deaf 
people and is important for the development of deaf people's knowledge and abilities. 
The use of hand and finger gestures in spelling and gestures to convey the meaning of 
words and sentences has a complexity of gestures to interpret that is difficult to 
understand.  Hence, the sign language recognition system is proposed to communicate 
with hearing loss people and others. In this paper, our goals are to recognitions words 
and sentences in Thai Sign Language from the video as an end-to-end system to 
recognize. The proposed system included two main processes. Firstly, data preparation 
consists of The YOLOv5 algorithm for the human detection task. It extended data to 
increase the amount of data and optical flow to optimize the rendering of motion of the 
optical flow. Secondly, we proposed word  recognition in Thai sign language that 
consists of two deep learning architectures, including four layers of 1D convolutional 
neural network (CNN) and two layers of long short-term memory (LSTM). After that, 
we combined CNN and LSTM, called CNN-LSTM architecture, decoded algorithms 
by the recognition block with Soft-max layers, followed whit Connection temporal 
classification (CTC) to predict continuous sequence characteristics. We tested 
performance with words error rate (WER) value. For the CNN architectures and 
evaluated three CNNs; VGG16, ResNet5 0 , and DenseNet121 .  We found that the 
proposed DenseNet121 - LSTM architecture achieved a WER of 0.4286 on the test set 
of the Thai sign language sentence (TSLS) dataset.  

4.1 Introduction 

Sign language is a common language used for communication among deaf 
people and is important for the development of deaf people's knowledge and abilities. 
The use of hand and finger gestures in spelling and gestures to convey the meaning of 
words and sentences has a complexity of gestures to interpret that is difficult to 
understand. Therefore, many technologies have been developed. for example, sensor 
technologies to aid in communication, such as Accelerometers, Gyroscope, Flex Sensor 
(Shukor et al., 2015) and Depth Camera (Huang et al., 2018), (Bantupalli & Xie, 2018). 
To improve the communication of this hearing impaired. Without help, it maybe has 
serious and negative effects on language development. Of course, the use of sign 
language is necessary for these people, especially, the need to communicate with 
normal people. In general, sign languages are diverse and unique in different countries. 
Likewise, Thai sign language has integrated a variety of gestures from hand movements 
which involve pattern matching, computer vision, natural language processing, and 
linguistics. To identify pre-generated signals and recognize their meaning, we 
implemented a sign language gesture recognition system and interpret results with high 
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speed and accuracy. The important and unique role of technology in image gesture 
recognition is accepted in the development of systems with a vision-based approach to 
preprocessing. It can detect and recognize visual sign language using the unique 
architecture of the convolutional neural network (CNN).  

However, we developed powerful hand-detection and feature extraction models 
and, used CNNs to have impressive capabilities for manipulating still images. However, 
it didn't cover sequences effectively. Therefore, CNNs were integrated with other deep 
learning models. It includes recurring neural networks (RNNs), long short-term 
memory (LSTM), and gated iterative units (GRUs) (Wang et al., 2016; Cheok et al., 
2019; Escobedo Cardenas & Chavez, 2020; Lata, et al., 2022). Sign language 
recognition for use in recognition models has two forms of data input, including static 
and dynamic gestures. It extracts the necessary properties by offering many in-depth 
models to use still image inputs (Nakjai & Katanyukul, 2019; Pariwat & Seresangtakul, 
2017; Salian, 2017) or sequences (Bantupalli & Xie, 2018). Although, dynamic inputs 
include sequential information that may be useful in improving the accuracy of sign 
language recognition. Besides, there is still the challenge in using this information, such 
as the computational complexity of the input sequence. In addition, dynamic inputs can 
be divided into dynamic inputs used in word-level recognition and continuous dynamic 
inputs used at the sentence level to further challenge continuous dynamic input as well 
as tokens of sentences with separate words. In detecting the beginning and end of a 
sentence, and handling abbreviations and synonyms of sentences, all sign language 
recognition that aforementioned will generate a comprehensive sign language 
recognition system.  

The significant contributions of this research are summarized in the following: 
recognition of words and sentences in Thai Sign Language from the video as an end-
to-end system to recognize. We mainly evaluated the recognition performance of CNN-
LSTM architectures, which are applied to recognize a Thai sign language sentences 
dataset. We focused on the deep learning approaches of the YOLOv5 algorithm for 
human detection. Besides, we used optical flow to enhance image motion learning and 
CNN-LSTM architecture for recognizing Thai sign language sentence recognition.  We 
extend a data frame of 100 to increase the learning curve due to the small number of 
STSL datasets. Moreover, the sequence patterns were given to the four 1D 
convolutions, followed by two LSTM architectures, and the SoftMax activation 
function. We experimented with connectionist temporal classification (CTC) decoding 
to help answer sentences before making predictions. The performance was evaluated 
by determining the character error rate (WER).  

Paper Outline: This paper has been organized as follows. Section 2, Related 
work in techniques of sign language recognition with deep learning. Section 3, 
Proposed Method. Section 4, experimental setup. Section 5, Discussion. The last 
section Conclusion the significant findings from this study and describes future work. 
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4.2 Related work 

This section presents a brief introduction to deep learning in recent years 
regarding the recognition of various sign languages using Deep Learning methods, 
especially, Computer Vision and Natural Language Processing. Recognition of sign 
language or hand gestures has still limitations on use in live situations where hand 
gestures variation, illumination change, or background complexity, and is a large area 
that does not affect the consideration data issue. Therefore, there is a process to solve 
that problem of means in finding areas of interest (ROI) or using them to isolate those 
areas. 

In 2016, Chen et al., (2016) (Chen et al., 2016) indicated that techniques of skin 
models and background subtraction are used to obtain training and test data for CNNs 
by camera- taken datasets. They adopted a simple Gaussian skin color model to filter 
out non-skin colors of an image robustly. The accurate result was 93.80%, which 
assumes recognition with a fixed hand gesture data set.  

In addition, Lata & Surinta, (2022) (Lata & Surinta, 2022) developed an end-
to-end Thai sign language fingerspelling recognition by using the deep convolutional 
neural network architecture. The first process was the detection of hand regions “You 

only live once version 3 (YOLOv3)” to define regions of interest (ROI) and continue 
with the second process was the usage of DenseNet121 architecture. The result of the 
ability to recognize sign language characters was an accuracy of 93.99%. 

Dadashzadeh et al., (2018) (Dadashzadeh et al., 2018) proposed a two-step in-
depth model for hands, gesture segmentation, and recognition. A two-step CNN model 
was used for pixel-accurate semantic segmentation as well as final hand gesture 
recognition. Residual deep neural network integration and atrous spatial pyramid 
integration were used for the segmentation step. Evaluation results on the OUHANDS 
dataset showed a state-of-the-art recognition accuracy improvement for static hand 
gestures of 1.6%. 

Rastgoo et al., (2018) (Rastgoo et al., 2018) proposed a hand signal recognition 
model using a Restricted Boltzmann machine (RBM) from two image data formats 
consisting of RGB and depth. They tested the model in three formats, including original 
images, cropped images, and cropped images with noise. In the first step, the hand of 
each crop was detected using a CNN.  Subsequently, the gesture would have three input 
images to the RBM. The output of the RBM two modalities was fused into the other 
RBM to recognize the output sign label. Afterward, training was performed on four 
publicly available datasets, including Massey University Gesture Dataset 2 0 1 2 , the 
American Sign Language (ASL) fingerspelling dataset from the University of Surrey's 
Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling.  The 

results showed that the model achieved state-of-the-art with a relative accuracy 
improvement of 27.31%, 28.56%, 2.9%, and 11.13%, respectively.  
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 Bantupalli and Xie (2018) (Bantupalli & Xie, 2018) used deep learning in 
combination with computer vision to solve the problem of communicating with 
hearing-impaired people in American Sign Language by creating a vision-based 
application that offers sign language translation to text thus aiding communication 
between signers and non-signers. The next step was the use of inception which is CNN 
and the RNN model training on temporal features. The dataset of 600 training samples 
of each 300 frames was shuffled with 80-20 splits into test and validation data.  

 Wu ( Wu, 2 0 1 9 )  performed hand gesture detection using the edge detection 
algorithm of Canny to extract border features and perform double-channel mutual 
recognition using a convolutional neural network, called a double convolutional neural 
network (DC-CNN algorithm), resulting in higher recognition results than single-
channel CNN. Meanwhile, it was adopted to light and dark background patterns as well 
as simple and complex backgrounds using the two-hand gesture database, the JTD, and 
the NCD datasets. 

Huang et al., (2018) (Huang et al., 2018) proposed attention-based 3D-CNNs 
for SLR. The framework had 3D convolutional networks that learn spatiotemporal 
features, and the attention mechanism helps to select the clue. In training 3D-CNN for 
capturing spatiotemporal features, spatial attention was incorporated into the network 
to focus on the areas of interest.  After feature extraction, temporal attention was utilized 
to select the significant motions for classification. The proposed method was evaluated 
on two large-scale Chinese sign language (CSL) datasets.  The experiment result 
demonstrated the effectiveness of their approach compared with state-of-the-art 
algorithms. 

Chaikaew et al., (2021) (Chaikaew et al., 2021) created a Thai Sign Language 
Recognition Application and developed it for real-time sign language translation with 
a MediaPipe framework that helps to extract the hand. The recognition model of hand 
gestures with various Recurrent neural networks (RNN) that were built by LSTM, 
BLSTM, and GRU had an accuracy greater than 90 percent. 

Wang et al., (2022) (Wang et al., 2022) proposed a (2+1)D-SLR network based 
on (2+1)D convolution. Unlike other methods, the proposed network achieved higher 
accuracy at faster speeds by using a series. The large Chinese Sign Language video data 
known as NCSL, including 300 different Sign Language words displayed by 30 
volunteers. The results on NCSL and other large Sign Language datasets found that 
LSA64 has an accuracy of 96.4% and 98.7% respectively. The results indicated that 
This method can not only achieve accuracy in the competition but faster than currently 
known sign language recognition methods. 

Sanalohit and Katanyukul., (2022) (Sanalohit & Katanyukul, 2022) proposed 
building upon the recently launched MediaPipe Hands (MPH). MPH was a high-
precision well-trained model for hand-keypoint detection. The data investigated three 
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Thai Finger Spell (TFS) schemes: static-single-hand (S1), simplified dynamic-single-
hand (S2), and static-point-on-hand (P1) schemes. The results showed that MPH can 
satisfactorily address single-hand schemes with an accuracy of 84.57% on both S1 and 
S2. However, their finding revealed a shortcoming of MPH in addressing a point-on-
hand scheme which is an accuracy of 23.66% on P1 conferring to 69.19% obtained 
from conventional classification trained from scratch. This shortcoming was 
investigated and attributed to self-occlusion and handedness. 

Li et al., (2020) (Li et al., 2020) proposed a deep learning method for word-
level sign recognition on large-scale Word-Level American Sign language (WLASL). 
They compared two different models between a holistic visual appearance- based 
approach and 2 D human gesture-based methods with multiple deep learning methods, 
both CNN and RNN. Moreover, it is the proposition of a novel pose-based temporal 
graph convolution network (Pose-TGCN) that models spatial and temporal 
dependencies in human pose trajectories simultaneously that has further boosted the 
performance of the pose-based method. The results showed that pose-based and 
appearance-based models achieve comparable performances up to 6 2 . 6 3 %  at top-10 

accuracy on 2,000 words. 

4.3 Proposed Method 

This section explains the framework of word and sentence Thai sign language 
recognition video. There are two main processes. In the first process, data preparation 
was proposed for the selection of 100 frames in the video recorded at different lengths. 
We used YOLOv5 to detect humans and determine the ROI of the desired image. 
Finally, 32 frames according to Lata et al. (Lata, Gonwirat, et al., 2022) from 100 
frames were selected forward in the Thai sign language sentence recognition process. 
To increase the number of datasets, we selected 32 and extends data frames 100 times 
to obtain different datasets. Therefore, there were 100 datasets in 1 video, and 1 set 
contains 32 frames. The second process, Thai sign language sentence recognition was 
used for predicting words and sentences of the Thai sign language. The prepared frames 
extracted the robust deep features from state-of-the-art CNNs (VGG16, ResNet50, and 
DenseNet121). These features were fed into conv1D and LSTM to classify words and 
sentences. Finally, CTC was used to predict a continuous sequence of the sentence. 
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Figure 20 The Proposed Framework for Thai sign language recognition. 

1) VGG16 was proposed by Karen Simonyan and Zisserman (Simonyan & 

Zisserman, 2014). The architecture of VGGNet had an input of 244x244 RGB images 
and five convolution layers. Each layer performed 2 to 3 rounds of convolutions using 
3x3 filters and strides by 1. Each convolutional layer was followed by Max pooling 
with a 2x2 filter and stride by 2 using the activation function in each convolution layer 
as ReLu. Then, it would be sent to the fully connected layer and calculates the 
classification result by Softmax Activation Function 

2) ResNet50  (Kaiming He et al., 2016) is a 50-layer model designed to solve 
problems of vanished and exploding gradients when using very deep layers that 
bottleneck designs. The bottleneck design consists of 4  blocks, each of which has 
convolutional layers 3, 4, 6, and 3 respectively, excluding the convolutional layer and 
the input and prediction layers. The experimental part in the bottleneck, the 1×1 conv2D 
was added at the beginning and the end of the block to reduce the number of parameters 
in the network.  

 3) DenseNet121: This architecture was conceptualized by solving inter-layer 
connectivity problems instead of using shortcut connections. After that, we got the 
feature of the sequence pattern and add 3 additional Conv1D layers before applying 2 
LSTM layers. The LSTM was proposed by Hoch Reiter and Schmid Huber in 1997 

(Hochreiter & Schmidhuber, 1997) as a solution to the problem of a smaller gradient. 
LSTM is suitable for sequence data and can update and forget the hidden states by using 
a set of forget gates, memory units, input, and output gate networks. LSTM maintains 
the data sequentially from the previous input. The memory blocks were designed to 
control the internal data which has the advantage of remembering previous data and 
forgetting unnecessary data before sending it to decryption. 

 4) Convolution layer: The convolutional layer computes the convolutional 
operation of the input images using kernel filters to extract spatial features. The kernel 
filters are of the same dimension but with smaller constant parameters as compared to 
the input images. In a convolutional layer, a neuron is only connected to a local area of 
input neurons instead of full connection so that the number of parameters to be learned 



 

 

 
 42 

is reduced significantly and a network can grow deeper with fewer parameters. In this 
research, we presented three convolution 1D layer to extract spatial features, followed 
by LSTM network. The kernel size of convolution 1D is m x F, where F is the depth of 
a filter and m is the size of the convolutional kernel. 

5) Long Short-Term Memory (LSTM), invented by (Hochreiter & 
Schmidhuber, 1997) to present the novel gradient-based method and developed the 
network based on a recurrent neural network (RNN). It proposed to address the 
computational complexity, error flow, constraints of the feedforward neural network, 
and sequence problems of time series data (Kang et al., 2016)(Yan et al., 2018). The 
LSTM network comprised special units that connect to other units and are designed to 
cope with the sequence of data; video and speech data, called memory blocks. Each 
memory block contained the various functions consisting of the forget gate, input gate, 
update cell state, and the output gate. The memory block is calculated as follows; 

    𝑓𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (1) 

    𝑖𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)    

    𝐶ˇ𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)    
    𝑂𝑡 = 𝜎(𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)    

    ℎ𝑡 = 𝑜𝑓 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)     

where, 𝑥𝑡  is input vector, W is weight, b is bias, ℎ𝑡−1 is previous cell output, 𝐶𝑡−1 is 
previous cell memory, ℎ𝑡 is current cell output, 𝐶𝑡 is current cell memory, σ is sigmoid 

function, and ' ∙ ' is the Hadamard product. 

4) Decoding algorithm: In the experiment, we proposed an additional decoding 
algorithm to propose to transcribe the sequence data output probability distributions of 
23 words which are the output of the SoftMax activation function to use as input of the 
decoding, and then to send it to be decrypted with Connectionist Temporal 
Classification (CTC) (Graves et al., 2006). CTC was solved as a loss function used for 
training the LSTM networks to address sequence problems. There is the ability to 
predict in a continuous sequence. This research uses Greedy search, a well known 
algorithm in the language generation tasks of NLP (Natural Language Processing). This 
method aims to generate the sequence outputs of tokens from a neural network model. 
Both approaches are focused on sequence-to-sequence models. The model maps an 
input sequence to a target sequence. In addition, CTC had a function to check the blank 
or no label, which prevents blank or other label prediction from occurring to predict the 
sentence. 
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4.4 Experimental Setup 

1) Thai sign language sentences (TSLS) dataset:  The data in this research is 
a dataset in the form of Thai Sign Language sentences. We had allowed from 4 
informants who could use Thai Sign Language. The TSLS dataset contained only 23 
words.  We selected four types of words: Subject, Verb, Object, and Adjective. After 
that, it was used to compose 125 consecutive sentences. Data collection It does not 
specify the duration or the rhythm of the gestures of that sentence. Each sentence 
contains words with complex gestures or multiple strokes shown in figure 19, Finally, 
we got a total of 500 video data with frequencies ranging from 4 to 132 frequencies as 
shown in Table 8 and Figure 21-22. 

Table 8 Show in Thai sign language sentences (TSLS) Dataset.  

type 
Used words, 

In parentheses ( ) is the word frequency in this data set. 

Subject You 
(100) 

I 
(104) 

People 
(100) 

They 
(100) 

We 
(100) 

  

Verb Use 
(132) 

Have  
(96) 

Give 
(100) 

Do 
(104) 

See 
(100) 

Request 
(4) 

 

Object Car 
(92) 

Work 
(28) 

Place 
(96) 

Home 
(88) 

Things 
(84) 

  

Adjective Together 
(72) 

Already 
(92) 

Good 
(20) 

All right 
(60) 

Wrong 
(72) 

Many 
(44) 

Damaged 
(4) 

 

Figure 21 Class distribution of word frequency the TSLS dataset. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 22 Example Thai sign language sentences Dataset 

(A) People use to place many, (B) They have a car too,  

(C) You do good, and (D) I see.  

This dataset was shot with a DSLR camera, video format, 1280x720px image 
size, and 50p frame rate. The Video files had a different duration depending on each 
gesture and used a white background that is non-complex. 

2) Implementation Detail The proposed framework used the Karas library 
based on the TensorFlow deep learning framework. All the experiments were trained 
and evaluated on the Google Colab platform using system specs; GPU Nvidia P100, 
and 52GB of RAM. We trained and finetuned the models with the following 
parameters: Adam optimizer, learning rate = 0.0001, moment estimate values = 0.9, 
batch size = 32, epoch = 100. Second, we divided Training and Testing data in 
proportions of 80%, and 20%, respectively, performed the 5-fold cross-validation        
(5-cv) and measured recognition performance with the word error rate (WER). 

3) Frame selection & extends data. From a 1280x720 pixel 50p video dataset, 
we used the pretrained YOLOv5 architecture for human detection. As a result, we got 
the area of ROI show in figure 23. 
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(A) 

 

(B) 

Figure 23 The sample of image frames show  

(A) Original image file and (B) Human detection image with Yolov5. 

Subsequently, we start selected a large number of frames by extracting only 100 
frames from figuring out the number of skipped frames with this equation.  

jump ratio = floor(No. of all frames / 100)     (1) 

In this research, the same number of frames from each source was used for 
training. We then assign the required frames from the starting frame (S) to the final 
frame (E). The scope of selection of source frames is limited to only one value of S and 
E, increasing the variety of data and the possibility of using other frames. Randomly 
selects a new starting frame and ending frame with the difference S,E between [-5,10] 
frames , [-10,5] frames respectively, which we call Extends data flames, shown in figure 
24.  
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Figure 24 The Process for selecting frames from a video. 

we randomly selected the sequence of frames that affects 32 gestures and extend a data 
frame using a neighboring frame dataset of 20, 100 times. As a result, we obtained an 
incremental data set before extracting the feature of the sequence pattern. In addition, 
we further experimented with optical flow recognition techniques and used the three 
CNNs architectures to compare and find the optimal architecture show in figure 25. 

 4) Optical flow. The optical flow was used to increase machine learning 
(Barron et al., 2019). It had one vector representing the motion of a point from the first 
and second frames. It was determined by the (Consider) pixel 𝐼(x, y, t) and will be 
moved for a distance represented by (dx, 𝑑𝑦) and so on in the next frame. There is a 
formula for calculating as follows: 

I(x , y , t)  =  I( x +  dx, y +  dy, t +  dt)  (2)  

Consider a pixel 𝐼(x, y, t) in the first frame (Check a new dimension, time, is added 
here. Earlier, we were working with images only, so no need of time. It was moved by 
a distance (dx, 𝑑𝑦) in the next frame taken after death time, since those pixels are the 
same and the intensity does not change. We know the flow of light from the previous 
frame in relation to the next frame, thus showing the effect of the movement of the 
image. Of course, the optical flow changes with each move made on the frame show in 
figure 25 (B).  
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(A) 

 

(B) 

Figure 25 The sample of image frames show (A) Original sequence images,  

(B) Optical flow on sequence images. 

5) Evaluation metrics. The evaluation metrics used for word and sentence Thai Sign 
language recognition word error rate (WER). The WER was computed by equation 3.  

𝑊𝐸𝑅 =
𝐼+S+D

N
     (3) 
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where 𝐼 is the number of words insertions, 𝑆 is the number of words substituted, 𝐷 is 
the number of words deleted, and 𝑁 is the total number of words in the ground truth 
sentence. 

4.5 Experimental result and Discussion 

1) Experiments with CNN-LSTM comparison and Extend data. In this 
experiment, we compared the state-of-the-art three CNNs architectures; VGG16, 
DenseNet121, and ResNet50 to obtain the best performance. We showed the number 
of extended data 20,100 times with the original 32 frames and feature size to train each 
CNNs. We used a few convolutional layers Conv1D 3 layers and two layers of LSTM 
architecture. After that, we classified by using the SoftMax function and performed a 
final in the CTC decoding algorithms. We determined performance by Words Error 
Rate (WER) in Table 9. 

Table 9 The performance of CNNs architectures and extend data frames on the  

TSLS dataset.  

CNN 

Feature 
Feature  

sizes 

WER  

Original  Extends data (Times) 

- 20  100 

VGG16 512 0.9412 0.9440 0.4734 
DenseNet121 1024 0.9412 0.9384 0.4342 

ResNet50 2048 0.9272 0.9380 0.4426 

Table 9 showed the experimental results with Three CNN-LSTM architectures 
and extend data frames, and the number of feature sizes for each architecture in the 
experiment. The result extends data found original and 20 times the performance is not 
different. It is different from the 100 Times Extends which are more efficient. As a 
result, the best CNN model is DenseNet121 on Extends data 100 Times to be the best-
performing Words error rate (WER) = 0.4342. Note that, we used to extend data 100 
Times in the next section of the experiment.  

2) Experiments with Optical flow. After experimenting with extended data 
frames 100 times (see Table 2), this data set was used for further experimentation. We 
experimented with adding optical flow to verify frame dynamics. This allows us to 
compare using and without optical flow with the difference. We still compared all 3 
CNNs and showed the values of the parameters shown in Table 10. 
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Table 10 The Comparison results of the using and not using optical flow. 

CNN Feature 
Optical flow (WER) 

Parameter 
No Yes 

VGG16 0.4566 0.4986 4,768,664 

DenseNet121 0.4342 0.4482 5,751,704 
ResNet50 0.4706 0.4622 7,717,784 

Table 10 showed the performance demonstrated in the optical flow in use with 
the ResNet50 architecture with an increment. In addition, the optical flow performance 
did not improve the Word error rate. Although, the ResNet50 was good but still was 
less efficient than the DensNet121. Note that, we would not use the optical flow 
technique in the next experiment because it had more parameter weight than 
DensNet121.  

3) Experiments with Number of Conv1D.  After evaluating various CNN- 

LSTM architectures on the Video Thai sign language sentences, we tried to find the 
number of layers of Conv1D. Also, we compared the performance of the number of 
layers of Conv1D consisting of 1-4 layers: input 128,256,512, respectively.  We still 
used three CNN-LSTM architectures. In addition, we determined the effective size of 
CNN-LSTM and experimented by using three sizes: 128,256,512, respectively. This 
experiment used LSTM to evaluate performance with WER as shown in Table 11. 

Table 11 Evaluation of performance number layers of Conv1D 

CNN Feature CONV1D 

 (WER) 

CNN-LSTM  size 

128 256 512 

VGG16 

1 layer  0.7003 0.8739 0.9020 
2 layers  0.6695 0.6947 0.6947 
3 layers  0.4566 0.4930 0.5126 
4 layers  0.4622 0.4678 0.5098 

DenseNet121 

1 layer  0.9636 1.0140 1.0672 
2 layers  0.6555 0.6162 0.4510 

3 layers  0.4342 0.4846 0.5210 
4 layers  0.4286 0.4650 0.4762 

ResNet50 

1 layer  1.0504 0.7815 1.0000 
2 layers  0.6751 0.6555 0.6863 
3 layers  0.4706 0.4538 0.4650 
4 layers  0.4482 0.4342 0.4482 

Table 11 shows the performance of Conv1D with different layers. The best 
results were obtained when using 4 layers of Conv1D across all BiLSTM sizes except 
DenseNet121 with BiLSTM size=512 where only 2 layers of Conv1D were used,    
WER = 0.4510. However, the best result of all was the DenseNet121 architecture based 
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on BiLSTM size =128, using 4 layers of Conv1D, WER = 0.4286. Note that, we also 
used 4 layers of Conv1D in the next experiment. 

4) Comparing the RNNs; LSTM and GRU. It is the comparison of the RNNs 
Types for word sign language recognition. CNN was previously used to extract 
features. We selected an interesting comparison of the LSTM and GRU in terms of 
computation sequence learning called BiLSTM and BiGRU, respectively. In our 
experiment, we showed the results of using 3 and 4 layers of Conv1D and also 
compared the DenseNet121 and ResNet50 architectures with the 5-CV, as well as we 
also showed the magnitude of all 3 RNNs: 128,256,512 in Table 12. 

Table 12 The comparison results of different RNN types using BiLSTM, and BiGRU.  

CNN Feature CONV1D 

WER (5-cv) 

BiLSTM size BiGRU size 

128 256 512 128 256 512 

DenseNet121 3 layers  
0.45 

±0.02 
0.46 

±0.02 
0.49 

±0.03 
0.47 

±0.03 
0.48 

±0.02 
0.48 

±0.02 

4 layers  
0.43 

±0.01 

0.46 
±0.02 

0.48 
±0.01 

0.49 
±0.01 

0.47 
±0.01 

0.48 
±0.03 

ResNet50 3 layers  
0.47 

±0.01 
0.47 

±0.01 
0.48 

±0.01 
0.51 

±0.01 
0.51 

±0.02 
0.50 

±0.02 

4 layers  
0.45 

±0.02 
0.46 

±0.01 
0.46 

±0.01 
0.52 

±0.01 
0.49 

±0.02 
0.49 

±0.02 

Table 12 shows the results using BiLSTM can learn in a sequence pattern for 
better word recognition. When used with the DenseNet121 and ResNet50 architectures, 
all RNNs sizes. Finally, we also found that DenseNet121 retains the best word 
recognition capability. 

To recognize the Word in sign language sentence, we recommend decoding the 
output using the CTC algorithm. Examples of the correct recognition using 
DenseNet121-LSTM. Some recognition results and WER values are shown in Table 13. 
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Table 13 The recognition results of the DenseNet121-LSTM architecture using the CTC 

decoding algorithm. 

# Input Video and Labels Recognition 

Results 

WER 

1 
 

 ['คุณ/You' 'ท า/Do' 'ผิด/Wrong' 'มาก/Many'] 

['คุณ/You', 'ท า/Do', 'ผิด/

Wrong', 'มาก/Many'] 
0 

2 
 

 ['คน/People' 'ใช/้Use'] 

['ค น / People', 'ท า / Do', 
'ข อ ง / Things', 'ไ ด้ / All 
right'] 

1.5 

3 
 

 ['พวกเรา/We' 'มี/Have ' 'รถยนต/์Car'] 

['พวกเรา /We', 'ใช้/Use', 
'ร ถ ย น ต์ / Car', 'ด้ ว ย /

Together'] 

0.50 

4 
 

 ['พวกเขา/They' 'เห็น/See' 'รถยนต/์Car' 'ดว้ย/Together'] 

['พวกเขา/They', 'เห็น/See', 
'ข อ ง / Things', 'ด้ ว ย /

Together'] 

0.25 

5 
 

 ['พวกเขา/They' 'มี/Have ' 'บา้น/Home'] 

['พวกเขา/They', 'มี/Have 
', 'บ้าน / Home', 'ได้/ All 
right'] 

0.33 

6 
 

 ['คุณ/You' 'ให้/Give' 'บา้น/Home'] 

['ฉัน/I', 'ให้/Give', 'รถยนต/์

Car','ได/้All right'] 
1.0 

7 
 

['พวกเขา/They' 'เห็น/See' 'สถานท่ี/Place' 'แลว้/Already'] 

['พวกเรา/We', 'มี/Have ', 
'ส ถ า น ท่ี / Place', 'แ ล้ ว /

Already'] 

0.5 

8 
 

Label: ['ฉนั/I' 'มี/Have ' 'ของ/Things' 'แลว้/Already'] 

['ฉนั/I', 'ให/้Give', 'ได/้All 
right', 'ดว้ย/Together'] 

0.75 

4.6 Discussions 

We observed We observed ROI areas with YOLOv5, and the result is shown in 
Figure 23. We tried to increase the training data by extending the data frames. There 
was no difference in increments of 20 times but extending data frames by 100 times 
could cause Efficiency to improve more than + 0.5, as shown in Table 9. In Table 10, 
we find that the optical flow technique was used to show the results of dynamics 
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achieved as unsatisfactory. Because there is a continuous movement that causes the 
image showing use to reduce the details in the image, as shown in Figure 22. The result 
shows that using the number of Conv1D 4 layers is the most efficient, as in Table 11. 
It was also found that using the LSTM-based RNN type was more efficient than the 
GRU, and the RNN's input size of 128 was found to be the most efficient. As shown in 
the last Table 12, the best-performing architecture was DenseNet121 with 5-cv at 
WER=0.43.  

4.7 Conclusions 

We offered a sophisticated automatic gesture recognition system for Thai Sign 
language, including frame selection & extends data, human detection, optical flow, and 
words  recognition from Thai sign language sentences. We focused on the deep learning 
approaches; the YOLOv5 algorithm for human detection. Then, we used optical flow 
to enhance image change learning and CNN-LSTM architecture for word recognition 
from Thai sign language sentences, the optical flow performance did not improve.  
First, we selected a frame with the region of the gesture in which 32 frames were 
selected using the uniform distribution in that region. In addition, we extend data to 
increase the learning curve due to the small number of STSL datasets. Second, the 
sequence patterns were given to the Conv1D where we get the best results using 4 layers 
of Conv1D, after that, followed by two RNNs architectures: LSTM and GRU, CNN-
LSTM which was found to be more efficient than CNN-GRU and RNN size equal to 
128. It is the best efficiency. Finally, we used the SoftMax activation function and CTC 
decoding to help answer sentences before making predictions. The performance was 
evaluated by determining WER. Moreover, we mainly evaluated the recognition 
performance of CNN-LSTM architectures. We experimented with the 5-CV; the best 
architecture results were DensNet121- LSTM architectures with the highest accuracy 
on the test set. Additionally, we compared extends to a data frame. The results showed 
that the extension of data 1 0 0  times will improve its efficiency. We also compared 
using and without optical flow which indicates that optical flow is not suitable for our 
dataset. In the paper, we measured the WER value to confirm the effectiveness of word 
recognition from Thai Sign Language sentences.  The best result was DensNet121-
LSTM, conv1D using 4 layers, RNN size equal to 128. 

In the future work, we are able to train and test to optimize our framework 
against sign language datasets with other countries, such as American Sign Language 
sentences, MediaPipe Holistic dataset to find a more universal pattern. 



 

 

 
  

Chapter 5 

Discussion 

 The purpose of this research was to develop an automated sign language 
translation system for the hearing impaired using deep learning that can translate both 
alphabet and word sign language. Firstly, we tried to recognize sign language generated 
in real environments. However, most of them were images with complex backgrounds, 
lots of unrelated areas, and mostly using images taken in laboratories. We attempted to 
bypass this limitation by using a hand detection approach using the YOLO v3 
architecture to detect the region of interest (ROI) in the hand only. After that, we 
performed feature extraction and enable it to be recognized with efficient CNNs. 
Secondly, we attempted to recognize data from the dynamic: Thai Sign Language. we 
designed to propose an end-to-end system to recognize the dynamic Thai fingerspelling 
from video. Although, in the case of using gestures with movement and increasing the 
ROI area, we applied the YOLOv5 algorithm for the human detection task. In addition, 
we proposed dynamic fingerspelling recognition that consists of two deep learning 
architectures: convolutional neural network (CNN) and long short-term memory 
(LSTM) to aid sequence-based image recognition which is called the CNN-LSTM 
architecture. It was considered to be a combination of two deep learning methods of 
Convolutional Neural Network and Recurrent Neural Network. This process improved 
recognition gestures based on Dynamic more efficiently. Thirdly, we proposed the 
recognition of words from sign language gestures in sentences to comprehend the sign 
language recognition component. In addition to implementing the YOLOv5 

architecture person detection method, we attempted to add learning by extending the 
low data flame together with using optical flow to display the movement of light from 
the previous flame. After that, the combination of CNNs and LSTMs was used to 
enhance recognition. Finally, we tested using Connectionist Temporal Classification 
(CTC) to decode the output to learn the words in the syntactic form to find the correct 
sentence. 

 We briefly presented an automatic sign language recognition system based on 
the above-mentioned process, as follows:  

 In Chapter 2, the problem with machine learning in sign language often revolves 
around complex environments. Also, most of the image area is an area that does not 
affect learning, and sign language alphabets are still the basis for learning sign 
language. Therefore, we presented an end-to-end fingerspelling recognition framework 
of the Thai sign language based on deep convolutional neural networks (CNNs) on the 
static sign language dataset 15 class.  First, we focused on the detection of hands using 
the YOLOv3 objection detection framework to find areas of ROI. We examined it by 
using the mean average precision (mAP) that compares the output of the network and 
the ground truth bounding box to evaluate a model. In the second process, the robust 
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CNN models were created based on state-of-the-art using five CNN architectures, 
including MobileNetV2, DenseNet121, InceptionResNetV2, NASNetMobile, and 
EfficientNetB2, to create the most robust model that provides high recognition 
performance. Hence, we evaluated the proposed framework to detect and recognize 
three Thai fingerspellings (TFS) datasets: TFS, KKU-TFS, and Unseen-TFS. We found 
that YOLOv3  showed a high precision value on the TFS dataset. However, the worst 
performance was found with KKU-TFS and Unseen-TFS datasets. Also, our proposed 
framework could not detect hands from only one image on the KKU-TFS and Unseen-
TFS datasets. Therefore, we also examined the CNN architectures to recognize the 1 -

stage Thai fingerspelling images. The experimental results showed that DenseNet1 2 1 
obtained an accuracy of 93 .99% on the TFS dataset and 90 .40% on the KKU-TFS 
dataset. Hence, we evaluated the proposed framework to detect and recognize three 

Thai fingerspellings (TFS) datasets: TFS, KKU-TFS, and Unseen-TFS. We found that 
YOLOv3  showed a high precision value on the TFS dataset. However, the worst 
performance was found with KKU-TFS and Unseen-TFS datasets. Also, our proposed 
framework could not detect hands from only one image on the KKU-TFS and Unseen-
TFS datasets. Therefore, we also examined the CNN architectures to recognize the 1 -

stage Thai fingerspelling images. The experimental results showed that DenseNet1 2 1 
obtained an accuracy of 93 .99% on the TFS dataset and 90 .40% on the KKU-TFS 
dataset. 

 In Chapter 3 , we introduced Video Dynamic Sign Language Gesture 
Recognition. The videos were based on the Thai sign language Alphabet 42 class. We 
focused on the deep learning approaches: the YOLOv5 algorithm for human detection 
and CNN-LSTM architecture for recognizing the dynamic fingerspelling from the 
video. First, 32 video frames were selected using the uniform distribution method and 
sent to extract the sequence patterns using CNN architecture. Second, the sequence 
patterns were given to the LSTM architecture, followed by three layers: dropout, GAP, 
and softmax activation function.  The results obtained from the ResNet5 0 - LSTM 
architecture achieved the highest accuracy on the validation set. We experimented with 
the 5 - CV and test set to confirm the ResNet5 0 - LSTM architecture. Moreover, we 
mainly evaluated the recognition performance of CNN-LSTM architectures. The results 
obtained from the ResNet50-LSTM architecture achieved the highest accuracy on the 
validation set. We experimented with the 5-CV and test set to confirm the ResNet50-

LSTM architecture. 

 In Chapter 4 , we proposed a recognition system capable of recognizing sign 
language gestures in words and sentences with gestures connected by a variety of words 
in it to comprehend the sign language recognition component using the Thai sign 
language Sentence Dataset (TSLS). The proposed system included three main 
processes. First, Data preparation consisted of The YOLOv5 algorithm for the human 
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detection task. It extended a data frames to increase the amount of data and Optical flow 
to optimize the rendering of motion of the optical flow. Second, we proposed dynamic 
Thai Sign Language Recognition that consists of two deep learning architectures: three 
layers of 1D convolutional neural network (CNN) and two layers of long short-term 
memory (LSTM). Then, We combined CNN and LSTM, called CNN-LSTM 
architecture, followed by a third process. Third, Decoding algorithms by the recognition 
block whit soft-max layers, followed whit Connection Temporal Classification (CTC) 
to predict continuous sequence characteristics. We tested performance with character 
error rate (CER) value. For the CNN architectures, we evaluated three CNNs; VGG16, 
ResNet50, and DenseNet201. We found that the proposed VGG16-LSTM architecture 
achieved a CER of 0.498 on the test set. 

5.1 Answers to the Research Questions 

 This section answered three research questions (RQ) related to improving the 
system of Thai sign language recognition in detail, according to the research question 
in Section 1. 

 In RQ1, we focused on the recognition of Thai Sign Language from Thai Finger 
Spelling on Static (1-State). We proposed an end-to-end Thai fingerspelling recognition 
with deep learning. Thai Sign Language was found to be seen through a camera in a 
typical environment where the background is complex, and the camera is recorded as a 
landscape image. As a result, many irrelevant areas of interpretation were found.  The 
following questions come up ; The deep learning method for the detection and 
recognition improve on Static Sign Language recognition efficiency ? Is it possible to 
find ROI with hand detections? Can the usage of deep convolutional neural networks 
(CNNs) recognize Thai Sign Language? Which do the best CNNs recognize Thai Sign 
Language when the amount of data is reduced and unseen data? 

 To answer RQ1, we focused on one-stage sign language recognition with the 
TFS dataset is one-stage fingerspelling of Thai sign language that contained 15 signs. 
We recorded the images with both complex and non-complex backgrounds. In the first 
process, we proposed the detection of hands using the YOLOv3  objection detection 
framework to find the area of ROI. The result showed the high average precision value 
achieved with mAP = 0.9787.  For the deep learning technique, we first used CNNs to 
create a robust model. Five CNN models: MobileNetV2 , DenseNet1 2 1 , 
InceptionResNetV2 , NASNetMobile, and EfficientNetB2  were trained. The results 
showed that DenseNet121 and MobileNetV2 outperformed other CNN models. When 
training with 6 0 % , we obtained an accuracy of 9 8 %  from these two CNN models. 
Finally, we evaluated our end-to-end Thai fingerspelling framework on three TFS 
datasets. The result showed that the recognition accuracy of the TFS dataset was 
decreased to 93.99% and 92.81% when using DenseNet121 and MobileNetV2, 
respectively. The results our framework still detected hands at the correct location and 
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our framework showed an accuracy above 9 0 %  on TFS and KKU-TFS datasets and 
slightly reduced accuracy to 82% on the Unseen-TFS dataset. We could guarantee from 
our experimental results we evaluated our end-to-end Thai fingerspelling framework 
can effectively recognize Thai sign language. 

 In RQ2, since the learning illustrations in the TFS datasets contain only static 
datasets, it is not possible to learn the dynamics of Thai Fingerspelling. Can we use 
Deep learning neural networks in combination with LSTM learning to increase the 
efficiency of dynamic Sign Language recognition efficiency?  How do the end-to-end 
systems recognize the dynamic Thai fingerspelling from the video? How is the 
efficiency of the dynamic Thai fingerspelling from video that use CNN and LSTM? 

 To answer RQ2, we focused on the recognition of Dynamic Thai Sign 
Language, whose data uses multiple consecutive gestures.  Therefore, we created the 
Dynamic Thai Finger Spelling Dataset (DTFS) as a video of all Thai Sign Language 
alphabet in 42 classes. Our method started by selecting frames by computing the jump 
ratio over the video frame using the following equation: jump ratio = floor (No. of all 
frames/No. of selected frames), where No. of selected frames in our experiment is 3 2 . 

However, some alphabet movements involved hand and arm movements, so the use of 
the YOLOv5  algorithm for human detection to find the ROI area. Afterward, our 
Dynamic fingerspelling recognition combined two deep learning approaches: CNN and 
RNN. For the CNN architectures, we combined CNN and LSTM, called CNN-LSTM 

architecture, followed by the recognition block. we evaluated three CNNs: 
MobileNetV2, ResNet50, and DenseNet201. We also found learning rates suitable for 
CNNs. As a result, when using a learning rate of 0 . 0 0 1  which achieved the highest 
accuracy, the best CNN model was the ResNet50 which achieved 87.93% accuracy. 
We evaluated the performance of the CNNs and RNNs (LSTM and GRU) using two 
different numbers of units: 3 2  and 6 4  units. The result of ResNet50-LSTM with 64 
units had the best performance and achieved 89.16% accuracy on the validation set. In 
this experiment, we decided to add the extra densely connected layer with 64 units 
between the GAP layer and softmax activation function. As a result, the ResNet50-
LSTM achieved the best accuracy on both the 5-CV and test set with 88.42%.  

 In RQ3, we focused on sign language word recognition in the form of 
consecutive multi-word sentences to complete the elements of sign language 
recognition. How do the usages of extend data flame, Optical flow, Conv1D, LSTM, 
and Connectionist Temporal Classification (CTC) recognize the words and sentences 
of the Thai sign language? How is the word error rate of frameworks? 

 To answer RQ3, we utilized the Thai sign language Sentence Dataset (TSLS) 
with 23 classes of 500 sentences. We continued to use data preparation methods from 
selecting frames in the video dataset in the affected areas for learning to come out at 32 

images and extending the data flame by 100 sets to increase the amount of small data. 
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Of course, we examined human detection with the YOLOv5 architecture to find the 
area of ROI. Meanwhile, we used optical flow to visualize the movement of light from 
a previous flame, resulting in learning the movement before sending it to CNNs to 
extract features of the pattern. We added four layers of Conv1D before implementing a 
two-layer LSTM architecture to enable sequential image recognition. Subsequently, it 
was passed on to SoftMax and uses Connectionist Temporal Classification (CTC) to 
decode output to learn the syntactic words to find the correct sentence. 

5.2 Future Works   

In the future work, we may try to change the decoding with a CTC that speeds 
up the decoding process and improve the quality of the output sequences such as Best 
first search or other methods.  

 This thesis presented an automated Thai sign language recognition system using 
a deep learning method. However, the research still has a gap in enhancing the 
performance of Thai sign language recognition. In the first direction, we found 
problems with the use of small left-hand Thai Sign Language datasets, and the sizes of 
hand images of different sizes are insufficient, the data augmentation techniques: flip, 
zoom, rotate (Guo et al., 2016) (Mengyi Xie, 2019). 

 The experimental results were highly effective but did not include recognition 
of dynamic Thai finger spelling, or recognition of hand signs from the video (called 
action recognition). Another direction for future work should consider the training of 
CNN models with limited training set size and still provide high recognition accuracy.  
In addition, future work should apply CNN to extract the features, called the deep 
feature extraction method. In the second direction, future work should plan to apply the 
proposed method to recognizing multiple words and sentences of the Thai sign 
language. The lightweight 3D-CNN should be included in future experiments to 
enhance accuracy and computation time. 
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